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SECTION I
1I Number Theory

Compute the continued fraction expansion of
√
29.

Find integers x and y satisfying x2 − 29y2 = −1.

2G Topics in Analysis
Consider the continuous map f : [0, 1] → C given by f(t) = t − 1/2. Show that

there does not exist a continuous function φ : [0, 1]→ R with f(t) = |f(t)
∣∣ exp(iφ(t)

)
.

Show that, if g : [0, 1] → C \ {0} is continuous, there exists a continuous function
θ : [0, 1]→ R with g(t) = |g(t)

∣∣ exp(iθ(t)
)
. [You may assume that this result holds in the

special case when <g(t) > 0 for all t ∈ [0, 1].]

Show that r(g) = θ(1)− θ(0) is uniquely defined.

If u(t) = g(t2) and v(t) = g(t)2, find r(u) and r(v) in terms of r(g).

Give an example with g1, g2 : [0, 1] → C \ {0} continuous such that g1(0) = g2(0)
and g1(1) = g2(1), but r(g1) 6= r(g2).

3K Coding and Cryptography
In this question we work over F2.

What is a general feedback shift register of length d with initial fill (x0, . . . , xd−1)?
What does it mean for such a register to be linear?

Describe the Berlekamp–Massey method for breaking a cipher stream arising from
a linear feedback shift register.

Use the Berlekamp–Massey method to find a linear recurrence with first eight terms
1, 1, 0, 0, 1, 0, 1, 1.

Part II, Paper 4
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4I Automata and Formal Languages
Define what it means for a context-free grammar (CFG) to be in Chomsky normal

form.

What are an ε–production and a unit production?

Let G1 be the CFG

S → ε | aTa | bTa
T → Ta |Tb | c

and let G2 be the CFG

S → XZ |Y Z
T → TX |TY | c
X → a, Y → b, Z → TX.

What is the relationship between the language of G1 and the language of G2? Justify your
answer carefully.

Part II, Paper 4 [TURN OVER]
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5J Statistical Modelling
The Boston dataset records medv (median house value), age (average age of houses),

lstat (percent of households with low socioeconomic status), and other covariates for 506
census tracts in Boston.

> head(Boston[, c("medv", "age", "lstat")])

medv age lstat

1 24.0 65.2 4.98

2 21.6 78.9 9.14

3 34.7 61.1 4.03

4 33.4 45.8 2.94

5 36.2 54.2 5.33

6 28.7 58.7 5.21

Describe the mathematical model fitted in the R code below and give three
observations from the output of the code that you think are the most noteworthy.

> summary(fit <- lm(medv ~ lstat * age , data = Boston))

Residuals:

Min 1Q Median 3Q Max

-15.806 -4.045 -1.333 2.085 27.552

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.0885359 1.4698355 24.553 < 2e-16 ***

lstat -1.3921168 0.1674555 -8.313 8.78e-16 ***

age -0.0007209 0.0198792 -0.036 0.9711

lstat:age 0.0041560 0.0018518 2.244 0.0252 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.149 on 502 degrees of freedom

Multiple R-squared: 0.5557, Adjusted R-squared: 0.5531

F-statistic: 209.3 on 3 and 502 DF, p-value: < 2.2e-16

>

> par(mfrow = c(2, 2))

> plot(fit)

[QUESTION CONTINUES ON THE NEXT PAGE]
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6C Mathematical Biology
An allosteric enzyme E reacts with substrate S to produce a product P according

to the mechanism

E + S
k1−−⇀↽−−
k−1

C1

C1 + S
k2−→ C2

k3−→ C1 + P ,

where the kis are rate constants, and C1 and C2 are enzyme-substrate complexes.

(a) With lowercase letters denoting concentrations, write down the differential
equation model based on the Law of Mass Action for the dynamics of e, s, c1, c2 and
p.

(b) Show that the quantity c1 + c2 + e is conserved and comment on its physical
meaning.

(c) Using the result in (b), assuming initial conditions s(0) = s0, e(0) = e0,
c1(0) = c2(0) = p(0) = 0, and rescaling with ε = e0/s0, τ = k1e0t, u = s/s0, and
vi = ci/e0, show that the reaction mechanism can be reduced to

du

dτ
= f(u, v1, v2) ,

ε
dv1
dτ

= g1(u, v1, v2) ,

ε
dv2
dτ

= g2(u, v1, v2) .

Determine f , g1 and g2 and express them in terms of the three dimensionless quantities
α = k−1/k1s0, β = k2/k1 and γ = k3/k1s0.

(d) On time scales τ � ε, show that the rate of production of P can be expressed
in terms of the rescaled substrate concentration u in the form

dp

dt
= A

u2

α+ u+ (β/γ)u2
,

where A is a constant. Compare this relation to the Michaelis-Menten form by means of
a sketch.

Part II, Paper 4
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7E Further Complex Methods
What type of equation has solutions described by the following Papperitz symbol?

P




z1 z2 z3
α1 α2 α3 z
β1 β2 β3





Explain the meaning of each of the quantities appearing in the symbol.

The hypergeometric function F (a, b, c; z) is defined by

F (a, b; c; z) = P





0 1 ∞
0 0 a z

1− c c− a− b b





with F (a, b; c; z) analytic at z = 0 and satisfying F (a, b; c; 0) = 1.

Explain carefully why there are constants A and B such that

F (a, b; c; z) = Az−aF (a, 1 + a− c; 1 + a− b; z−1) +Bz−bF (b, 1 + b− c; 1 + b− a; z−1).

[You may neglect complications associated with special cases such as a = b.]

8B Classical Dynamics
A particle of mass m1 = 3m is connected to a fixed point by a massless spring of

natural length l and spring constant k. A second particle of mass m2 = 2m is connected
to the first particle by an identical spring. The masses move along a vertical line in a
uniform gravitational field g, such that mass mi is a distance zi(t) below the fixed point
and z2 > z1 > 0.

[You may assume that the potential energy of a spring of length l+x is 1
2kx

2, where
k is the spring constant and l is the natural length.]

Write down the Lagrangian of the system.

Determine the equilibrium values of zi.

Let qi be the departure of zi from its equilibrium value. Show that the Lagrangian
can be written as

L =
1

2
Tij q̇iq̇j −

1

2
Vijqiqj + constant ,

and determine the matrices T and V .

Calculate the angular frequencies and eigenvectors of the normal modes of the
system.

In what sense are the eigenvectors orthogonal?

Part II, Paper 4 [TURN OVER]
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9A Cosmology
Consider a closed Friedmann-Robertson-Walker universe filled with a fluid endowed

with an energy density ρ > 0 and pressure P > 0. For such a universe the Friedmann
equation reads (

ȧ

a

)2

=
8πG

3c2
ρ− c2

R2 a2
,

where a(t) is the scale factor.

What is the meaning of R? Show that a closed universe cannot expand forever.

[Hint: Use the continuity equation to show that

d

dt
(ρ a3) 6 0 . ]

10D Quantum Information and Computation
(a) Let Bn denote the set of all n-bit strings and write N = 2n. The Grover iteration

operator on n qubits is given by

Q = −HnI0HnIx0 .

Give a definition of the constituent operators Hn, I0 and Ix0 and state a geometrical
interpretation of the action of Q on the space of n qubits.

(b) The quantum oracle for the identity function I : Bn → Bn, I(x) = x is the
unitary operation UI on 2n qubits defined by UI(|x〉 | y〉) = |x〉 | y ⊕ I(x)〉 for all x, y ∈ Bn.
Here ⊕ denotes the sum of n-bit strings bitwise mod 2 separately at each of the n positions
in the string, i.e. the group operation in (Z2)

n.

Show how the action of UI can be represented by a circuit of CX gates.

(c) Suppose we are given a quantum oracle for I but it is known to be faulty on
one of its inputs. Instead of the full identity function it implements instead the function
f : Bn → Bn given by

f(x) =

{
x for all x 6= x0

x⊕ a for x = x0

where a ∈ Bn is the n-bit string 00 . . . 01 and where x0 ∈ Bn is unknown, i.e. the
given quantum oracle actually implements Uf . By providing a suitable input state for a
circuit involving Uf and further gates independent of f , show how Ix0 on n qubits may be
implemented in terms of Uf .

(d) Hence or otherwise show that for sufficiently large N , x0 may be determined
with some constant probability greater than 1

2 using O(
√
N) queries to the oracle Uf .

Part II, Paper 4
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SECTION II
11I Number Theory

(a) Define the Legendre symbol and state Euler’s criterion. State and prove Gauss’
lemma. Determine the primes p for which the congruence x2 ≡ 2 (mod p) is soluble.

(b) Let πk(x) be the number of primes p less than or equal to x with p ≡ k (mod 8).

(i) By considering the prime factorisation of n2 − 2 for suitable n, show that
π7(x)→∞ as x→∞.

(ii) By considering the prime factorisation of n2−2 for all n in a suitable range,
show that for all x sufficiently large we have

π1(x) + π7(x) + 1 > log x

6 log 3
.

Part II, Paper 4 [TURN OVER]
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12G Topics in Analysis
(a) State Brouwer’s fixed point theorem for the closed unit disc D. For which of

the following E ⊂ R2 is it the case that every continuous function f : E → E has a fixed
point? Give a proof or a counterexample.

(i) E is the union of two disjoint closed discs.

(ii) E = {(x, 0) : 0 < x < 1}.

(iii) E = {(x, 0) : 0 6 x 6 1}.

(iv) E = {x ∈ R2 : 1 6 |x| 6 2}.

(b) Show that if f : R2 → R2 is a continuous function with the property that
|f(x)| 6 1 whenever |x| = 1, then f has a fixed point.

[Hint: Consider T ◦ f where for x ∈ R2, Tx is the element of D closest to x.]

(c) Let

E = {(p1, p2, q1, q2) : 0 6 pi, qi 6 1 and p1 + p2 = 1, q1 + q2 = 1}

and suppose A, B : R2 × R2 → R are given by

A(p,q) =

2∑

i=1

2∑

j=1

aijpiqj and B(p,q) =
2∑

i=1

2∑

j=1

bijpiqj

with aij and bij constant. Let

u1(p,q) = max{0, A((1, 0),q)−A(p,q)} , u2(p,q) = max{0, A((0, 1),q)−A(p,q)} .

By considering (p′,q′) with

p′ =
p + u(p,q)

1 + u1(p,q) + u2(p,q)

and q′ defined appropriately, show that we can find a (p∗,q∗) ∈ E with

∀(p,q) ∈ E, A
(
p∗,q∗

)
> A

(
p,q∗

)
and B

(
p∗,q∗

)
> B

(
p∗,q

)
.

Carefully explain the result in terms of a two-person game.
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13J Statistical Modelling
Consider the following R code:

> n <- 1000000

> sigma_z <- 1; sigma_x1 <- 0.5; sigma_x2 <- 1; sigma_y <- 2; beta <- 2

> Z <- sigma_z * rnorm(n)

> X1 <- Z + sigma_x1 * rnorm(n)

> X2 <- Z + sigma_x2 * rnorm(n)

> Y <- beta * Z + sigma_y * rnorm(n)

> lm(Y ~ Z)

Call:

lm(formula = Y ~ Z)

Coefficients:

(Intercept) Z

-0.003089 1.999780

> lm(Y ~ X1)

Call:

lm(formula = Y ~ X1)

Coefficients:

(Intercept) X1

-0.002904 1.600521

> lm(Y ~ X2)

Call:

lm(formula = Y ~ X2)

Coefficients:

(Intercept) X2

-0.002672 0.997499

Describe the phenomenon you see in the output above, then give a mathematical
explanation for this phenomenon. Do you expect the slope coefficient in the second model
to be generally smaller than that in the first model? Do you think modifying (for example,
doubling) the value of sigma y will substantially alter the slope coefficient in the second
model? Justify your answer.
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14C Mathematical Biology
Consider the standard system of reaction-diffusion equations

ut = Du∇2u+ f(u, v)

vt = Dv∇2v + g(u, v) ,

where Du and Dv are diffusion constants and f(u, v) and g(u, v) are such that the system
has a stable homogeneous fixed point at (u, v) = (u∗, v∗).

(a) Show that the condition for a Turing instability can be expressed as

fu + dgv > 2
√
dJ ,

where d = Du/Dv is the diffusivity ratio and J = fugv − fvgu > 0 is the determinant of
the stability matrix of the homogeneous system evaluated at (u∗, v∗).

(b) Show that this result implies that a Turing instability at equal diffusivities
(d = 1) is not possible.

(c) Show that the result in (b) also follows directly from the structure of the reaction-
diffusion equations linearised about the homogeneous fixed point in the case Du = Dv.

(d) Using the example (
−1 −1

1 + δ 1− δ

)
,

for the stability matrix of the homogeneous system, show that the diffusivity ratio at which
Turing instability occurs can be made as close to unity as desired by taking δ sufficiently
small.

Part II, Paper 4
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15B Classical Dynamics
An isolated three-body system consists of particles with masses m1, m2 and m3 and

position vectors r1(t), r2(t) and r3(t). The particles move under the action of their mutual
gravitational attraction. Write down the Lagrangian L of the system.

Let a, b and c be defined by

a = r1 − r2 , b =
m1r1 +m2r2
m1 +m2

− r3 , c =
m1r1 +m2r2 +m3r3

m1 +m2 +m3
.

By expressing r1, r2 and r3 in terms of a, b and c, or otherwise, show that the total
kinetic energy can be written as

1

2
α|ȧ|2 +

1

2
β|ḃ|2 +

1

2
γ|ċ|2 ,

and obtain expressions for α, β and γ.

Show that the total potential energy can be expressed as a function of a and b only.
What does this imply for the evolution of c? Give a physical interpretation of this result.

Show also that the total angular momentum of the system about the origin is

α a× ȧ + β b× ḃ + γ c× ċ .

16F Logic and Set Theory
(a) Define the von Neumann hierarchy of sets Vα. Show that each Vα is transitive,

and explain why Vα ⊂ Vβ whenever α 6 β. Prove that every set x is a member of some
Vα.

(b) What does it mean to say that a relation r on a set x is well-founded and
extensional? State Mostowski’s Collapsing Theorem. Give an example of a set x whose
rank is greater than ω but for which the Mostowski collapse of x (equipped with the
relation ∈) is equal to ω.

Which of the following statements are always true and which can be false? Give
proofs or counterexamples as appropriate.

(i) If a relation r on a set x is isomorphic to the relation ∈ on some transitive set
y then r is well-founded and extensional.

(ii) If a relation r on a set x is isomorphic to the relation ∈ on some (not necessarily
transitive) set y then r is well-founded.

(iii) If a relation r on a set x is isomorphic to the relation ∈ on some (not necessarily
transitive) set y then r is extensional.
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17F Graph Theory
Define the binomial random graph G(n, p), where n ∈ N and p ∈ [0, 1].

Let Gn ∼ G(n, p) and let En be the event that δ(Gn) > 0. Show that for every
ε > 0, if p = p(n) satisfies p > (1 + ε)n−1 log n then P(En)→ 1.

State Chebyshev’s inequality and show that for every ε > 0, if p is such that
p 6 (1− ε)n−1 log n then P(En)→ 0.

For Gn ∼ G(n, p), let Fn be the event that Gn is connected. Prove that for every
ε > 0, if p > (1 + ε)n−1 log n then P(Fn) → 1 as n → ∞ and if p 6 (1− ε)n−1 log n then
P(Fn) → 0 as n → ∞. [You may wish to consider separately the case when there is a
component of size at most say nε/10 and the case when there is not.]

[You may use, without proof, the fact that 1 − x 6 e−x for all x ∈ [0, 1], and also
that for any fixed δ ∈ (0, 1) we have 1− x > e−(1+2δ)x for all x ∈ [0, δ). All logarithms in
this question are natural logarithms.]

18H Galois Theory
(a) Stating carefully all the theorems that you use, prove that for every integer r > 1

there is a Galois extension L/Q with Galois group Z/rZ.

(b) Suppose L1 and L2 are two extensions of a field K, and both L1 and L2 are
subfields of some field M . Let L1L2 be the smallest subfield of M containing both L1 and
L2. If [Li : K] = di and gcd(d1, d2) = 1, show that [L1L2 : K] = d1d2.

(c) Let p > 3 be a prime number. Give examples of two non-isomorphic groups G,G′

of order p(p− 1) containing normal subgroups N,N ′ of order p such that G/N ∼= G′/N ′.

Fix p = 3. For the groups G,G′ above, give explicit examples of Galois extensions
L/Q and L′/Q with Aut(L/Q) ∼= G and Aut(L′/Q) ∼= G′. Identify the fixed fields LN and
(L′)N

′
. Justify your answer.

Now suppose p > 3 is an arbitrary prime. Prove that there are extensions L and L′

of Q with Aut(L/Q) ∼= G and Aut(L′/Q) ∼= G′.

19H Representation Theory
Suppose that H is a subgroup of a group G and χ is a complex character of H.

State Mackey’s restriction formula and Frobenius reciprocity for characters. Use
them to deduce Mackey’s irreducibility criterion for an induced representation.

Suppose that k is a finite field of order q > 4, G = SL2(k) and

B =

{(
a b
0 a−1

) ∣∣∣∣ a, b ∈ k, a 6= 0

}
.

Describe the degree 1 complex characters χ of B and explain, with justification, for which
of them IndG

Bχ is irreducible.

Part II, Paper 4
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20H Number Fields
Let K be a number field. What is an ideal class of K? Show that the set of ideal

classes of K forms an abelian group. [You may use any results about ideals in number
fields provided you state them clearly.]

Assuming that there exists a constant cK such that every nonzero ideal I of OK

contains a nonzero element α with
∣∣NK/Q(α)

∣∣ 6 cK N(I), show that the ideal class group
of K is finite.

Compute the ideal class group of Q(
√
−33). [You may assume that the Minkowski

constant cK of an imaginary quadratic field is
2

π
|dK |1/2.]

21I Algebraic Topology
Let K be the Klein bottle obtained by identifying the sides of the unit square as

shown in the figure, and let k0 ∈ K be the image of the corners of the square.

Show that K is the union of two Möbius bands with their boundaries identified. Deduce
that π1(K, k0) has a presentation

π1(K, k0) = 〈a, b | a2b−2〉.

Show that there is a degree two covering map p : (T 2, x0)→ (K, k0). Describe generators
α, β for π1(T

2, x0) and express p∗(α) and p∗(β) in terms of a and b.

Let Y = T 2 × [0, 1)/ ∼, where ∼ is the smallest equivalence relation with
(x, 0) ∼ (x′, 0) whenever p(x) = p(x′). What is π1(Y, y0), where y0 is the image of (x0, 0)
in Y ?

Suppose X is a path-connected Hausdorff space, that U ⊂ X is an open subset, and
that U is homeomorphic to Y . Can X be simply connected? Justify your answer.
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22G Linear Analysis
(a) Define what it means for a sequence of functions fn : R → R to be equi-

continuous on [0, 1]. State the Arzelà–Ascoli theorem.

(b) Given a continuous function ϕ : R → R, we can inductively define functions
fn : R→ R for n > 0 by fn+1(t) =

∫ t
0 ϕ(fn(s)) ds, and f0(t) = 0 for all t ∈ R. Show that

there exists T1 > 0 so that the sequence (fn)n>1 is equi-bounded and equi-continuous on
[0, T1].

(c) Deduce the existence of T2 ∈ (0, T1] and a continuously differentiable function
f : [0, T2] → R such that f(0) = 0 and f ′(t) = ϕ(f(t)) on [0, T2]. [Hint: Prove that if
T2 ∈ (0, T1] is small enough, Rn(t) = fn+1(t)− fn(t)→ 0 uniformly on [0, T2].]

23G Analysis of Functions
For s ∈ R, define the Sobolev space Hs(Rn). Show that for any multi-index α, the

map u 7→ Dαu is a bounded linear map from Hs(Rn) to Hs−|α|(Rn).

Given f ∈ Hs(Rn), show that the PDE

−∆u+ u = f

admits a unique solution with u ∈ Hs+2(Rn). Show that the map taking f to u is a linear
isomorphism of Hs(Rn) onto Hs+2(Rn).

Let Ω ⊂ Rn be open and bounded. Consider a sequence of functions (uj)
∞
j=1 with

uj ∈ C∞(Rn), supported in Ω, such that

‖∆uj‖L2(Ω) + ‖uj‖L2(Ω) 6 K ,

for some constant K independent of j. Show that there exists a subsequence (ujk)∞k=1

which converges strongly in H1(Rn).

Part II, Paper 4
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24H Algebraic Geometry
What is the degree of a divisor on a smooth projective algebraic curve? What is a

principal divisor on a smooth projective algebraic curve?

Let D =
∑
aipi be a divisor of degree 0 on P1. Construct a rational function f such

that div(f) is D. Deduce that if E and E′ are divisors of the same degree on P1 then E
is linearly equivalent to E′.

Let X0, X1 be the usual homogenous coordinates on P1, and let t be the rational
function X0/X1. Calculate the divisor associated to the rational differential dt on P1.

Fix an integer m and let D be a divisor equivalent to mKP1 , where KP1 is the
canonical divisor computed above. Without appealing to the Riemann–Roch theorem,
calculate the dimension of the vector space L(D) of rational functions with poles bounded
by D.

Let C be a smooth projective curve of genus at least 1. Prove that for distinct
points p and q in C, the divisor p− q is not principal.

25I Differential Geometry
(a) State Wirtinger’s inequality. State and prove the isoperimetric inequality for

domains Ω ⊂ R2 with compact closure and C1 boundary ∂Ω.

(b) Let Q ⊂ R2 be a cyclic quadrilateral, meaning that there is a circle through its
four vertices. Say its edges have lengths a, b, c and d (in cyclic order). Assume Q′ ⊂ R2

is another quadrilateral with edges of lengths a, b, c and d (in the same order). Show that
Area(Q) > Area(Q′). Explain briefly for which Q′ equality holds.

26G Probability and Measure

Denote by L1 the space of real-valued functions on R that are integrable with respect
to Lebesgue measure. For f ∈ L1 and gt the probability density function of a normal
N(0, t) random variable with variance t > 0, show that their convolution

f ∗ gt(x) =

∫

R
f(x− y)gt(y)dy , x ∈ R,

defines another element of L1. Show carefully that the Fourier inversion theorem holds
for f ∗ gt.

Now suppose that the Fourier transform of f is also in L1. Show that f∗gt(x)→ f(x)
for almost every x ∈ R as t→ 0.

[You may use Fubini’s theorem and the translation invariance of Lebesgue measure
without proof.]
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27J Applied Probability
(a) Let X = (Xt) be the queue length process of an M/M/1 queue with arrival rate

λ > 0 and service rate µ > 0. Suppose ρ = λ/µ < 1. Show that X is positive recurrent
and derive its invariant distribution π.

(b) Now suppose that each arriving customer observes the current queue length
Xt = n, and either decides to join the queue with probability p(n) or to leave the system
with probability 1− p(n), independently of all other customers.

(i) Find the invariant distribution π of X if p(n) = 1/(n+ 1), n > 0.

(ii) Find the invariant distribution π of X if p(n) = 2−n, n > 0, and show that, in
equilibrium, an arriving customer joins the queue with probability µ(1−π0)/λ.
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28K Principles of Statistics
(a) Suppose it is possible to generate samples from a Uniform[0, 1] distribution.

Describe a method for generating samples from an exponential distribution with rate
parameter 1, and prove that the method is valid.

(b) Recall that the accept/reject algorithm, which operates on two pdfs f and h
satisfying f 6Mh, proceeds as follows:

1. Generate X ∼ h and U ∼ Uniform[0, 1].

2. If U 6 f(X)
Mh(X) , take Y = X. Otherwise, return to Step 1.

Prove that the output Y has pdf f .

(c) Suppose the pdf f is given by

f(x) =
2√
2π
e−x2/2, for all x > 0.

Let h be the pdf of an exponential distribution with rate parameter 1. Explain how to
apply the accept/reject algorithm in this special case. Identify an appropriate value for
M .

(d) Compute the expected number of steps required to generate one sample from
the pdf f in part (c) using the accept/reject algorithm.

(e) Let Y be a random variable generated according to the algorithm in (c). Now
suppose we generate a random variable X using the following additional steps:

1. Generate V ∼ Uniform[0, 1].

2. If V 6 1
2 , take Z = Y . Otherwise, take Z = −Y .

What is the distribution of Z?

(f) Suppose the final goal is to generate samples from the distribution of Z in part
(e). Following the steps outlined in parts (a)–(e), could the efficiency of the algorithm be
improved by choosing X to be an exponential random variable with rate parameter λ 6= 1?
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29K Stochastic Financial Models
Consider a discrete-time market with constant interest rate r and a stock with time-n price

Sn for 0 6 n 6 N .

(a) Suppose a self-financing investor holds θn shares of the stock between times n− 1 and n
for 1 6 n 6 N . Explain why the investor’s wealth process (Xn)06n6N evolves as

Xn = (1 + r)Xn−1 + θn[Sn − (1 + r)Sn−1] for 1 6 n 6 N.

For the rest of the question, suppose Sn = Sn−1ξn where

P(ξn = 1 + b) = p

P(ξn = 1 + a) = 1− p

for all n > 1, for given constants 0 < p < 1 and a < r < b.

(b) Show that

Q
(
SN = S0(1 + b)i(1 + a)N−i

)
=

(
N

i

)
qi(1− q)N−i

for all 0 6 i 6 N , where Q is the unique risk-neutral measure and q is a constant which you should
find.

(c) Now introduce a European contingent claim into this market with time-N payout g(SN )
for a given function g. Find, with proof, the constant x and the previsible process θ = (θn)16n6N

such that if an investor has time-0 wealth X0 = x and employs the trading strategy θ then the
time-N wealth is XN = g(SN ) almost surely. Express your answer in terms of the function V
defined by

V (n, s) = (1 + r)−(N−n)EQ[g(SN )|Sn = s] for 0 6 n 6 N, s > 0.

(d) Suppose the claim in part (c) is a European call option with strike K. Show that the
corresponding initial cost x of the claim is of the form

S0Q̂(SN > K)−K(1 + r)−NQ(SN > K) ,

where Q̂ is a probability measure such that

Q̂
(
SN = S0(1 + b)i(1 + a)N−i

)
=

(
N

i

)
q̂i(1− q̂)N−i

for 0 6 i 6 N and a constant q̂ which you should find.
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30J Mathematics of Machine Learning
Throughout this question, you may assume that the optimum is achieved in any

relevant optimisation problems, so for instance in part (a) you may assume f̂ is well-
defined.

Suppose (X1, Y1), . . . , (Xn, Yn) ∈ X × {−1, 1} are i.i.d. input–output pairs. Let B
be a set of classifiers h : X → {−1, 1} such that h ∈ B ⇒ −h ∈ B.

(a) Write down the Adaboost algorithm using B as the base set of classifiers with
tuning parameter M , which produces f̂ : X → R of the form f̂ =

∑M
m=1 β̂mĥm where

β̂m > 0 and ĥm ∈ B for m = 1, . . . ,M . [You need not derive explicit expressions for β̂m
or ĥm.]

(b) For a set S ⊆ Rd, what is meant by the convex hull, convS? What does it mean
for a vector v ∈ Rd to be a convex combination of vectors v1, . . . , vm ∈ Rd? State a result
relating convex hulls and convex combinations.

(c) Let φ denote the exponential loss. What is meant by the φ-risk Rφ(f) of

f : X → R? What is the corresponding empirical φ-risk R̂φ(f)? Let x1:n ∈ X n. What is

meant by the empirical Rademacher complexity R̂(B(x1:n))?

(d) Consider a modification of the Adaboost algorithm where, if at any iteration
m 6 M we have

∑m
k=1 β̂k > 1, we terminate the algorithm and output f̂ :=

∑m−1
k=1 β̂kĥk,

or the zero function if m = 1; otherwise we output f̂ =
∑M

k=1 β̂kĥk as usual. Let

rB = supx1:n∈Xn R̂(B(x1:n)). Show that

ERφ(f̂) 6 ER̂φ(f̂) + 2 exp(1)rB.

[Hint: Introduce

H :=

{
M∑

m=1

βmhm :

M∑

m=1

βm 6 1, βm > 0, hm ∈ B for m = 1, . . . ,M

}
.

You may use any results from the course without proof, but should state or name any result
you use.]
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31E Asymptotic Methods
Consider the differential equation

x2y′′ + xy′ − 1

x2
y = 0 . (∗)

(i) What type of regular or singular point does equation (∗) have at x = 0?

(ii) For x > 0, find a transformation that maps equation (∗) to an equation of
the form

u′′ + q(x)u = 0 (†)
and compute q(x) .

(iii) Determine the leading asymptotic behaviour of the solution u of equation
(†), as x → 0+ , using the Liouville-Green method and justifying your
assumptions at each stage.

(iv) Conclude from the above an asymptotic expansion of two linearly inde-
pendent solutions of equation (∗), as x→ 0+ .

32B Dynamical Systems
Consider the dynamical system

ẋ = x(y − k − 3x+ x2)

ẏ = y(y − 1 − x) ,

where k is a constant.

(a) Find all the fixed points of this system. By considering the existence and location
of the fixed points, determine the values of k for which bifurcations occur. For each of
these, what types of bifurcation are suggested from this approach?

(b) For the fixed points whose positions are independent of k, determine their linear
stability. Verify that these results are consistent with the bifurcations suggested above.

(c) Focusing only on the bifurcations which occur for 0 6 k 6 1
2 , use centre manifold

theory to analyse these bifurcations. In particular, for each bifurcation derive an equation
for the dynamics on the extended centre manifold and hence classify the bifurcation. [Hint:
There are two bifurcations in this range.]
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33A Principles of Quantum Mechanics
A particle travels in one dimension subject to the Hamiltonian

H0 =
P 2

2m
− U δ(x) ,

where U is a positive constant. Let |0〉 be the unique bound state of this potential and
E0 its energy. Further let |k,±〉 be unbound H0 eigenstates of even/odd parity, each with
energy Ek, chosen so that 〈k′,+|k,+〉 = 〈k′,−|k,−〉 = δ(k′ − k).

(a) At times t 6 0 the particle is trapped in the well. From t = 0 it is disturbed by a
time-dependent potential v(x, t) = −Fx e−iωt and subsequently its state may be expressed
as

|ψ(t)〉 = a(t) e−iE0t/~|0〉+

∫ ∞

0

(
bk(t)|k,+〉+ ck(t)|k,−〉

)
e−iEkt/~ dk .

Show that

ȧ(t) e−iE0t/~|0〉+

∫ ∞

0
e−iEkt/~

(
ḃk(t)|k,+〉+ ċk(t)|k,−〉

)
dk =

iF

~
e−iωt x|ψ(t)〉

for all t > 0.

(b) Working to first order in F , hence show that bk(t) = 0 and that

ck(t) =
iF

~
〈k,−|x|0〉 eiΩkt/2 sin(Ωkt/2)

Ωk/2
,

where Ωk = (Ek − E0 − ~ω)/~.

(c) The original bound state has position space wavefunction 〈x|0〉 =
√
K e−K|x|

where K = mU/~2, while the position space wavefunction of the odd parity unbound
state is 〈x|k,−〉 = sin(kx) /

√
π and its energy Ek = ~2k2/2m. Show that at late times the

probability that the particle escapes from the original potential well is

Pfree(t) =
8~F 2t

mE2
0

√
Ef/|E0|

(1 + Ef/|E0|)4

to lowest order in F , where Ef > 0 is the final energy. [You may assume that as t→∞,
the function sin2(λt)/(λ2t)→ π δ(λ).]
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34D Applications of Quantum Mechanics
A particle of mass m and charge e moves in a constant homogeneous magnetic field

B = ∇×A with vector potential

A(x) =
B

2
(−y, x, 0) ,

where x = (x, y, z) are Cartesian coordinates on R3.

(a) Write down the Hamiltonian Ĥ for the particle as a differential operator
in Cartesian coordinates. Find a corresponding expression for Ĥ in cylindrical polar
coordinates (r, θ, z), where x = r cos θ and y = r sin θ.

[You may use without proof the relations

∂2

∂x2
+

∂2

∂y2
=

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
and x

∂

∂y
− y ∂

∂x
=

∂

∂θ
. ]

(b) Consider wavefunctions of the form

ψkz ,n (r, θ, z) = exp(ikzz) exp(inθ)φn(r) .

What is the physical interpretation of the quantum numbers kz ∈ R and n ∈ Z? For
n > 0, show that ψkz ,n is an eigenstate of Ĥ provided that

φn(r) = rα exp

(
−β r

2

2

)
,

where α and β are (possibly n-dependent) constants which you should determine. Find
the corresponding energy eigenvalue E.

(c) By noting that φn(r) is sharply peaked at a particular value of r, work out the
total degeneracy of this energy level when the particle is confined to lie inside a large circle
of radius R. Determine the number of states per unit area.
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35A Statistical Physics
(a) State Carnot’s theorem. Show how it can be used to define a thermodynamic

temperature.

(b) Consider a solid body with heat capacity at constant volume CV . Assume that
the solid’s volume remains constant throughout the following three scenarios:

(i) If the temperature changes from Ti to Tf , show that the entropy change is
∆S = Sf − Si = CV ln (Tf/Ti).

(ii) Two identical such bodies (both with heat capacity CV ) with initial
temperatures T1 and T2 are brought into equilibrium in a reversible process.
What are the final temperatures of the bodies?

(iii) Now suppose that the two bodies are instead brought directly into thermal
contact (irreversibly). What are the final temperatures of the bodies?
Compute the entropy change and show that it is positive.

(c) The Gibbs free energy is given by G = E + pV − TS, where E is energy, p
is pressure, V is volume and S is entropy. Explain why G = µ(T, p)N , where µ is the
chemical potential and N is the number of particles.

(d) What is a first-order phase transition?

(e) Consider a system at constant pressure where phase I is stable for T > T0, phase
II is stable for T < T0, and there is a first-order phase transition at T = T0. Show that
in a transition from phase II to phase I, SI − SII > 0, where SI is the entropy in phase I
and SII is the entropy in phase II. [Hint: Consider S = −

(
∂G
∂T

)
p,N

for each phase.]

36B Electrodynamics
(a) Explain what is meant by a dielectric material.

(b) Define the polarisation of, and the bound charge in, a dielectric material. Explain
the reason for the distinction between the electric field E and the electric displacement D
in a dielectric material.

Consider a sphere of a dielectric material of radius R and permittivity ε1 embedded
in another dielectric material of infinite extent and permittivity ε2. A point charge q is
placed at the centre of the sphere. Determine the bound charge on the surface of the
sphere.

(c) Define the magnetisation of, and the bound current in, a dielectric material.
Explain the reason for making a distinction between the magnetic flux density B and the
magnetic intensity H in a dielectric material.

Consider a cylinder of dielectric material of infinite length, radius R and permeab-
ility µ1 embedded in another dielectric material of infinite extent and permeability µ2. A
line current I is placed on the axis of the cylinder. Determine the magnitude and direction
of the bound current density on the surface of the cylinder.
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37D General Relativity
(a) Determine whether each of the following spaces is, or is not, a manifold. Justify

your answers.

(i) R3 with points identified if they are related by the transformation
(x, y, z)→ (−x,−y,−z).

(ii) R3, except that the closed ball of all points with x2+y2+z2 6 1 is removed.

(b) Let a tensor S at point p ∈M be defined as a linear map

S : T ∗
p (M)→ Tp(M)× Tp(M) ,

where Tp is tangent space and T ∗
p is cotangent space.

(i) What is the rank of S? Use
(
r
s

)
notation.

(ii) What is the rank of S ⊗ ∇S, where ⊗ is an outer product and ∇ is the
covariant derivative?

Consider a spacelike geodesic which goes from point p to point q. As a geodesic,
this curve minimizes the action

S =

∫ 1

0

√
gµν ẋµẋν dλ ,

where x = x(λ) with x(0) = p, x(1) = q and ẋµ = dxµ/dλ. Show using the Euler-Lagrange
equations that

d2xβ

ds2
+ Γβµν

dxµ

ds

dxν

ds
= 0 ,

where s is the proper distance along the geodesic and Γβµν is the Levi-Civita connection.

Part II, Paper 4



27

38C Fluid Dynamics II

A thin layer of fluid is flowing down an inclined plane due to the action of
gravity. The gravitational acceleration is g, the viscosity of the fluid is µ and the density
of the fluid is ρ. The angle between the plane and the horizontal is denoted by α.
Cartesian coordinates are defined with x along the plane in the downward direction and y
perpendicular to the plane. All quantities may be assumed to be constant in the in-plane
direction perpendicular to the slope. The thickness of the fluid layer is denoted by h(x, t).

(a) Assume that the dynamics of the layer is described by the lubrication equations
and hence estimate the order of magnitude for the flow speed u in the film. Deduce the two
conditions involving h, ∂h/∂x and the other parameters of the problem that are required
for the assumption of the lubrication limit to be self-consistent.

(b) State the momentum equations in the (x, y) coordinates under the lubrication-
limit assumption. What are the boundary conditions for the velocity and the pressure?

(c) Solve for the pressure in the fluid and deduce the flow velocity along the plane.

(d) Applying conservation of mass, deduce the partial differential equation satisfied
by h(x, t).

(e) Seek a travelling-wave solution h(x, t) = f(x− ct) and hence derive a first-order
ODE (containing an unknown constant of integration) satisfied by the function f .

39C Waves
Consider finite amplitude, one-dimensional sound waves in a perfect gas with ratio

of specific heats γ.

(a) Show that the fluid speed u and local sound speed c satisfy

(
∂

∂t
+ (u± c)

∂

∂x

)
R± = 0 ,

where the Riemann invariants R±(x, t) should be defined carefully. Write down parametric
equations for the paths on which these quantities are actually invariant.

(b) At time t = 0 the gas occupies the region x > 0. It is at rest and has uniform
density ρ0, pressure p0 and sound speed c0. A piston initially at x = 0 starts moving
backwards at time t = 0 with displacement x = −εt(1 − t), where ε > 0 is constant.

(i) Show that prior to any shock forming c = c0 + 1
2(γ − 1)u.

(ii) For small ε, derive an expression for the relative pressure fluctuation δp/p0 =
p/p0 − 1 to second order in the relative sound speed fluctuation δc/c0 = c/c0 − 1.

(iii) Calculate the time average over the interval 0 6 t 6 1 of the relative pressure
fluctuation, measured on the piston, and briefly discuss your result physically.
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40C Numerical Analysis
(a) State and prove the Gershgorin circle theorem.

(b) Consider the diffusion equation on the square [0, 1]2

∂u

∂t
=

∂

∂x

(
a(x, y)

∂

∂x
u(x, y)

)
+

∂

∂y

(
a(x, y)

∂

∂y
u(x, y)

)
,

where 0 < a(x, y) < amax for all (x, y) ∈ [0, 1]2 is the diffusion coefficient, and with
Dirichlet boundary conditions u(x, y, t) = 0 for (x, y) on the boundary of [0, 1]2.

Consider a uniform grid of size M × M with step h = 1/(M + 1) and let
ui,j = u(ih, jh) for 1 6 i 6M and 1 6 j 6M .

(i) Using finite differences, show that the right-hand side of the diffusion equation
can be discretised by an expression of the form

1

h2
(αui−1,j + βui+1,j + γui,j−1 + δui,j+1 − (α+ β + γ + δ)ui,j)

for some α, β, γ, δ which you should specify, and which depend on i, j and the
diffusion coefficient. Show that the error of this discretisation is O(h2).

(ii) The time derivative is discretised using a forward Euler scheme with a time
step ∆t = k. Use Gershgorin’s theorem, clearly justifying all your steps, to
show that the resulting scheme is stable when 0 < µ 6 1/(4amax), where
µ = k/h2 is the Courant number.

END OF PAPER
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