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SECTION I

1E Groups, Rings and Modules
Let F be a finite field of order q. Let G = GL2(F )/Z where Z 6 GL2(F ) is the

subgroup of scalar matrices. Define an action of GL2(F ) on F ∪{∞} and use this to show
that there is an injective group homomorphism

φ : G→ Sq+1.

Now let F = F2[ω]/(ω2 + ω+ 1) = {0, 1, ω, ω+ 1} be the field with q = 4 elements (where
F2 = {0, 1} is the field with 2 elements). Compute the order of G, find a Sylow 2-subgroup
P of G, and show that φ(P ) 6 A5.

2E Geometry
Let H be the hyperbolic upper half plane. Explain how the Riemannian metric

dx2+dy2

y2
on H can be used to compute lengths, angles and areas.

Consider the triangle in H with vertices at eiα, eiβ and ∞, where 0 < α < β < π.
Compute its area, and deduce the Gauss–Bonnet theorem for a hyperbolic polygon.

3B Complex Methods
Let f = u+ iv be an analytic function in a connected open set D ⊂ C, where u(x, y)

and v(x, y) are real-valued functions on D, with x = Re(z), y = Im(z), for z ∈ D.

(a) Show that f ′ = ∂u
∂x + i ∂v∂x , and state the Cauchy–Riemann equations.

(b) Suppose there are real constants a, b and c such that a2 + b2 6= 0 and

au(x, y) + bv(x, y) = c, z ∈ D.

Show that f is constant on D.

4C Variational Principles

Consider a function f : Rn → R, not necessarily differentiable. What does it mean
for f to be convex in a domain D?

If f is once differentiable, state an equivalent condition involving ∇f at two points
x and y in D.

If f is twice differentiable, state an equivalent condition involving the Hessian H.

Compute the largest domain on which the function f(x, y) = x3+y3+Axy is convex
in R2 (A is a constant) and sketch it.
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5A Methods
Calculate the Green’s function G(x; ξ) given by the solution to

d2G

dx2
−G = δ(x− ξ); G(0; ξ) = 0 and G(x; ξ)→ 0 as x→∞,

where ξ ∈ (0,∞), x ∈ (0,∞) and δ(x) is the Dirac δ-function.

Use this Green’s function to calculate an explicit solution y(x) to the boundary value
problem

d2y

dx2
− y = e−2x,

where x ∈ (0,∞), y(0) = 0 and y(x)→ 0 as x→∞.

6D Quantum Mechanics
Consider the one-dimensional, time-independent Schrödinger equation:

d2χ(x)

dx2
+

2m

~2
[E − U(x)]χ(x) = 0, x ∈ R.

(a) Explain the meaning of the functions χ(x), U(x) and parameters E,m, ~.

(b) Solutions of this equation describing bound states correspond to χ(x) → 0 for
x→ ±∞. Are there bound states for a potential that asymptotes to a constant U0 (that
is U(x)→ U0 as x→ ±∞) for the cases E > U0 > 0 and 0 < E < U0?

(c) Show, by contradiction or otherwise, that the energy spectrum of bound states
is non-degenerate.

7C Fluid Dynamics

A two-dimensional cylinder of radius a is stationary in a uniform flow of velocity
Uex. The flow is assumed to be steady, inviscid, two-dimensional and irrotational. There
is no circulation around the cylinder.

Using a velocity potential, solve for the flow u(r, θ) around the cylinder. Use
Bernoulli’s equation to compute the pressure on its surface as a function of the polar
angle θ.
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8H Markov Chains
A gang of thieves decides to commit a robbery every week. The gang only robs one

of three possible targets: Art museums, Banks, or Casinos, which they conveniently denote
by {A,B,C}. The places they rob follows a Markov chain with the following transition
probability matrix:

P =




1/2 1/4 1/4
3/4 0 1/4
3/8 1/8 1/2


 .

(a) Find the stationary distribution of this Markov chain.

(b) Is the Markov chain reversible?

(c) Since this spate of robberies had been going on for a long time (i.e., the Markov
chain is in stationarity), the police approach Detective Holmes for assistance. Detective
Holmes arrives at the crime scene, which happens to be a bank. Detective Holmes asks
the police, “What is the probability that these thieves robbed a bank two weeks ago, as
well?” The police, not having taken Part IB Markov Chains, are stumped. Please help
the police by finding this probability.
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SECTION II

9F Linear Algebra
Let V be a finite-dimensional real inner product space, and α : V → V be a linear

map. What does it mean to say that α is self-adjoint?

If α : V → V is self-adjoint, prove that there is an orthonormal basis for V consisting
of eigenvectors of α.

Let Pn denote the vector space of real polynomials of degree at most n. Show that

〈f, g〉 =

∫ ∞

0
f(x)g(x)e−x dx

defines an inner product on this vector space, and that the linear map α : Pn → Pn given
by

α(f) = xf ′′ + (1− x)f ′

is self-adjoint with respect to this inner product.

Show that α has eigenvalues 0,−1,−2,−3, . . . ,−n. When n = 2 determine
corresponding eigenvectors.

[Hint: You may use the identity
∫∞
0 xne−x dx = n!.]

10E Groups, Rings and Modules
(a) Let R be a unique factorisation domain (UFD) with field of fractions F . What

does it mean to say that a polynomial f ∈ R[X] is primitive? Assuming that the product
of two primitive polynomials is primitive, prove that for f ∈ R[X] primitive the following
implications hold.

(i) f irreducible in R[X] =⇒ f irreducible in F [X].

(ii) f prime in F [X] =⇒ f prime in R[X].

Deduce that R[X] is a UFD. [You may use any standard characterisation of a UFD,
provided you state it clearly.]

(b) A rational function f ∈ C(X,Y ) is symmetric if f(X,Y ) = f(Y,X). Show that
if f ∈ C(X,Y ) is symmetric then it can be written as f = g/h where g, h ∈ C[X,Y ] are
coprime and symmetric.

Part IB, Paper 3 [TURN OVER]



6

11G Analysis and Topology
Let f : U → Rn be a function where U is an open subset of Rm, and let a ∈ U .

Define what it means that f is differentiable at a and define the derivative of f at a.
Define what it means that f is continuously differentiable at a. Show that a linear map
Rm → Rn is continuously differentiable at every point of Rm.

State and prove the mean value inequality. Let U be an open, connected subset of
Rm. Let f : U → Rn be a differentiable function such that Df |a is the zero map for all
a ∈ U . Show that f is a constant function.

State the inverse function theorem. Consider the curve C in R2 defined by the
equation

x2 + y + cos(xy) = 1.

Show that there exist an open neighbourhood U of (0, 0) in R2, an open interval I in R
containing 0 and a continuous function g : I → R such that U ∩ C is the graph of g, i.e.,

{(x, y) ∈ R2 : x ∈ I, y = g(x)} = U ∩ C.

12E Geometry
Let σ : V → Σ be a smooth parametrisation of an embedded surface Σ ⊂ R3, and

let γ : (a, b)→ Σ; t 7→ σ(u(t), v(t)) be a smooth curve. Show by differentiating σu · γ′ and
σv · γ′ that γ satisfies the geodesic equations if and only if γ′′(t) is normal to the surface.
Deduce that geodesics are parametrised at constant speed.

Now assume in addition that Σ is a surface of revolution. Let ρ(t) be the distance
from γ(t) to the axis of revolution, and let θ(t) be the angle between γ and the parallel at
γ(t). Prove that if γ is a geodesic then it satisfies the Clairaut relation

ρ(t) cos θ(t) = constant.

On the hyperboloid Σ = {x2 + y2 = z2 + 1} give examples of

(i) a curve parametrised at constant speed, which satisfies the Clairaut rela-
tion, but is not a geodesic,

(ii) a plane that meets Σ in a pair of disjoint geodesics,

(iii) a plane that meets Σ in a pair of geodesics that intersect at right angles.

Are there any geodesics entirely contained in the region z > 0? Are there any geodesics
γ ⊂ Σ with φ(γ) = γ for every isometry φ : Σ→ Σ? Justify your answers.
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13G Complex Analysis
State Rouché’s theorem. State the open mapping theorem and prove it using

Rouché’s theorem. Show that if f is a non-constant holomorphic function on a domain Ω,
then |f | has no local maximum on Ω.

Let Ω be a bounded domain in C, and let Ω denote the closure of Ω. Let f : Ω → C
be a continuous function that is holomorphic on Ω. Show that if |f(z)| 6 M for all z ∈ ∂Ω,
then |f(z)| 6 M for all z ∈ Ω, where ∂Ω = Ω \ Ω is the boundary of Ω.

Consider the unbounded domain Ω = {z ∈ C : Re z > 1}. Let f : Ω → C be a
continuous function that is holomorphic on Ω. Assume that f is bounded both on Ω and
on its boundary ∂Ω. Show that if |f(z)| 6 M for all z ∈ ∂Ω, then |f(z)| 6 M for all z ∈ Ω.
[Hint: Consider for large n ∈ N and for a large disc D(0, R) the function z 7→

(
f(z)

)n
/z

on D(0, R)∩Ω.] Is the boundedness assumption of f on Ω necessary? Justify your answer.
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14A Methods
(a) You are given that f(x), g(x) and h(x) are all absolutely integrable functions

with absolutely integrable Fourier transforms f̃(k), g̃(k) and h̃(k) such that

h̃(k) = [f̃(k)][g̃(k)],

i.e. that h̃(k) is the product of f̃(k) and g̃(k). Express h(x) in terms of an integral
expression involving f(x) and g(x).

(b) If p′(x) = g(x), express p̃(k) in terms of g̃(k). [You may assume that the
transforms are well-defined.]

(c) Express the inverse transforms of cos ka and sin ka in terms of the δ-function,
where a is a positive constant.

(d) Consider the following wave problem for u(x, t):

∂2u

∂t2
=
∂2u

∂x2
; u(x, 0) = f(x),

∂

∂t
u(x, 0) = g(x).

Use parts (a)-(c) to construct d’Alembert’s solution:

u(x, t) =
1

2
[f(x+ t) + f(x− t)] +

1

2

∫ x+t

x−t
g(ξ) dξ. (?)

[No credit will be given for using any other approach to derive (?). You may assume the
expression derived in part (a) applies.]

(e) Consider the specific case

f(x) = 0; g(x) =

{
x for |x| 6 1,
0 otherwise.

For t > 1, identify a region of the x-t plane including the line x = 0 where u(x, t) = 0.
Briefly interpret this result physically. [Hint: You may find it useful to consider the lines
x = 1− t and x = −1 + t.]
[The following convention is used in this question:

f̃(k) =

∫ ∞

−∞
f(x)e−ikx dx and f(x) =

1

2π

∫ ∞

−∞
f̃(k)eikx dk.]
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15D Electromagnetism
Consider a steady electric current density J(r) and the corresponding magnetic

vector potential A(r).

(a) Show that each component of A(r) in Cartesian coordinates satisfies a Poisson
equation ∇2A = −µ0J and write down the general integral expression for A(r) in terms
of J(r). Explain why you can assume ∇ ·A = 0.

(b) Use the expression for the vector potential to derive the Biot–Savart law:

B(r) =
µ0
4π

∫
J(r′)× (r− r′)
|r− r′|3 d3r′.

(c) Consider a circular loop of wire of radius R in the x-y plane with a circulating
current I. Using the Biot–Savart law, determine the direction and magnitude of the
corresponding magnetic field B(r) at a point on the z-axis. What is the magnetic field at
the centre of the loop?

(d) If there is a second parallel loop of radius 2R with centre in the z-axis at a
distance D from the first loop and current 2I circulating in the opposite direction, find
the point between the wires at which the magnetic field vanishes.

16C Fluid Dynamics

(a) Starting from the Euler equation for an inviscid fluid with no body force, derive
the unsteady Bernoulli equation relating the pressure and the velocity potential in a time-
dependent irrotational, incompressible flow.

(b) A liquid occupies the two-dimensional annular region a(t) < r < b(t) between
a gas bubble occupying 0 6 r < a(t) and an infinite gas in r > b(t). The flow is
incompressible, irrotational and radially symmetric.

(i) If the radius of the gas bubble is prescribed (i.e. the function a(t) is known),
solve for the potential flow in the liquid. Deduce the time-variation of b(t)
and interpret your result physically.

(ii) The pressure in the gas in r > b is a constant p∞. Compute the time-
varying pressure p(r, t) in the liquid at r = a(t).

(iii) Assuming small perturbations for the bubble radius a(t) = a0[1 + ε(t)]
with |ε| � 1, deduce the linearised variation of the radius b(t). Find the
linearised variation of the pressure p(a, t).

(iv) The pressure p0(t) in the bubble is uniform in space and satisfies p0V =
const, where V (t) is the volume of the bubble. Deduce the relationship
between ε and p(a, t)− p∞.

(v) Show that the bubble undergoes oscillations and compute its frequency ω.
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17B Numerical Analysis
Consider C[a, b] equipped with the inner product 〈f, g〉 =

∫ b
a f(x)g(x)w(x)dx, where

w(x) > 0 for x ∈ (a, b). Let Pn denote the set of polynomials of degree less than or equal
to n. For f ∈ C[a, b] consider the quadrature formulas

I(f) =

∫ b

a
f(x)w(x)dx ≈

n∑

i=0

a
(n)
i f(x

(n)
i ) = In(f), n = 0, 1, 2, . . . (∗)

with weights a
(n)
i ∈ R and nodes x

(n)
i ∈ [a, b], which are exact on all polynomials q ∈ Pn.

(a) Prove that the quadrature formula (∗) is exact for all q ∈ Pn+1+k if and only

if the polynomial Qn+1(x) =
∏n

i=0(x − x
(n)
i ) is orthogonal (with respect to 〈·, ·〉) to all

polynomials of degree k.

(b) Prove that no quadrature formula (∗) could be exact on polynomials of degree
2n+ 2.

(c) Prove that if (∗) is exact on P2n, then a(n)i > 0.

(d) Show that if a
(n)
i > 0 for all i and n, then

In(f)→ I(f), n→∞.

[Hint: Use the Weierstrass theorem: for any ε > 0 there exists n ∈ N and a polynomial
pn ∈ Pn such that |f(x)− pn(x)| < ε, for x ∈ [a, b].]

18H Statistics
(a) Define a uniformly most powerful (UMP) test when X ∼ f(·|θ) for θ ∈ Θ, and

the two hypotheses correspond to

H0 : θ ∈ Θ0 ⊆ Θ

H1 : θ ∈ Θ1 ⊆ Θ.

(b) Let f(x|θ) be the logistic location probability density function

f(x|θ) =
e(x−θ)

(1 + e(x−θ))2
, −∞ < x <∞, −∞ < θ <∞.

(i) Based on one observationX, find the most powerful size-α test ofH0 : θ = 0
versus H1 : θ = 1. You may use any results from the lectures without proof
provided you state them clearly.

(ii) Prove that the test in part (i) is UMP of size α for testing H0 : θ 6 0
versus H1 : θ > 0.
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19H Optimisation
Let S ⊂ R3 be the set of all (x1, x2, x3) ∈ R3 satisfying the following linear

inequalities:

0 6 x1, x2, x3 6 1,

x1 + x2 + x3 6 2.5.

(a) Show that S is a non-empty convex set.

(b) What is meant by an extreme point of a convex set? Find all extreme points of S.

(c) Suppose we want to solve the following linear program:

maximise x1 + 2x2 + 4x3

subject to (x1, x2, x3) ∈ S.

What is the solution to this problem and where is it attained?

(d) Suppose the simplex method is initialised at (0, 0, 0) to solve the above linear
program. Recall that depending on the choices of pivot elements made at each
step, many different outcomes are possible. Here, an outcome denotes the path the
simplex method takes over the basic feasible solutions of the problem.

What is the smallest number of steps in which the simplex method can find the
solution? What is the largest number of steps in which the simplex method can
find the solution? Calculate the total number of distinct outcomes possible when
the simplex method is initialised at (0, 0, 0).

It may be helpful to draw a picture.

END OF PAPER
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