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SECTION I

1F Linear Algebra
Let V and W be finite-dimensional real vector spaces, and L(V,W ) denote the

vector space of linear maps from V to W . Prove that the dimensions of these vector
spaces satisfy

dim(L(V,W )) = dim(V ) · dim(W ).

If A 6 V and B 6W are vector subspaces, let

X = {φ ∈ L(V,W ) : φ(A) 6 B},

which you may assume is a vector subspace of L(V,W ). Prove a formula for the dimension
of X in terms of the dimensions of V , W , A and B.

If S and T are vector subspaces of V such that V = S + T , let

Y = {φ ∈ L(V, V ) : φ(S) 6 S and φ(T ) 6 T},

which you may assume is a vector subspace of L(V, V ). Prove a formula for the dimension
of Y in terms of the dimensions of V , S, and T .

2F Geometry
What is a topological surface?

Consider
S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1},

which you may assume is a topological surface. For the equivalence relation ∼ on S2

generated by (x, y, z) ∼ (−x,−y,−z), show that S2/ ∼ is a topological surface. For the
equivalence relation ≈ on S2 generated by (x, y, z) ≈ (−x,−y, z), show that S2/ ≈ is
homeomorphic to S2.

3B Complex Analysis OR Complex Methods
(a) What is the Laurent series of e1/z about z0 = 0?

(b) Let ρ > 0. Show that for all large enough n ∈ N, all zeros of the function

fn(z) = 1 +
1

z
+

1

2!z2
+ . . .+

1

n!zn

lie in the open disc {z : |z| < ρ}.
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4C Variational Principles

Briefly explain how to use a Lagrange multiplier to find the extrema of a function
f(x) subject to a constraint g(x) = 0.

Find the maximum volume of a cuboid of side lengths x > 0, y > 0, and z > 0
whose space diagonal has length L.

5B Numerical Analysis
Given a matrix A ∈ Rm×n and a vector y ∈ Rm where m > n, consider the problem

of finding c∗ ∈ Rn that minimises ‖Ac − y‖2 for c ∈ Rn, where ‖ · ‖2 is the standard
Euclidean norm.

(a) Prove that c∗ is a solution to the above minimisation problem if and only if
ATAc∗ = ATy.

(b) Show that if A is of full rank, then c∗ is unique.

6H Statistics
(a) Define the generalized likelihood ratio test statistic and state Wilks’ Theorem.

(b) The following experiment was conducted in the late 1800s to determine whether
the use of carbolic acid was helpful in amputations. Out of 75 amputations, with and
without carbolic acid, the following data were collected:

Carbolic acid used Carbolic acid not used

Patient lived 34 19
Patient died 6 16

Describe a hypothesis test to determine whether the use of carbolic acid affects the rate
of patient mortality: What is the null hypothesis, and what is the alternative? What is
an appropriate statistic and what is the critical region for a test of size α? You need not
calculate the value of the statistic.
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7H Optimisation
What is the minimum-cost flow problem on a graph with vertex set V = {1, 2, . . . , n}

and edge set E? Your answer should be in terms of

• a cost matrix C ∈ Rn×n,

• a vector b ∈ Rn whose i-th entry is the amount of flow that enters vertex i,

• a lower bound on the flow given by a matrix M ∈ Rn×n, and

• an upper bound on the flow given by a matrix M ∈ Rn×n.

Show that we can always assume M = 0 by constructing an equivalent problem to
the general problem above. Explain why the problems are equivalent.
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SECTION II

8F Linear Algebra
For each of the following statements give a proof or counterexample.

(a) If A and B are 3× 3 complex matrices with the same characteristic polynomial
and the same minimal polynomial, then they are conjugate.

(b) There are three mutually non-conjugate complex matrices with characteristic
polynomial (2− t)2(1− t)5 and minimal polynomial (2− t)2(1− t)2.

(c) If α : V → V is a linear isomorphism from a finite-dimensional complex
vector space to itself such that some iterate αN with N > 0 is diagonalisable, then α
is diagonalisable.

(d) A real matrix which is diagonalisable when considered as a complex matrix is
also diagonalisable as a real matrix.

(e) Two real matrices which are conjugate when considered as complex matrices are
also conjugate as real matrices.

9E Groups, Rings and Modules
Let R be a Noetherian integral domain with field of fractions F . Prove that the

following statements are equivalent.

(i) R is a principal ideal domain.

(ii) Every pair of elements a, b ∈ R has a greatest common divisor which can
be written in the form ra+ sb for some r, s ∈ R.

(iii) Every finitely generated R-submodule of F is cyclic.

(iv) Every R-submodule of Rn can be generated by n elements.

Show that any integral domain that is isomorphic to Zn as a group under addition is
Noetherian as a ring. Find an example of such a ring that does not satisfy conditions
(i)-(iv). Justify your answer.
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10G Analysis and Topology
Define the terms Cauchy sequence and complete metric space. Prove that every

Cauchy sequence in a metric space is bounded.

Show that a metric space (M,d) is complete if and only if given any sequence (Fn)
of non-empty, closed subsets of M satisfying

• Fn ⊃ Fn+1 for all n ∈ N and

• diamFn = sup{d(x, y) : x, y ∈ Fn} → 0 as n→∞,

the intersection
⋂
n∈N Fn is non-empty.

State the contraction mapping theorem.

Let (Λ, ρ) and (M,d) be non-empty metric spaces, and assume that (M,d) is
complete. Let T : Λ×M →M be a function with the following properties:

• there exists 0 6 k < 1 such that d(T (λ, x), T (λ, y)) 6 kd(x, y) for all λ ∈ Λ and all
x, y ∈M ;

• for each x ∈M , the function Λ→M , given by λ 7→ T (λ, x), is continuous.

Show that there is a unique function x∗ : Λ → M such that T (λ, x∗(λ)) = x∗(λ) for all
λ ∈ Λ. Show further that the function x∗ is continuous.

11F Geometry
Define in terms of allowable parametrisations what it means to say that a subset

S ⊂ R3 is a smooth surface.

Let φ : R→ (0,∞) be a smooth function. Show that

Σ = {(x, y, z) ∈ R3 : x2 + y2 = φ(z)2}

is a smooth surface in R3.

Suppose a < b and r > 0 are such that for all a 6 a′ < b′ 6 b we have

Area({(x, y, z) ∈ Σ : a′ 6 z 6 b′}) = 2πr · (b′ − a′).

Show that φ must satisfy r2 = φ(t)2 + φ(t)2φ′(t)2 for a 6 t 6 b. Assuming that φ(t) < r
for a 6 t 6 b, show that the graph of the function φ|[a,b] lies on a circle of radius r.
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12G Complex Analysis OR Complex Methods
(a) Let f(z) = −∑∞

n=1
(1−z)n
n for |z− 1| < 1. By differentiating z exp(−f(z)), show

that f is an analytic branch of logarithm on the disc D(1, 1) with f(1) = 0. Use scaling
and the function f to show that for every point a in the domain D = C \ {x ∈ R : x > 0},
there is an analytic branch of logarithm on a small neighbourhood of a whose imaginary
part lies in (0, 2π).

(b) For z ∈ D, let θ(z) be the unique value of the argument of z in the interval
(0, 2π). Define the function L : D → C by L(z) = log|z| + iθ(z). Briefly explain using
part (a) why L is an analytic branch of logarithm on D. For α ∈ (−1, 1) write down an
analytic branch of zα on D.

(c) State the residue theorem. Evaluate the integral

I =

∫ ∞

0

xα

(x+ 1)2
dx

where α ∈ (−1, 1).
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13A Methods
(a) Let y0(x) be a non-trivial solution of the Sturm–Liouville problem

L(y0;λ0) = 0; y0(0) = y0(1) = 0,

where

L(y;λ) = d

dx

[
p(x)

dy

dx

]
+ [q(x) + λw(x)] y.

Show that, if y(x) and f(x) are related by

L(y;λ0) = f,

with y(x) satisfying the same boundary conditions as y0(x), then

∫ 1

0
y0f dx = 0. (?)

(b) Now assume that y0 is normalised so that

∫ 1

0
wy20 dx = 1,

and consider the problem

L(y;λ) = ym+1; y(0) = y(1) = 0,

where m is a positive integer. By choosing f appropriately in (?) deduce that, if

λ− λ0 = εmµ and y(x) = εy0(x) + ε2y1(x),

where 0 < ε� 1 and µ = O(1), then

µ =

∫ 1

0
ym+2
0 dx+O(ε).
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14D Quantum Mechanics
Consider a physical observable O represented by a Hermitian operator Ô acting on

a Hilbert space H. We define the uncertainty ∆ψO in a measurement of O on a state ψ

as (∆ψO)2 = 〈Ô2〉ψ − 〈Ô〉2ψ with the expectation value defined as 〈Ô〉ψ = (ψ, Ôψ).

(a) Using the Schwartz inequality |(φ, ψ)|2 6 (φ, φ)(ψ,ψ) for two states φ, ψ, prove
the generalised uncertainty relation for the observables A,B:

(∆ψA)(∆ψB) > 1

2

∣∣∣
(
ψ,
[
Â, B̂

]
ψ
) ∣∣∣, (†)

where [Â, B̂] = ÂB̂ − B̂Â is the commutator of Â and B̂.

(b) Given the two Hermitian operators X̂ and Ŷ and a real parameter λ, we define

f(λ) =
〈(
X̂ − iλŶ

)(
X̂ + iλŶ

)〉
ψ
.

Minimising f(λ) and using the fact that f(λ) > 0, provide an alternative derivation of the
uncertainty relation (†).

(c) For the position and momentum operators, x̂ and p̂ = −i~ ∂
∂x , respectively, find

their commutator [x̂, p̂] and derive the Heisenberg uncertainty relation ∆ψx∆ψp > 1
2~.

(d) Show that a Gaussian wave function ψ(x) = Ce−αx
2

solves the one-dimensional
Schrödinger’s equation for a quadratic potential U(x) = kx2 with k > 0. Determine the
value of the constants α,C and the energy E in terms of k and the particle’s mass m. Show
that this wave function saturates the Heisenberg uncertainty relation (∆ψx∆ψp = 1

2~).
Furthermore, show that in order to saturate this Heisenberg relation, the wave function
has to be Gaussian. [Hint: You may use

∫∞
−∞ e

−ax2dx =
√

π
a and

∫∞
−∞ x

2e−ax
2
dx =

√
π
4a3

.]

Part IB, Paper 1 [TURN OVER]



10

15D Electromagnetism
Write down Maxwell’s equations in free space for the electric field E(x, t) and

magnetic field B(x, t) in the presence of an electric charge density ρ(x, t) and current
density J(x, t).

(a) Use Maxwell’s equations to prove the continuity equation ∂ρ
∂t + ∇ · J = 0 and

then derive the conservation of electric charge Q =
∫
V
ρ d3x. Which assumption do you

need to make in order to establish this result?

(b) In empty space, with ρ = |J| = 0, show that each component of E and B
satisfies the wave equation. Compute the speed of the waves in terms of the permittivity
ε0 ' 8.85× 10−12 m−3 kg−1 s4 A2 and permeability µ0 ' 1.25× 10−6 NA−2 of free space.
Explain the importance of this result.

(c) Using Maxwell’s equations and the expression for the energy stored in electric
and magnetic fields inside a volume V :

U =
1

2

∫

V

(
ε0E

2 +
1

µ0
B2

)
d3x,

write down an equation for the variation of the energy in terms of the Poynting vector,
which you should define, and provide an interpretation. [The identity ∇ · (E×B) =
B · (∇×E)−E · (∇×B) may be useful.]

(d) For a linearly polarised monochromatic electromagnetic wave of frequency ω
and wave vector k the electric field can be written as E = E0 sin (k · x− ωt). Show that
the Poynting vector is parallel to the wave vector k and compute its magnitude. Consider
the time average of the Poynting vector and relate it to the average energy stored in the
electric and magnetic fields.

(e) If a mobile phone transmits electromagnetic waves with a power of 1 watt,
compute the average amplitude of the Poynting vector and the amplitude of the electric
field at 10 cm from the handset. You may assume that the radiation is isotropic.
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16C Fluid Dynamics

An incompressible viscous fluid of constant uniform viscosity µ and density ρ
undergoes unidirectional flow of the form u = u(y, t)ex in two dimensions. Gravity is
negligible.

(a) Use a small control fluid volume of size δx× δy,

(i) to show that this flow satisfies mass conservation;

(ii) to derive the momentum conservation equation satisfied by u(y, t) and the
pressure p(x).

(b) The flow is steady, is subject to a uniform pressure gradient G = dp/dx and
occurs between two rigid surfaces at y = 0 and y = h. The surface at y = 0 is stationary
while the surface at y = h translates with velocity Uex, where U is a constant parameter.

(i) Solve for the flow u(y) in terms of G and U .

(ii) Compute the value G0 of the applied pressure gradient G for which the
shear stress at y = 0 is zero.

(iii) For G = G0, deduce the volume flux in the x direction.

(iv) For G = G0, use u(y) to compute the shear stress exerted by the flow on
the top plate. Show that it can also be obtained by using a force balance
on a small control fluid volume of size δx× h.
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17B Numerical Analysis
Consider the ODE

y′ = f(y), y(0) = y0 > 0, (∗)
where f(y) = −sign(y), y(t) ∈ R and t ∈ [0, T ], with T > y0. The sign function is defined
as

sign(y) =





1 for y > 0
0 for y = 0
−1 for y < 0.

(a) Does the function f satisfy a Lipschitz condition for y ∈ R? Justify your answer.

(b) Show that there is a unique continuous function y : [0, T ] → R that is
differentiable for all t ∈ [0, T ] except for some t̃ ∈ (0, T ] and satisfies the ODE (∗) for
all t ∈ [0, T ] \ t̃.

(c) The Euler method for (∗) produces a sequence {yn}n6N , where N = bTh c and
h > 0 is the step-size. Is

|yn − y(nh)| 6 O(h), for 0 6 n 6 N,

where y(t) is the solution described in part (b)? Justify your answer.

18H Statistics
Suppose X1 and X2 are i.i.d. N (µ, 1) random variables.

(a) Write down the joint probability density function of (X1, X2).

(b) Prove that T = X1 + X2 is a sufficient statistic for µ. Is it a minimal sufficient
statistic? Justify your answer.

(c) Suppose we wish to estimate θ := µ2. Prove that S = X2
1−1 is an unbiased estimator

of θ. Find the mean square error of S. You may use the fact that E[Z4] = 3 for
Z ∼ N (0, 1).

(d) What is the probability density function of X1 conditioned on T?

(e) Use the Rao–Blackwell theorem to derive an estimator with strictly smaller mean
square error than S for estimating θ. Calculate the mean square error for the new
estimator you derive and compare it with the mean square error of S calculated in
part (c).
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19H Markov Chains
Label the vertices of a binary tree by all binary vectors, with the exception of the

“root” node, which is labeled ∅. Let p0, p1 > 0 such that p0+p1 < 1, and let p = 1−p0−p1.
Consider a Markov chain Xn on the binary tree with transition probabilities as follows:

P(Xn+1 = (b1, b2, . . . , bk, i)|Xn = (b1, b2, . . . , bk)) = pi for i = 0, 1,

P(Xn+1 = (b1, b2, . . . , bk−1)|Xn = (b1, b2, . . . , bk)) = p

for any non-root vertex (b1, b2, . . . , bk) ∈ {0, 1}k, and

P(Xn+1 = i|Xn = ∅) = pi for i = 0, 1,

P(Xn+1 = ∅|Xn = ∅) = p

for the root vertex. The figure below shows the states and the transition probabilities for
the first two levels of the tree.
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;

(a) Prove that the Markov chain is irreducible and find its period. Justify your answers.

(b) What are the conditions on p0, p1 so that the chain is transient/null recur-
rent/positive recurrent? Justify your answer.

(c) Assume that the p0, p1 are chosen such that the chain is positive recurrent. Let
`(Xn) denote the length of the string representing state Xn. For example, `(∅) = 0
and `(0010) = 4. Prove that the following limit exists

lim
n→∞

P(`(Xn) = k|X0 = ∅),

and determine its value.
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