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SECTION I
1I Number Theory

Explain what it means for a positive definite binary quadratic form to be reduced,
and what it means for two such forms to be equivalent. Prove that every positive definite
binary quadratic form is equivalent to a reduced form. Show that any two equivalent
forms represent the same set of integers.

Carefully quoting any further results you need, show that f(x, y) = 6x2 + 5xy+ 2y2

and g(x, y) = 9x2 + 25xy + 18y2 represent the same integers, but are not equivalent.

2G Topics in Analysis
In this question you should work in Rn with the usual Euclidean distance.

Define a set of first Baire category.

For each of the following statements, say whether it is true or false and give an
appropriate proof or counterexample.

(i) The countable union of sets of first category is of first category.

(ii) If A is of first category in R2 and y ∈ R, then

Cy = {x : (x, y) ∈ A}

is of first category in R.

(iii) If C is of first category in R, then

A = {(x, y) : x ∈ C, y ∈ R}

is of first category in R2.

(iv) If A and B are sets of first category in R2, then

A+B = {a + b : a ∈ A, b ∈ B}

is of first category.

[You may use results about complete metric spaces provided you state them pre-
cisely.]
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3K Coding and Cryptography
What is a discrete memoryless channel (DMC)? State Shannon’s second coding

theorem.

Consider two DMCs of capacities C1 and C2, each having input alphabet A and
output alphabet B. The product of these channels is a channel whose input and output
alphabets are A×A and B × B, respectively, with channel probabilities given by

P(y1y2|x1x2) = P1(y1|x1) P2(y2|x2),

where Pi(y|x) is the probability that y is received when x is transmitted through the ith
channel (i = 1, 2). Find the capacity of the product channel in terms of C1 and C2.

4I Automata and Formal Languages
State and prove the pumping lemma for regular languages.

Are the following languages over the alphabet Σ = {0, 1} regular? Justify your
answers.

(i) {0n1 |n > 0}.

(ii) {0n1n
2 |n > 0}.

(iii) The set of all words in Σ∗ containing the same number of 0s and 1s.

5J Statistical Modelling
(a) Give the definition of an exponential family of probability distributions. [You

may assume the natural parameter is one-dimensional.]

(b) Suppose Y1, . . . , Yn
i.i.d.∼ f(y; θ) where f(y; θ) is the density function of an

exponential family with natural parameter θ and sufficient statistic Y . Show that
Ȳ =

∑n
i=1 Yi/n is a sufficient statistic for θ.

(c) In the setting above, show that the maximum likelihood estimator of θ is given
by setting the theoretical mean µ(θ) = Eθ(Y1) to the empirical mean Ȳ .
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6C Mathematical Biology
Two species with populations N1 and N2 compete according to the equations

dN1

dt
= r1N1

(
1 − N1

K1
− b12

N2

K1

)

dN2

dt
= r2N2

(
1 − b21

N1

K2

)
,

so that only species 1 has limited carrying capacity. Assume that the parameters
r1, r2,K1,K2, b12, and b21 are all strictly positive.

(a) Rescale the variables N1, N2 and t to leave three parameters, ρ = r1/r2,
α = b12K2/K1 and β = b21K1/K2 and determine the steady states.

(b) Assuming β > 1, investigate the stability of the biologically relevant steady
states and sketch the phase plane trajectories.

(c) Assuming β > 1, show that irrespective of the size of the parameters the principle
of competitive exclusion holds. Briefly describe under what ecological circumstances
species 2 becomes extinct.

7E Further Complex Methods
A complex function Arcsinh(z) may be defined by

Arcsinh(z) =

∫ z

0

1

(1 + t2)1/2
dt ,

where the integrand (1 + t2)−1/2 is equal to 1/
√

2 at t = 1 and has a branch cut along the
imaginary axis between the points ±i (deformed very slightly to the left of the origin).

Explain how to choose the path of integration to ensure that Arcsinh(z) is analytic
and single valued in 0 6 arg z < 2π, except for z on the branch cut specified for (1+t2)−1/2.

Evaluate Arcsinh(− sinh(u)), where u is real and u > 0.

Deduce that if arcsinh(z) is an analytic continuation of Arcsinh(z) to the whole
complex plane, omitting the branch cut, but without restriction on arg(z), then it is
multivalued. What are the possible values of arcsinh(sinh(u)), with u real and u > 0?
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8B Classical Dynamics
Show that Hamilton’s equations for a system with n degrees of freedom can be

written in the form

ẋa = Ωab
∂H

∂xb
,

where a, b ∈ {1, 2, . . . , 2n} and Ω is a matrix that you should define.

Using a similar notation, define the Poisson bracket {f, g} of two functions f(x, t)
and g(x, t). Evaluate the Poisson bracket {xa, xb}.

Show that the transformation x 7→ X(x) preserves the form of Hamilton’s equations
if and only if the Jacobian matrix

Jab =
∂Xa

∂xb

satisfies
JΩJT = Ω .

Deduce that such a canonical transformation leaves the phase-space volume invariant.

9A Cosmology
Consider a ball centered on the origin which is initially of uniform energy density

ρ and radius L. The ball expands outwards away from the origin. Additionally, take a
particle of mass m at some position x with r ≡ |x| � L. Assume that the particle only
experiences gravity through Newton’s inverse-square law.

Using the above model of the expanding universe, derive the Friedmann equation
describing the evolution of the scale factor a(t) appearing in the relation x(t) = a(t)x0.

Describe the two main flaws in this derivation of the Friedmann equation.
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10D Quantum Information and Computation
(a) Suppose that Alice and Bob are distantly separated in space and they can

communicate classically publicly. They also have available a noiseless quantum channel
on which there is no eavesdropping. Describe the steps of the BB84 protocol that results
in Alice and Bob sharing a secret key of expected length n/2. [Note that the steps of
information reconciliation and privacy amplification will not be needed in this idealised
situation.]

(b) Suppose now that an eavesdropper Eve taps into the quantum channel. Eve
also possesses a supply of ancilla qubits each in state | 0〉E . For each passing qubit |ψ〉A
sent by Alice, Eve intercepts it and applies a CX operation to it and one of her ancilla
qubits | 0〉E with Alice’s qubit being the control i.e. Eve applies CXAE . After this action
Eve sends Alice’s qubit on to Bob while retaining her ancilla qubit.

(i) Show that for two choices of Alice’s sent qubits, the qubit received by Bob will be
entangled with Eve’s corresponding ancilla qubit.

(ii) Calculate the bit error rate for Alice and Bob’s final key in part (a) that results
from Eve’s action.
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SECTION II
11G Topics in Analysis

Suppose f : [0, 1]2 → R is continuous. Show, quoting carefully any theorems that
you use, that

n∑

j=0

n∑

k=0

(
n

j

)(
n

k

)
f(j/n, k/n)tj(1− t)n−jsk(1− s)n−k → f(t, s)

uniformly on [0, 1]2 as n→∞.

Deduce that

∫ 1

0

(∫ 1

0
f(s, t) ds

)
dt =

∫ 1

0

(∫ 1

0
f(s, t) dt

)
ds

whenever f : [0, 1]2 → R is continuous.

By giving proofs or counterexamples establish which of the following statements are
true and which are false. You may not use the Stone–Weierstrass theorem without proof.

(i) If f : [0, 1]2 → R is continuous and
∫ 1
0

(∫ 1
0 s

ntmf(s, t) ds
)
dt = 0 for all

integers n,m > 0, then f = 0.

(ii) Suppose a < b. If f : [a, b]2 → R is continuous and
∫ b
a

(∫ b
a s

ntmf(s, t) ds
)
dt =

0 for all integers n,m > 0, then f = 0.

(iii) If f : [−1, 1]2 → R is continuous and
∫ 1
−1

(∫ 1
−1 s

2nt2mf(s, t) ds
)
dt = 0 for all

integers n,m > 0, then f = 0.

(iv) If f : [0, 1]2 → R is continuous and
∫ 1
0

(∫ 1
0 s

2nt2mf(s, t) ds
)
dt = 0 for all

integers n,m > 0, then f = 0.
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12K Coding and Cryptography
(a) Consider two large distinct primes p, q ≡ 3 (mod 4) and let N = pq. Briefly

describe the Rabin cipher with modulus N .

I announce that I shall be using the Rabin cipher with modulus N . My friendly
agent in Doxfor sends me a message m (with 1 6 m 6 N − 1) encoded in the required
form. Unfortunately, my cat eats the piece of paper on which the prime factors of N are
recorded so I am unable to decipher it. I therefore find a new pair of primes and announce
that I shall be using the Rabin code with modulus N ′ > N . My agent now re-encodes the
message and sends it to me again.

The enemy agent Omicron intercepts both code messages. Show that Omicron can
find m. Can Omicron decipher any other messages sent to me using only one of the coding
schemes?

(b) Let p be a large prime and g a primitive root modulo p. What is the discrete
logarithm problem? Explain what is meant by the Diffie-Hellmann key exchange and
say briefly how an enemy can break the cipher if she can compute discrete logarithms
efficiently.

Extend the Diffie–Hellman key exchange to cover three participants in a way that
is likely to be as secure as the two-party system.

Extend the system further to n parties in such a way that they can compute their
common secret key in at most n2 − n communications. (The numbers p and g of our
original Diffie-Hellman system are known by everybody in advance.)
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13E Further Complex Methods
Consider the differential equation

d3w

dz3
− zw = 0 .

Use Laplace’s method to find solutions of the form

w(z) =

∫

γ
ezt f(t) dt ,

where γ is a contour in the complex t-plane. Determine the function f(t) and state clearly
the condition required for the contour γ.

Draw a sketch of the complex t-plane showing the possible choices of γ, relating
these to the behaviour of f(t).

Show that three different suitable contours γi, i = 1, 2, 3, may be formed from the
positive real axis plus parts of the real axis or the imaginary axis, with each γi defining a
function wi(z). Write down expressions for the values of wi(0), w′

i(0) and w′′
i (0) (i = 1, 2, 3)

and evaluate them in terms of Gamma functions.

Give an expression for

det



w1(0) w′

1(0) w′′
1(0)

w2(0) w′
2(0) w′′

2(0)
w3(0) w′

3(0) w′′
3(0)


.

Deduce that the functions wi(z) (i = 1, 2, 3) are linearly independent.

14B Classical Dynamics
(a) A homogeneous, solid ellipsoid of mass M occupies the region

x2

a2
+
y2

b2
+
z2

c2
< 1 ,

where a, b and c are positive constants. Calculate the inertia tensor of the ellipsoid.

(b) According to Poinsot’s construction, the evolution of the angular velocity vector
ω(t) of a rigid body undergoing free rotational motion corresponds to the movement of
an inertia ellipsoid on an invariable plane. Derive this construction, explaining why the
inertia ellipsoid is tangent to the invariable plane and rolls on it.

(c) Describe qualitatively the general free rotational motion of the body considered
in part (a) in an inertial frame of reference, in the special case a = b < c.
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15D Quantum Information and Computation
(a) (i) Define the Bell measurement on two qubits.

(ii) In terms of the Bell measurement and the Bell state |φ+〉 give the steps of
the quantum teleportation protocol. You need not give a derivation of the steps but you
should clearly state all inputs and outputs of the protocol.

(iii) Suppose now that the |φ+〉 state used in the protocol is replaced by | ξ〉 =
I ⊗U |φ+〉, where U is any 1-qubit unitary and all steps of the protocol remain otherwise
the same as in part (ii) above. State the outputs of this modified protocol and give a
justification of your answer. [You may quote any statements from part (ii) above.]

(b) A programmable 1-qubit gate G is defined to be a device acting on two registers
A and B, where A is a 1-qubit register called the input register and B is a K-qubit register
(for some fixed K ∈ N) called the program register. For any given state of AB the action
of G is a fixed unitary operation G on the K + 1 qubits, which is required to satisfy the
following condition called (PROG):

For any 1-qubit unitary U there is a K-qubit state |PU 〉 such that for any 1-qubit
state |α〉 we have

|α〉 ⊗ |PU 〉 7−→ G( |α〉 ⊗ |PU 〉 ) = (U |α〉)⊗
∣∣∣ P̃U

〉
.

Here
∣∣∣ P̃U

〉
is some K-qubit state (which could generally depend on |α〉 too). Thus |PU 〉

serves as a “program” for the application of U to any 1-qubit state |α〉 via the fixed
unitary action G.

(i) By considering suitable inner products or otherwise, show that if (PROG) holds

then
∣∣∣ P̃U

〉
must be independent of the state |α〉.

(ii) Suppose that |PU 〉 and |PV 〉 implement 1-qubit unitaries U and V that have
physically different actions i.e. U 6= V eiθ for any phase θ. Show that |PU 〉 and
|PV 〉 must then be orthogonal if (PROG) holds. [Hint: It may be helpful to show
that for any unitary W , if 〈α|W |α〉 is independent of |α〉 then W must be the
identity gate (up to an overall phase).]

(iii) Show that a programmable 1-qubit gate G satisfying (PROG) cannot exist.

(iv) Suppose now that (PROG) is extended to allow the action of G to involve quantum
measurements as well as unitary operations and we require of the “program” |PU 〉
only that it succeeds in applying U to |α〉 with at least some constant probability
0 < p < 1 independent of U and |α〉, i.e. the action of G on |α〉 ⊗ |PU 〉 results in
U |α〉 in the first register with probability at least p for each U and |α〉. Can such
a probabilistic programmable 1-qubit gate exist? Give a reason for your answer.
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16F Logic and Set Theory
(a) Give the inductive and synthetic definitions of ordinal addition, and prove that

they are equivalent.

(b) Which of the following assertions about ordinals α, β and γ are always true,
and which can be false? Give proofs or counterexamples as appropriate.

(i) (α+ β)γ = αγ + βγ.

(ii) α(β + γ) = αβ + αγ.

(iii) If α is a limit ordinal then αω = ωα.

(iv) If α > ω1 and β < ω1 then β + α = α.

(v) If α+ α+ β and β + α+ α are equal then they are both equal to α+ β + α.

17F Graph Theory
(a) For a graph H and a positive integer n, define ex(n,H). Prove that ex(n,K3) 6

n2/4. [You may not assume Turan’s theorem without proof.]

(b) For a fixed δ > 0, suppose thatG is a graph on n vertices with e(G) > (1+δ)n2/4.
Prove that G must contain at least εn3 triangles, where ε > 0 is a constant that does not
depend on n or G.

(c) Prove that ex(n,K3,2) < cn3/2, for some constant c > 0.

(d) Let x1, . . . , xn be distinct points in R2. Show that there exists a constant c > 0
such that at most cn3/2 of the ordered pairs (xi, xj) can satisfy |xi − xj | = 1.

18H Galois Theory
(a) Let L be a finite field of order pn. Suppose that γ ∈ L, and let f ∈ Fp[x] be the

minimal polynomial of γ over Fp. Show that deg f divides n. Prove that there is a γ ∈ L
for which deg f = n.

Show that for every r > 1, there is an irreducible polynomial g ∈ Fp[x] of degree r.

[You may assume the tower law and the existence of splitting fields, but should prove
any results about finite fields that you use.]

(b) Suppose that K is a field and that L is a finite extension of K. Define what it
means for α ∈ L to be separable over K. If f ∈ K[x] is the minimal polynomial of α and
gcd(f, f ′) = 1 show that α is separable over K.

Now suppose that L = K(β) is a finite extension of K and that charK = p. Show
there exists a unique intermediate field M with K ⊆ M ⊆ L, such that the following
conditions hold: M is a separable extension of K, [L : M ] = ph for some h, and γp

h ∈M
for all γ ∈ L. [Hint: If β is not separable, what is its minimal polynomial? ]
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19H Representation Theory
Suppose that G is a group of order 16. Let d1 6 d2 6 · · · 6 dr be the degrees of the

irreducible characters of G. What are the possible values of r and d1, . . . , dr? For each such
collection d1, . . . , dr find a group of order 16 with these character degrees and construct
the character table of the group. [You may assume any general results from the course
provided that you state them clearly. You may restrict yourself to brief justifications of
the values in each character table.]

20H Number Fields
Let K be a number field.

(a) Let P1, . . . , Pk (where k > 1) be distinct nonzero prime ideals of OK and
let m1, . . . ,mk be positive integers. Let I be the product Pm1

1 · · ·Pmk
k . Explain why

I = Pm1
1 ∩ · · · ∩ Pmk

k , and hence show that the map

OK/I → OK/P
m1
1 × · · · × OK/P

mk
k

taking α+ I to (α+ Pm1
1 , . . . , α+ Pmk

k ) is an isomorphism of rings.

Deduce that there exists α ∈ I such that α /∈ PiI for all i. Show that there exists
an ideal I ′ with I + I ′ = OK such that II ′ is principal. Show also that any ideal of OK

can be generated by two elements.

(b) State Dedekind’s criterion for the factorisation of rational primes in OK . Use
it to compute the factorisation of any odd rational prime in OK when K = Q(

√
d) is a

quadratic field.

Show that if d > 0 and K contains an element α with NK/Q(α) = −1, then no
prime p ≡ 3 (mod 4) can ramify in K.

21I Algebraic Topology
State the snake lemma and derive the exactness of the Mayer–Vietoris sequence

from it.

Suppose that K is a simplicial complex of dimension n > 1, that every (n − 1)-
simplex of K is a face of precisely two n-simplices, and that if σ and σ′ are n-simplices of
K then there is a sequence σ = σ0, σ1, . . . , σk = σ′ of n-simplices in K such that for all
i, σi and σi+1 have an (n − 1)-simplex in common. Show that Hn(K) is either trivial or
isomorphic to Z.

Now suppose that K is as above and that Hn(K) ∼= Z is generated by x ∈ Hn(K).
If K is the union of subcomplexes L1 and L2 such that L1 ∩ L2 has dimension less than
n, describe ∂x, where ∂ is the boundary map in the Mayer–Vietoris sequence associated
to the decomposition K = L1 ∪ L2. Justify your answer. When is ∂x 6= 0?

Finally, suppose that K,L1 and L2 are as in the previous paragraph, that K is
homeomorphic to S3, that L1 is homeomorphic to S1×D2, and that the image of L1 ∩L2

under this homeomorphism is S1 × S1 ⊂ S1 ×D2. Compute H∗(L2).
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22G Linear Analysis
(a) Given a complex Banach space (V, ‖ · ‖), prove that the space of bounded linear

maps (B(V, V ), ||| · |||) endowed with the norm

|||T ||| = sup
v∈V, ‖v‖=1

‖Tv‖

is a Banach space.

(b) Assume (V, ‖ · ‖) is a complex Hilbert space. State the definitions of a compact
operator T : V → V and of a Hilbertian basis. Suppose T ∈ B(V, V ) and V has a Hilbertian
basis (en)n>1 such that T (en) = λnen for complex numbers λn, n > 1. Prove that T is
compact if and only if λn → 0.

(c) Given a complex Hilbert space (V, ‖ · ‖) and (en)n>1 a Hilbertian basis of V ,
consider H(V, V ), the set of linear operators T such that

∑
n>1 ‖Ten‖2 < +∞. Prove that

operators in H(V, V ) are bounded and compact, and that (H(V, V ), ||| · |||∗) with

|||T |||∗ =

(∑

n>1

‖Ten‖2
)1/2

is a Hilbert space. Are ||| · ||| and ||| · |||∗ equivalent norms on H(V, V )?

23G Analysis of Functions
Let X be a real vector space. State what it means for a functional p : X → R to be

sublinear.

Let M ( X be a proper subspace. Suppose that p : X → R is sublinear and the
linear map ` : M → R satisfies `(y) 6 p(y) for all y ∈ M . Fix x ∈ X \ M and let

M̃ = span{M,x}. Show that there exists a linear map ˜̀ : M̃ → R such that ˜̀(z) 6 p(z)

for all z ∈ M̃ and ˜̀(y) = `(y) for all y ∈M .

State the Hahn–Banach theorem.

Let {z1, . . . , zn} be a set of linearly independent elements of a real Banach space Z.
Show that for each j = 1, . . . , n there exists `j ∈ Z ′ with `j(zk) = δjk for all k = 1, . . . , n.
Suppose M ⊂ Z is a finite dimensional subspace. Show that there exists a closed subspace
N such that Z = M ⊕N .
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24F Riemann Surfaces
(a) Let D = {p1, . . . , pn} be a finite (possibly empty) subset of a Riemann surface

R, and let m1, . . . ,mn be strictly positive integers. Let V be the set of meromorphic
functions f on R such that each pole of f is at some pi, and the order of a pole at pi is at
most mi. Prove that V is a vector space over C.

(b) For any compact Riemann surface R, prove that

dimC V 6 1 +

n∑

i=1

mi

by considering Laurent expansions about the pi, or otherwise.

(c) Let R = C/Λ be a complex torus. For any meromorphic function f on R with
poles p1, . . . , pn, prove that

n∑

i=1

resf (pi) = 0 .

Assuming that n > 1, deduce that dimC V =
∑

imi.

25H Algebraic Geometry
State the Riemann–Hurwitz theorem. Show that, if C and C ′ are smooth projective

connected curves over a characteristic zero field with g(C) < g(C ′), then any morphism

C → C ′

is constant.

Let Cd ⊂ P2 be a smooth plane curve of degree d. Construct a morphism

ϕ : Cd → P1

of degree d − 1. Let B ⊂ P1 be the set of branch points for ϕ. Give an upper bound for
the cardinality of B in terms of d.

Now let D be the divisor on Cd associated to a hyperplane section of Cd. Prove
that if d > 5 then D is not linearly equivalent to the canonical divisor of Cd.

The gonality of a curve C is the minimum degree of a non-constant morphism
C → P1. Prove that a smooth plane curve of degree 4 has gonality equal to 3. What is
the gonality of a smooth projective curve of genus 1?
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26I Differential Geometry
Define a k-dimensional smooth manifold, and a regular value of a smooth map

between smooth manifolds. State the inverse function theorem, and use it to prove the
preimage theorem.

Suppose X and Y are smooth manifolds and f : X → Y is a smooth map. If X is
compact, show that the set of regular values of f in Y is open.

Consider the space

Xa = {x+ y − z2 − w2 = a} ∩ {x2 + y2 − z4/2 = 0} ,

where x, y, z, w are the standard coordinates on R4, and a ∈ R is a constant. Show that
Xa is a 2-dimensional manifold whenever a 6= 0. Is X0 a manifold? Justify your answer.

27G Probability and Measure
(a) State and prove the monotone convergence theorem.

(b) Let f1 be a µ-integrable function and let f be a measurable function defined on
some measure space (E, E , µ). Suppose the sequence (fn : n ∈ N) of measurable functions
on E is such that fn ↑ f pointwise on E as n → ∞. Show that µ(fn) ↑ µ(f) as n → ∞.
Show that the conclusion may fail if f1 is not integrable.

28J Applied Probability
(a) Let X = (Xt) be a right-continuous process with values in a finite state space

S, and let Q be a Q-matrix on S. State two different conditions that are equivalent to the
statement that X is a continuous-time Markov chain with generator Q. Prove that these
two conditions are equivalent.

(b) Let G be a finite connected graph and let A be a connected subgraph of G. Let
X be a continuous time Markov chain that takes values in the vertices of A and evolves as
follows: when at x it stays there for an exponential time of parameter 1 and then chooses
a neighbour of x in G uniformly at random. If the neighbour is in A, then X jumps there,
otherwise it waits for another independent exponential time of parameter 1 and proceeds
as before. This continues until the first time that X chooses a neighbour of x in A and
then jumps there. Find the Q-matrix and the invariant distribution of X. Justify your
answer.

[You may use the fact that, if N is a geometric random variable of parameter p and
(Ei)i>1 is an i.i.d. sequence of exponential random variables of parameter 1 independent
of N , then

∑N
i=1Ei is exponentially distributed with parameter p.]
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29K Principles of Statistics
Suppose X1, . . . , Xn are i.i.d. samples from a N(θ, 1) distribution. Consider an

estimator θ̂a,b of the form aX̄n + b, where a, b ∈ R and X̄n denotes the sample mean.
Throughout this question, we will consider risks computed with respect to the quadratic
loss.

(a) Compute the risk of θ̂a,b for estimating θ.

(b) Use the formula in part (a) to show that when a > 1, the estimator θ̂a,b is
inadmissible for estimating θ.

(c) Now use the formula in part (a) to show that when a < 0, the estimator θ̂a,b
is also inadmissible for estimating θ. [Hint: Compare the estimator with the constant
estimator δ := −b

a−1 .]

(d) Prove that X̄n is admissible for estimating θ. [Hint: You may use, without
proof, the general Cramér–Rao lower bound, and the facts that I(θ) = 1 and Eθ[δ(X)] is
differentiable for any estimator δ under the Gaussian model.]

(e) Can any of the estimators considered in parts (b) and (c) be minimax for
estimating θ?

30K Stochastic Financial Models
Consider a one-period market model with constant interest rate r and d risky assets. For

n ∈ {0, 1} let Sn denote the vector of time-n prices of the risky assets and let Xn be the time-n
wealth of an investor. Let µ = E(S1) and V = Cov(S1). Assume µ 6= (1 + r)S0.

(a) Suppose V is non-singular. Find, with proof, the minimum of Var(X1) subject to the
constraints that X0 = x and E(X1) = m for given constants x and m. Show that the optimal
portfolio of risky assets is of the form θ∗ = λV −1[µ− (1 + r)S0] for a constant λ to be found. Now
find the minimum of Var(X1) subject to X0 = x and E(X1) > m.

(b) Again suppose V is non-singular. Find, with proof, the maximum of the quantity

E(X1)− (1 + r)X0√
Var(X1)

,

subject to X0 = x. Show that all optimal portfolios are mean-variance efficient.

(c) Now suppose V is singular and that there exists no vector θ ∈ Rd such that V θ =
µ− (1 + r)S0. Show that for any m and x,

min{Var(X1) : E(X1) = m and X0 = x} = 0 .

Show that there exists an arbitrage in this market.

Part II, Paper 2



17

31J Mathematics of Machine Learning
(a)What does it mean for a function f : Z1 × · · · × Zn → R to have the bounded

differences property with constants L1, . . . , Ln?

State the bounded differences inequality.

(b) Let X and Y be input and output spaces respectively. Let H be a machine
learning algorithm taking as its argument a dataset D ∈ (X ×Y)n to output a hypothesis
HD : X → R. For D = (xi, yi)

n
i=1 ∈ (X × Y)n and (x, y) ∈ X × Y, for all i = 1, . . . , n we

write
Di(x, y) := ((x1, y1), . . . , (xi−1, yi−1), (x, y), (xi+1, yi+1), . . . , (xn, yn)) .

Let ` : R×Y → [0,M ] be a bounded loss function. Suppose H has the following property:
there exists β > 0 such that for all i = 1, . . . , n and for all (x, y) ∈ X × Y, we have

sup
(x̃,ỹ)∈X×Y

|`(HDi(x,y)(x̃), ỹ)− `(HD(x̃), ỹ)| 6 β.

Let (X,Y ) ∈ X × Y be a random input–output pair. Show that F : (X × Y)n → R given
by

F ((x1, y1), . . . , (xn, yn)) = E`(HD(X), Y )− 1

n

n∑

i=1

`(HD(xi), yi)

satisfies a bounded differences property with constants all equal to 2β + M/n. [In the
expectation above, the (xi, yi) are considered deterministic.]

(c) Now suppose D = (Xi, Yi)
n
i=1 ∈ (X × Y)n is a collection of i.i.d. input–

output pairs independent of, and each having the same distribution as, (X,Y ). Show
that EF (D) 6 β. [Hint: Find an alternative expression for E`(HD(X), Y ) as a sum of
expectations with the ith term involving HDi(X,Y ).]

(d) Hence conclude that, given 0 < δ 6 1,

1

n

n∑

i=1

`(HD(Xi), Yi) + β + (2nβ +M)

√
log(1/δ)

2n
> E`(HD(X), Y )

with probability at least 1− δ.
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32E Asymptotic Methods
(a) Let n = 1, 2, . . . . Which of the following sequences are asymptotic and why?

(i) φn(x) = ln(cos(xn)) as x→ 0 .

(ii) ψn(x) = n1/x as x→∞ .

(iii) χn(x) = sin(xn) as x→∞ .

(b) Let φn(x) and ψn(x), for n = 0, 1, 2, . . . , be two sequences of real positive
functions defined on {x ∈ R : 0 < |x − x0| < 1} which are asymptotic sequences as
x→ x0.

For n = 0, 1, 2, . . . , show that the sequence

χn(x) =
n∑

k=0

φk(x)ψn−k(x) ,

is an asymptotic sequence as x→ x0 .

33B Dynamical Systems
(a) Let F : I → I be a continuous one-dimensional map of an interval I ∈ R. Define

what it means for F to have a horseshoe.

Define what it means for F to be chaotic. [Glendinning’s definition should be used
throughout this question.]

Prove that if F has a 3-cycle then F 2 has a horseshoe. [You may assume corollaries
of the Intermediate Value Theorem.]

(b) Suppose now that F has a 4-cycle, and consider each of these orderings of the
points of the 4-cycle:

(i) x0 < x1 < x2 < x3

(ii) x0 < x1 < x3 < x2

(iii) x0 < x2 < x1 < x3

For each of these orderings, construct a suitable directed graph. Based on each of
these directed graphs, determine if the corresponding F must be chaotic and also give the
minimum number of distinct 3-cycles that F must have.

Give an explicit example of a continuous map F : [0, 1] → [0, 1] which has a 4-cycle
and is not chaotic. [Hint: choose a suitable ordering for the points on the 4-cycle, construct
a function which is piece-wise linear between these points, and examine the dynamics of
this map.]
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34E Integrable Systems
It is possible to obtain solutions of the partial differential equation

uXT = sinu , (1)

at time T from certain discrete scattering data {λm(T ), cm(T )}Nm=1 and corresponding
eigenfunctions ψm(X,T ) for an associated linear problem by means of the formula

uX(T,X) = −4
∑

m

cmψ
(1)
m (X,T )eiλmX ,

where ψm =

(
ψ
(1)
m

ψ
(2)
m

)
and ψ̃m =

(
−ψ(2)

m

ψ
(1)
m

)
solve

ψ̃n(X,T )eiλn(T )X −
(

0
1

)
=
∑

m

cm(T )ψm(X,T )

(λn(T )− λm(T ))
eiλm(T )X .

Given the fact that the discrete scattering data {λm(T ), cm(T )}Nm=1 evolve according

to λm(T ) = λm(0) = λm and cm(T ) = cm(0)e−
iT
2λn , obtain the solution in the case N = 1

with λ1(T ) = il purely imaginary and c1(0) = c = 2l > 0. Show that there is a unique
positive value of l for which the solution is of the form F (X + T ) for some function F ,
which you should give.

Show that

gs :



X
T
u


 7→



esX
e−sT
u


 (2)

defines a group of Lie point symmetries of (1). Show that all the solutions to (1) you
obtained for N = 1 transform under (2) into F (X + T ), with F as above.

In the case N = 2 and λ1 = il + m, λ2 = il −m with real l > 0,m > 0 there is a
solution of (1) given by

u(T,X) = 4 arctan
l sin

(
2mX − 2mT

4(l2+m2)

)

m cosh
(

2lT
4(l2+m2)

+ 2lX
) . (3)

Show that if l2 +m2 = 1
4 then this solution is periodic in t = T −X for fixed x = X + T ;

find the period.

Show that for arbitrary l2 + m2 the solutions (3) may be transformed by (2) into
the case l2 +m2 = 1

4 .
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35A Principles of Quantum Mechanics
(a) Let {| ↑ 〉, | ↓ 〉} be a basis of Sz eigenstates for a spin-12 particle. Find the

eigenstates | ↑θ〉 and | ↓θ〉 of n · S, where n = (sin θ, 0, cos θ), and give their corresponding
eigenvalues.

(b) Two spin-12 particles are in the combined spin state

|ψ〉 =
|↑ 〉|↓ 〉 − |↓ 〉|↑ 〉√

2
.

Show that this state is unchanged under the substitution

(|↑ 〉, |↓ 〉) 7→ (|↑θ〉, |↓θ〉).

Hence show that |ψ〉 is an eigenstate, with eigenvalue zero, of each Cartesian component
of the combined spin operator S = S(1) + S(2), where S(i) is the spin operator of the ith

particle.

(c) Two spin-12 particles are in the spin state

|χ〉 =
|↑ 〉|↓θ〉 − |↓ 〉|↑θ〉√

2
.

A measurement of Sz for the first particle is carried out, followed by a measurement of Sz
for the second particle. List the possible outcomes for this pair of measurements and find
the total probability, in terms of θ, for each pair of outcomes to occur. For which of these
outcomes is the system left in an eigenstate of the combined total spin operator S ·S, and
what are the corresponding eigenvalues?

[Hint: The Pauli sigma matrices are given by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. ]
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36D Applications of Quantum Mechanics
A particle of mass m moves in one dimension in the periodic potential

V (x) =
∑

n∈Z
Vn exp

(
2πinx

a

)
,

where V−n = (Vn)
∗. Treating the Hamiltonian Ĥ = Ĥ0 + V (x) as a small perturbation

of the free Hamiltonian Ĥ0, show that the energy spectrum consists of continuous bands
separated by gaps of width 2|Vn| that occur for each positive integer n.

What is meant by the dispersion relation of the particle? Determine an explicit
form of the dispersion relation near each band gap.

Work out the locations and widths of the gaps in the energy spectrum for the
potential

V (x) =
8

3
V0 cos4

(
2πx

a

)
.

Sketch the dispersion relation of a particle moving in this potential.

37A Statistical Physics
(a) What systems are described by a microcanonical ensemble and which by a

canonical ensemble?

(b) Starting from the Gibbs formula for entropy, S = −kB
∑

n p(n) ln p(n), where
p(n) is the probability of being in microstate n and kB is the Boltzmann constant, show
how maximising entropy subject to appropriate constraints leads to the correct forms of
the probability distributions for (i) the microcanonical ensemble and (ii) the canonical
ensemble.

(c) Derive an expression for the entropy in the canonical ensemble in terms of the
partition function Z and temperature T .

(d) A system consists of N non-interacting particles fixed at points in a lattice in
thermal contact with a reservoir at temperature T . Each particle has three possible states
with energies −ε, 0, ε, where ε > 0 is a constant. Compute the average energy E and the
entropy S. Evaluate E and S in the limits T →∞ and T → 0.

(e) For the system in part (d), describe a configuration that would have negative
temperature. Justify your answer.
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38D General Relativity
(a) Consider a 2-sphere with coordinates (θ, φ) and metric

ds2 = dθ2 + sin2θ dφ2 .

(i) Show that lines of constant longitude (φ = constant) are geodesics, and that the only
line of constant latitude (θ = constant) that is a geodesic is the equator (θ = π/2).

(ii) Take a vector with components V µ = (1, 0) in these coordinates, and parallel
transport it once around a circle of constant latitude. What are the components of
the resulting vector, as functions of θ?

(b) In units where 8πG = 1, the Einstein equation states that Tαβ = Rαβ − 1
2gαβR. Solve

for Rαβ in terms of Tαβ and T = gαβTαβ, in general space-time dimension n > 2.

(c) Using the symmetries of the Riemann curvature tensor, show that in n = 2 dimensions,
Rαβ = 1

2gαβR. [Hint: Since this is a tensor equation, it only needs to be proved in one
particular coordinate system.] Explain the implications of this if we try to define General
Relativity in n = 2 space-time dimensions.
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39C Fluid Dynamics II

(a) A fluid has kinematic viscosity ν > 0. In flow over a stationary rigid boundary
with length scale L, the fluid velocity far from the boundary has typical magnitude U .
Define the Reynolds number. Explain why even if the Reynolds number is large the effects
of viscosity cannot be neglected and explain briefly how boundary layer theory provides a
useful approximate approach to including these effects.

(b) A steady high-Reynolds number flow is induced in a semi-infinite fluid otherwise
at rest, in the region y > 0, by the in-plane motion of an extensible sheet lying along
x > 0, y = 0. Points on the sheet move with velocity V = αx ex, where α is the prescribed
constant rate of extension and ex is the unit vector in the x-direction.

(i) What should be chosen for the typical flow speed U(x) in the boundary layer?
Give an estimate of the corresponding x-dependent Reynolds number and
deduce that, for x sufficiently large, the flow is described by the boundary
layer equations. Derive the fundamental boundary-layer scaling relating U(x)
and the thickness δ(x) of the boundary layer and deduce the scaling for δ(x)
as a function of x.

(ii) State the two-dimensional boundary layer equations and their boundary
conditions for this problem in terms of a streamfunction ψ(x, y).

(iii) Seek a similarity solution to the boundary layer equations using

ψ(x, y) = U(x)δ(x)f(η) ,

where η ≡ y
δ(x) . Derive the ODE and boundary conditions satisfied by f(η).

(iv) Show that the ODE satisfied by f has a solution of the form A+B exp(−Cη)
and determine the values of the constants A, B and C.

(i) Comment on the behaviour of f as η →∞. What are the implications for the
flow external to the boundary layer?
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40C Waves
Infinitesimal displacements u(x, t) in a uniform, linear isotropic elastic solid with

density ρ0 and Lamé moduli λ and µ satisfy the linearised Cauchy momentum equation:

ρ0
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∇2u.

(a) Show that the dilatation ∇ · u and the rotation ∇× u satisfy wave equations,
and find the wave-speeds cP and cS .

(b) A plane harmonic P-wave with wavevector k lying in the (x, z) plane is incident
from z < 0 at an oblique angle on the planar horizontal interface z = 0 between two elastic
solids with different densities and elastic moduli. Show in a diagram the directions of all
the reflected and transmitted waves, labelled with their polarisations, assuming that none
of these waves is evanescent. State the boundary conditions on components of u and the
stress tensor σ and explain why these are sufficient to determine the amplitudes. (You do
not need to calculate the directions or amplitudes explicitly.)

(c) Now consider a plane harmonic P-wave of unit amplitude, with k =
k(sin θ, 0, cos θ), incident from z < 0 on the interface z = 0 between two elastic (and
inviscid) liquids with modulus λ, density ρ and wave-speed cP in z < 0 and modulus λ′,
density ρ′ and wave-speed c′P in z > 0, with ρ′ 6= ρ.

(i) Under what conditions is there a propagating transmitted wave in z > 0?

(ii) Assume from here on that these conditions are met. Obtain solutions for the
reflected and transmitted waves.

(iii) Show that the amplitude of the reflected wave is

R =
λ′ sin 2θ − λ sin 2θ′

λ′ sin 2θ + λ sin 2θ′
,

where θ′ is the angle the wave vector of the transmitted wave makes with the
vertical.

(iv) Hence obtain an expression for θ in terms of the wave-speeds and densities of the
two liquids that implies no reflection (i.e. R = 0).
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41C Numerical Analysis
(a) Consider a linear recurrence relation

s∑

k=r

aku
n+1
m+k =

s∑

k=r

bku
n
m+k n > 0, m ∈ Z ,

where (ak) and (bk) are fixed coefficients.

(i) Show that if we define the Fourier transform of un = (unm)m∈Z by ûn(θ) =∑
m∈Z e

−imθunm, then the linear recurrence relation takes the form

ûn+1(θ) = H(θ)ûn(θ) ,

where H(θ) is a function that you should specify.

(ii) Show that the sequence (un)n>0 is bounded in the `2 norm, for all u0, if and
only if |H(θ)| 6 1 for all θ ∈ [−π, π].

[You may assume Parseval’s identity:

‖u‖2`2 =
∑

m∈Z
|um|2 =

1

2π

∫ π

−π
|û(θ)|2 dθ. ]

(b) Consider the following three recurrence relations:

(i) un+1
m = unm + µ(unm − unm−1)

(ii) un+1
m = 1

2µ(1 + µ)unm−1 + (1− µ2)unm − 1
2µ(1− µ)unm+1

(iii) un+1
m − 1

2(µ−α)(un+1
m−1−2un+1

m +un+1
m+1) = unm+ 1

2(µ+α)(unm−1−2unm+unm+1)

where n ∈ N is the time discretization index, m ∈ Z is the spatial discretization index,
µ > 0 is the Courant number, and, for (iii), α > 0 is a parameter. In each case give an
expression for the amplification factor H(θ), and deduce the set of values µ (and α for
(iii)) for which we have stability.
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