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SECTION I

1D Groups
Let G be a finite group and N a normal subgroup of G. Let Cn denote the cyclic

group of order n.

Are the following statements true or false? Justify your answers.

(i) If G/N ∼= C2 and N ∼= C2 then G ∼= C4.

(ii) If G/N ∼= C3 and N ∼= C2 then G ∼= C6.

(iii) Let H be a finite group and M a normal subgroup of H. If G/N ∼= H/M
and N ∼= M then G ∼= H.

2D Groups
Prove that a Möbius map is determined by the image of just 3 points.

3B Vector Calculus
What does it mean for a vector field F in R3 to be irrotational?

Given a field F that is irrotational everywhere, and given a fixed point x0, write
down the definition of a scalar potential V (x) that satisfies F = −∇V and V (x0) = 0.
Show that this potential is well-defined.

Given vector fields A0 and B with ∇×A0 = B, write down the form of the general
solution A to ∇×A = B. State a necessary condition on B for such an A0 to exist.
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4B Vector Calculus
Cartesian coordinates x, y, z and cylindrical polar coordinates ρ, φ, z are related by

x = ρ cosφ, y = ρ sinφ .

Find scalars hρ, hφ and unit vectors eρ, eφ such that dx = hρeρ dρ+ hφeφ dφ+ ezdz .

A region V is defined by

ρ0 6 ρ 6 ρ0 + ∆ρ , φ0 6 φ 6 φ0 + ∆φ , z0 6 z 6 z0 + ∆z ,

where ρ0, φ0, z0,∆ρ,∆φ and ∆z are positive constants. Write down, or calculate, the
scalar areas of its six faces and its volume ∆V .

For a vector field F(x) = F (ρ)eρ, calculate the value of

lim
∆ρ→0

1

∆V

∫

∂V
F · ndS ,

where ∂V and n are the surface and outward normal of the region V .
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SECTION II

5D Groups
State and prove Lagrange’s theorem.

Let H and K be subgroups of a finite group G. Show that H ∩K is a subgroup of
G. What can be said about H ∩K if H and K have co-prime orders? Justify your answer.

Let G be a finite group and x an element of G. Define the order of x in G and
denote it by o(x). Let k be a positive integer. Prove that xk = e if and only if o(x) divides
k. (Here e denotes the identity element of G.)

Now suppose x and y are elements of G with co-prime orders. Further suppose
xy = yx. Prove that o(xy) = o(x)o(y).

Let x and y be two non-identity elements of G.

(i) If o(x) and o(y) are co-prime is it always true that o(xy) = o(x)o(y)?

(ii) If xy = yx is it always true that o(xy) = o(x)o(y)?

State Cauchy’s theorem. Hence, or otherwise, show that there are exactly two
groups of order 26 up to isomorphism.

6D Groups
Let N be a normal subgroup of a group G and let G/N denote the set of left cosets

of N in G. Explain how G/N is given a well-defined group structure.

Let x, y ∈ G. The commutator of x and y is defined by [x, y] = x−1y−1xy. Let
G be the set of finite products of commutators of G, that is elements of G are of the
form [x1, y1][x2, y2] . . . [xk, yk], where xi, yi ∈ G for 1 6 i 6 k. Prove that G is a normal
subgroup of G.

Show that G/G is an abelian group. Further, show that if N is a normal subgroup
of G and G/N is abelian, then G is a subgroup of N .

Determine G when G is each of the following groups. Justify your answers.

(i) D8 the dihedral group of order 8.

(ii) A5 the alternating group of degree 5.

(iii) S5 the symmetric group of degree 5.
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7D Groups
Let H and K be subgroups of a finite group G. Show that

|HK| =
|H||K|
|H ∩K| ,

where HK = {hk : h ∈ H, k ∈ K}.

Let a and b be co-prime. If |G : H| = a and |G : K| = b, show that HK = G.

Let x ∈ G. Define the conjugacy class of x in G and denote it by ConjG(x). Define
the centraliser of x in G and denote it by CG(x).

Let x, y ∈ G. Suppose |ConjG(x)| = a and |ConjG(y)| = b with a and b co-prime.
Show that CG(x)CG(y) = G. Prove that

ConjG(xy) = ConjG(x)ConjG(y) ,

where ConjG(x)ConjG(y) = {uv : u ∈ ConjG(x), v ∈ ConjG(y)}. [Hint: Observe that
g−1xgh−1yh may be written as h−1(hg−1xgh−1y)h, where g, h ∈ G.]

8D Groups
State and prove the first isomorphism theorem. [You may assume that images of

homomorphisms are subgroups and that kernels of homomorphisms are normal subgroups.]

Define the groups GLn(R) and SLn(R). Prove that SLn(R) is a normal subgroup of
GLn(R) and identify GLn(R)/SLn(R).

Let M2(Z) denote the set of 2× 2 matrices with entries in Z. Let

G =

{(
a b
c d

)
∈ M2(Z) : ad− bc 6= 0 and

(
a b
c d

)−1

∈ M2(Z)

}
.

Check that G is a group and that it is infinite. Show that

G =

{(
a b
c d

)
∈ M2(Z) : ad− bc = ±1

}
.

Consider the following subset of G,

H =

{(
a b
c d

)
∈ G : a, d ≡ 1 mod 2, b, c ≡ 0 mod 2

}
.

By considering a suitable homomorphism, or otherwise, show that H is a normal subgroup
of finite index in G.
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9B Vector Calculus
The vector fields u(x, t) and w(x, t) obey the evolution equations

∂u

∂t
= −(u · ∇)u−∇P ,

∂w

∂t
= (w · ∇)u− (u · ∇)w ,

where P is a given scalar field. Show that the scalar field h = u · w obeys an evolution
equation of the form

∂h

∂t
= (w · ∇)f + (u · ∇)g ,

where the scalar fields f and g should be identified.

Suppose that ∇ · u = 0 and w = ∇ × u. Show that, if u · n = w · n = 0 on the
surface S of a fixed volume V with outward normal n, then

dH

dt
= 0, where H =

∫

V
h dV .

Suppose that u = (a2 − ρ2)ρ sin z eφ + aρ2 sin z ez in cylindrical polar coordinates
ρ, φ, z, where a is a constant, and that w = ∇ × u. Show that h = −2aρ4 sin2 z, and
calculate the value of H when V is the cylinder 0 6 ρ 6 a, 0 6 z 6 π.


In cylindrical polar coordinates ∇× F =

1

ρ

∣∣∣∣∣∣

eρ ρeφ ez
∂/∂ρ ∂/∂φ ∂/∂z
Fρ ρFφ Fz

∣∣∣∣∣∣
.
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10B Vector Calculus
Show that

∇× (a× b) = a∇ · b− b∇ · a + (b · ∇)a− (a · ∇)b .

State Stokes’ theorem for a vector field in R3, specifiying the orientation of the
integrals.

The vector fields m(x) and v(x) satisfy the conditions m = n and v · n = 0 on an
open surface S with unit normal n(x). By applying Stokes’ theorem to the vector field
m× v, show that ∫

S
(δij − ninj)

∂vi
∂xj

dS =

∮

C

[
v · (dx× n)

]
, (∗)

where C is the boundary of S. Describe the orientation of dx× n relative to S and C.

Verify (∗) when S is the hemisphere r = R, z > 0 and v = r sin θ eθ in spherical
polar coordinates r, θ, φ.

[You may use the formulae (er · ∇)eθ = 0 and

∇ · F =
1

r2
∂(r2Fr)

∂r
+

1

r sin θ

∂(sin θ Fθ)

∂θ
+

1

r sin θ

∂Fφ
∂φ

,

and you may quote formulae for dS and dx in these coordinates without derivation.]
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11B Vector Calculus
(a) Verify the identity

∇ · (κψ∇φ) = ψ∇ · (κ∇φ) + κ∇ψ · ∇φ ,

where κ(x), φ(x) and ψ(x) are differentiable scalar functions.

Let V be a region in R3 that is bounded by a closed surface S. The function φ(x)
satisfies

∇ · (κ∇φ) = 0 in V and φ = f(x) on S ,

where κ and f are given functions and κ > 0. Show that φ is unique.

The function w(x) also satisfies w = f(x) on S. By writing w = φ+ ψ, show that

∫

V
κ|∇w|2 dV >

∫

V
κ|∇φ|2 dV .

(b) A steady temperature field T (x) due to a distribution of heat sources H(x) in
a medium with spatially varying thermal diffusivity κ(x) satisfies

∇ · (κ∇T ) +H = 0 .

Show that the heat flux
∫
S q · dS across a closed surface S, where q = −κ∇T , can be

expressed as an integral of the heat sources within S.

By using this version of Gauss’s law, or otherwise, find the temperature field T (r)
for the spherically symmetric case when

κ(r) = rα, −1 < α < 2, H(r) =

{
H0 if r 6 1

0 if r > 1

subject to the condition that T → 0 as r →∞. What goes wrong if α 6 −1?

Deduce that if w(r) satisfies w(1) = 1 and w(r)→ 0 as r →∞ (sufficiently rapidly
for the integral to converge) then

∫ ∞

1
rα+2

(dw
dr

)2
dr > α+ 1 .
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12B Vector Calculus
(a) State the transformation law for the components of an nth-rank tensor Tij...k

under a rotation of the basis vectors, being careful to specify how any rotation matrix
relates the new basis {e′i} to the original basis {ej}, i, j = 1, 2, 3.

If φ(x) is a scalar field, show that ∂2φ/∂xi∂xj transforms as a second-rank tensor.

Define what it means for a tensor to be isotropic. Write down the most general
isotropic tensors of rank k for k = 0, 1, 2, 3.

(b) Explain briefly why Tijkl, defined by

Tijkl =

∫

R3

xixje
−r2 ∂2

∂xk∂xl

(
1

r

)
dV , where r = |x|,

is an isotropic fourth-rank tensor.

Assuming that
Tijkl = αδijδkl + βδikδjl + γδilδjk ,

use symmetry, contractions and a scalar integral to determine the constants α, β and γ.

[Hint: ∇2(1/r) = 0 for r 6= 0.]

END OF PAPER
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