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SECTION I
1I Number Theory

A function f : N → C is multiplicative if f(mn) = f(m)f(n) for all m,n coprime.
Show that if f is multiplicative then so is g(n) =

∑
d|n f(d). Define the Möbius function µ

and Euler function φ. Establish the identities

φ(n)

n
=
∑

d|n

µ(d)

d
and

n

φ(n)
=
∑

d|n

µ(d)2

φ(d)
.

2G Topics in Analysis
Show that if a, A, B, C, D are non-negative integers and AD −BC = 1, then

a+
At+B

Ct+D
=
αt+ β

γt+ δ

for some α, β, γ, δ non-negative integers with αδ − βγ = 1.

If N, a1, a2, . . . are strictly positive integers with aN+k = ak for all k and

x =
1

a1 +
1

a2 +
1

a3 +
1

a4 + . . .

show that x is a root of a quadratic (or linear) equation with integer coefficients.

Give the quadratic equation explicitly in the case when N = 2, a1 = a, a2 = b.
Explain how you know which root gives the continued fraction.

3K Coding and Cryptography
(a) State Kraft’s inequality.

Show that Kraft’s inequality gives a necessary condition for the existence of a prefix-
free code with given codeword lengths.

(b) A comma code is one where a special letter—the comma—occurs at the end of
each codeword and nowhere else. Show that a comma code is prefix-free and give a direct
argument to show that comma codes must satisfy Kraft’s inequality.

Give an example of a non-decipherable code satisfying Kraft’s inequality.
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4I Automata and Formal Languages
What are the nth register machine Pn and the nth recursively enumerable set Wn?

Given subsets A,B ⊆ N, define a many–one reduction A 6m B of A to B.

State Rice’s theorem.

Is there a total algorithm that, on input n in register 1 andm in register 2, terminates
with 0 if Wm = Wn and 1 if Wm 6= Wn? Is there a partial algorithm that, with the same
inputs as above, terminates with 0 if Wm = Wn and never halts if Wm 6= Wn? Justify
your answers.

[You may assume without proof that the halting set K is not recursive.]

5J Statistical Modelling
Let Yµ be the Poisson distribution with mean µ. Show that the transformation

g(y) = 2
√
y is “variance stabilising” for Yµ in the sense that the variance of g(Yµ) is

approximately 1 when µ is large.

Suppose we fit a linear model to the transformed response
√
Y . How does this differ

from using the square root link in the Poisson regression?

6C Mathematical Biology
Consider the discrete delay equation

xn+1 = xn exp [r (1− xn−1)] ,

with r > 0 a constant.

(a) Find the positive fixed point x∗ of the model. Setting xn = x∗ + un, with
|un| � 1, determine the linearised stability equation for un.

(b) Find the range of r for which the fixed point x∗ is stable and for which
perturbations decay monotonically in time.

(c) Find the range of r for which the decay of perturbations to x∗ is oscillatory.

(d) Find the critical value r∗ for x∗ to become unstable, and show that at that value
of r the system exhibits oscillations of period p > 1. Find p.
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7E Further Complex Methods
Show that

P
∫ ∞

−∞

sz−1

s− t ds = πitz−1,

where t is real and positive, 0 < Re(z) < 1 and the branch of sz is chosen so that, for
z real, sz is real and positive for s real and positive and sz = (−s)zeiπz for s real and
negative.

Deduce that for z real with 0 < z < 1

∫ ∞

0

sz−1

s+ t
ds = πtz−1cosecπz

and

P
∫ ∞

0

sz−1

s− t ds = −πt
z−1 cotπz.

Why do these results actually hold for a large set of non-real z?

8B Classical Dynamics
(a) Show that the canonical transformation (q,p) 7→ (Q,P) associated with a

generating function F2(q,P) of type 2 satisfies

p =
∂F2

∂q
, Q =

∂F2

∂P
.

(b) A physical system with two degrees of freedom is described by the Hamiltonian

H(q,p) = H0(p1, p2) +H1(p1, p2) cos θ ,

where
θ = n1q1 + n2q2

and n1 and n2 are non-zero integers.

Show that a certain linear combination of p1 and p2 is conserved, and that there is a
(linear) canonical transformation (q,p) 7→ (Q,P) such that Q1 = θ and the transformed
Hamiltonian does not depend on Q2.

Explain why the system is integrable.

Part II, Paper 1



5

9A Cosmology
Consider the process where protons and electrons combine to form neutral hydrogen

atoms at temperature T . Let nH be the number density of hydrogen atoms, ne the number
density of electrons, me the mass of the electron and Ebind the binding energy of hydrogen.
Derive Saha’s equation which relates the ratio nH/n

2
e to me, Ebind and T . Clearly describe

the steps required.

[You may use without proof that at temperature T and chemical potential µ, the
number density n of a non-relativistic particle species with mass m� kBT/c

2 is given by

n = g

(
mkBT

2π~2

)3/2

exp

[
−(mc2 − µ)

kB T

]
,

where g is the number of degrees of freedom of this particle species and kB, ~ and c are
the Boltzmann, Planck and speed of light constants, respectively.]

10D Quantum Information and Computation
Alice and Bob are separated in space and possess local quantum systems A and B

respectively.

(a) State the no-signalling theorem for quantum states of the composite system AB.

(b) State and prove the no-cloning theorem (for unitary processes) for a set S of
quantum states.

(c) Now let S = {| 0〉 , | 1〉 , |+〉 , | −〉} where | ±〉 = 1√
2
(| 0〉 ± | 1〉). Starting with a

suitable state for a 2-qubit composite system AB, show how the no-cloning theorem for
the set S can be seen as a consequence of the no-signalling theorem for AB.
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SECTION II
11K Coding and Cryptography

(a) Let n be an odd integer. What does it mean to say that a code is a cyclic code
of length n with a defining set? Define a BCH code with design distance δ. Show that
a BCH code with design distance δ has minimum distance at least δ. [Properties of the
Vandermonde determinant may be assumed.]

(b) Let α ∈ F16 be a root of X4 +X + 1. Let C be the BCH code of length 15 and
design distance 5, with defining set the first few powers of α.

(i) Find the minimal polynomial for each element of the defining set, and hence find
the generator polynomial of C.

(ii) Define the error locator polynomial σ(X) ∈ F16[X] for any received word r(X).
[Properties of σ(X) may be stated without proof.]

(iii) Suppose you receive the word r(X) = 1 + X + X7. Find the error locator
polynomial. Hence, either determine the error position or positions of r(X), or
explain why this is not possible.

Part II, Paper 1
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12I Automata and Formal Languages
Give the definition of a primitive recursive function f : Nk → N.

Show directly from the definition that, when k = 2, the functions

P (m,n) = m+ n and T (m,n) = mn

are both primitive recursive.

Show further that for k > 2 the function

Tk(n1, . . . , nk) = n1 · · ·nk

is primitive recursive, as is Ea : N → N given by Ea(n) = an, where a > 1 is a fixed
integer.

Suppose F : Nk → Nk, where F = (f0, . . . , fk−1) with each coordinate function
fi primitive recursive. Describe how F can be encoded as a primitive recursive function
F : N→ N.

Let the Fibonacci function B : N → N be defined by B(0) = 0, B(1) = 1 and
B(n+ 2) = B(n+ 1) +B(n) for n > 0. Is B primitive recursive? Justify your answer.

If f : N → N is a primitive recursive function, must there exist some R > 0 such
that f(n) 6 Rn for all n > 1? Justify your answer.

[You may use without proof that for fixed j > 2 the maxpower function Mj is
primitive recursive, where Mj(n) is the exponent of the highest power of j that divides
n. If you use any other results from the course, you should prove them.]
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13J Statistical Modelling
The following dataset contains information about some of the passengers on RMS

Titanic when it sank on 15th April, 1912.

> head(titanic)

Survived Pclass Sex Age SibSp Parch Fare Cabin Embarked

1 0 3 male 22 1 0 7.2500 <NA> S

2 1 1 female 38 1 0 71.2833 C85 C

3 1 3 female 26 0 0 7.9250 <NA> S

4 1 1 female 35 1 0 53.1000 C123 S

5 0 3 male 35 0 0 8.0500 <NA> S

6 0 3 male NA 0 0 8.4583 <NA> Q

> nrow(titanic)

[1] 889

We would like to predict which passengers were more likely to survive (Survived,
0 = No, 1 = Yes) using the other covariates, including ticket class (Pclass, 1 = 1st, 2 =
2nd, 3 = 3rd), sex (Sex), age (Age), number of siblings/spouses aboard (SibSp), number
of parents/children aboard (Parch), passenger fare (Fare), cabin number (Cabin), port of
embarkation (Embarked, C = Cherbourg, Q = Queenstown, S = Southampton).

(a) Describe what the following chunk of R code does.

> apply(titanic, 2, function(x) sum(is.na(x)))

Survived Pclass Sex Age SibSp Parch Fare Cabin

0 0 0 177 0 0 0 687

Embarked

0

> titanic$Cabin <- NULL

> titanic$Age[is.na(titanic$Age)] <- mean(titanic$Age, na.rm = TRUE)

(b) Write down the generalised linear model fitted (including the likelihood function
maximised) by the code below. Define Akaike’s information criterion (AIC) and explain,
in words, how you can use the backward stepwise algorithm and AIC to select a model.

> summary(fit <- glm(Survived ~ ., family = binomial, data = titanic))

Deviance Residuals:

Min 1Q Median 3Q Max

-2.6445 -0.5907 -0.4227 0.6214 2.4432

[QUESTION CONTINUES ON THE NEXT PAGE]
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.284055 0.564696 9.357 < 2e-16 ***

Pclass -1.100033 0.143530 -7.664 1.80e-14 ***

Sexmale -2.718736 0.200779 -13.541 < 2e-16 ***

Age -0.039885 0.007855 -5.078 3.82e-07 ***

SibSp -0.325732 0.109368 -2.978 0.0029 **

Parch -0.092470 0.118702 -0.779 0.4360

Fare 0.001919 0.002376 0.808 0.4192

EmbarkedQ -0.035043 0.381920 -0.092 0.9269

EmbarkedS -0.418564 0.236788 -1.768 0.0771 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1182.82 on 888 degrees of freedom

Residual deviance: 784.21 on 880 degrees of freedom

AIC: 802.21

Number of Fisher Scoring iterations: 5

(c) The model summary above says “Dispersion parameter for binomial family taken
to be 1”. Do you think that is reasonable based on the model summary? Justify your
answer. You might find the following information useful.

> qnorm(0.25) # 25th-percentile of the standard normal distribution

[1] -0.6744898

(d) Give an estimator of the dispersion parameter in this model when it is not fixed
at 1.
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14E Further Complex Methods
The polylogarithm function Lis(z) is defined for complex values of z (|z| < 1) and s

(all complex s) by

Lis(z) =
∞∑

n=1

zn

ns
.

(a) Briefly justify why the conditions given on z and s given above are appropriate.

Consider the integral

I(z, s) =
Γ(1− s)

2πi

∫ (0+)

−∞

zts−1

e−t − z dt , (1)

where the integral is taken along a Hankel contour, as indicated by the limits.

(b) Show that I(z, s) provides an analytic continuation of Lis(z) for all z /∈ (1,∞).
[Hint: You may assume where needed the Hankel representation of the Gamma function,

Γ(z) = (2i sinπz)−1
∫ (0+)
−∞ ettz−1 dt, and the result Γ(z)Γ(1− z) = πcosec(πz).]

Include in your answer a sketch of the Hankel contour, with particular attention to
the path of the contour relative to any singularities in the integrand when z is close to,
but not on the part (1,∞) of the real axis.

(c) Describe how to evaluate I(z, s) when s is a non-positive integer. Hence give
explicit expressions for Lis(z) for s = 0, s = −1 and s = −2.

(d) For s > 0 show that I(z, s) can be expressed in the form

I(z, s) =

∫ ∞

0
K(z, s, t) dt,

where t is a real variable and K(z, s, t) is to be determined. Comment on the required
interpretation of the expression (1) when s is a positive integer.

Without detailed calculation, explain (for s > 0) why I(z, s) jumps by the value
2πi(log x)s−1/Γ(s) when z moves from just below (1,∞) to just above (1,∞) at the point
x (x > 1).
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15A Cosmology
The continuity, Euler and Poisson equations governing how a non-relativistic fluid

composed of particles with mass m, number density n, pressure P and velocity v propagate
in an expanding universe take the form

∂ρ

∂t
+ 3Hρ+

1

a
∇ · (ρv) = 0 ,

ρa

(
∂

∂t
+

v

a
·∇
)
u = −c2∇P − ρ∇Φ ,

∇2Φ =
4πG

c2
ρ a2 ,

where ρ = mc2n, u = v + aH x, H = ȧ/a, Φ is the gravitational potential and a(t) is the
scale factor.

Consider small perturbations about a homogeneous and isotropic flow,

n = n̄(t) + ε δn , v = ε δv , P = P̄ (t) + ε δP and Φ = Φ̄(t,x) + ε δΦ ,

with ε� 1.

(a) Show that, to first order in ε, the continuity equation can be written as

δ̇ +
1

a
∇ · δv = 0 , (†)

where δ = δn/n̄ is the density contrast.

(b) Show that, to first order in ε, the Euler equation can be written as

mn̄a ( ˙δv +H δv) = −∇δP −mn̄∇δΦ . (††)

(c) Now assume that δP = c2smδn. Using (†), (††) and the perturbed Poisson
equation, show that the density contrast δ obeys

δ̈ + 2H δ̇ − c2s
(

1

a2
∇2 + k2J

)
δ = 0 (?)

and express kJ as a function of n̄, m and c2s.

(d) Neglecting the bracketed terms in equation (?), solve it to find the form of the
growth of matter perturbations in a radiation-dominated universe.
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16F Logic and Set Theory
State and prove the Knaster–Tarski fixed-point theorem.

A subset S of a poset X is called a down-set if whenever x, y ∈ X satisfy x ∈ S and
y 6 x then also y ∈ S. Show that the set P of down-sets of X, ordered by inclusion, is a
complete poset.

Now let X and Y be totally ordered sets.

(i) Give an example to show that we may have X isomorphic to a down-set in Y ,
and Y isomorphic to a down-set in X, and yet X is not isomorphic to Y . [Hint: Consider
suitable subsets of the reals.]

(ii) Show that if X is isomorphic to a down-set in Y , and Y is isomorphic to the
complement of a down-set in X, then X is isomorphic to Y .

17F Graph Theory
(a) Define a proper k-colouring of a graph G. Define the chromatic number χ(G)

of a graph G. Prove that χ(G) 6 ∆(G) + 1 for all graphs G. Do there exist graphs G for
which χ(G) = ∆(G) + 1 for each ∆(G) = 0, 1, 2, . . .?

(b) What does it mean for a graph to be k-connected? If G is a non-complete
3-connected graph, show that χ(G) 6 ∆(G).

(c) State Euler’s formula. If G is a triangle-free planar graph, prove that χ(G) 6 4.

(d) Define the edge-chromatic number χ′(G) of a graph G. State Hall’s theorem. If
G is a 4-regular bipartite graph, determine χ′(G).

18H Galois Theory
(a) Let K be a field with charK 6= 2, 3. If f = x3 + px + q ∈ K[x], define the

discriminant of f , and compute it in terms of p and q.

Let L be the splitting field of f and let G = Aut(L/K) be the Galois group. Describe
all possibilities for G. Justify your answer. [Do not assume that f is irreducible.]

Compute all subfields of L when f = x3 + 3x + 1 ∈ Q[x]. You may specify the
subfields in terms of the roots; you do not need to determine the roots explicitly in terms
of radicals.

(b) Let L/K be a Galois extension, and suppose f ∈ L[x]. Show that there exists a
non-zero polynomial g ∈ L[x] such that fg ∈ K[x].

Now suppose only that L/K is a finite separable extension, and that f ∈ L[x]. Show
that there exists a non-zero polynomial g ∈ L[x] such that fg ∈ K[x].
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19H Representation Theory
Let G be a finite group.

State Maschke’s theorem for complex representations of G. Deduce that every
representation of G is isomorphic to a direct sum of irreducible representations.

Define the character χV of a complex representation V of G. Suppose that G acts
on a finite set X. What is the permutation representation CX? Describe its character
χCX .

Show that if V1, . . . , Vr are all the irreducible representations of G up to isomorphism
then the regular representation decomposes as

CG ∼=
r⊕

i=1

(dimVi)Vi.

If V is a complex representation of G, let HomG(V, V ) be the space of G-linear maps
from V to V . If

V ∼=
r⊕

i=1

niVi,

what is the dimension of HomG(V, V )? What is the dimension when V = CG?

Now suppose V is a complex representation of G with character χ such that χ(g) = 0
for all non-identity elements g ∈ G. Show that V is a direct sum of copies of the regular
representation CG.

Deduce that if W is any complex representation of G then

W ⊗ CG ∼=
dimW⊕

i=1

CG.

[You may assume that the irreducible complex characters of a finite group form an
orthonormal basis of the space of class functions.]
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20H Number Fields
(a) Let K be a number field of degree n. Show that there are exactly n field

embeddings σ1, . . . , σn : K ↪→ C. [You may assume that K = Q(α) for some α ∈ K.]

Define the discriminant dK of K. Show that the sign of dK is (−1)s, where s is the
number of pairs of complex conjugate embeddings (σi, σ̄i 6= σi). [You may assume that
dK is nonzero.]

(b) If L = Q(θ), where θ3 + 2θ2 + 1 = 0, show that OL = Z[θ].

(c) Let K be as in part (a). Suppose that α ∈ K and that |σj(α)| = 1 for some j.

(i) Prove that
∣∣NK/Q(α)

∣∣ = 1.

(ii) Deduce that if α ∈ OK , then α is a unit.

(iii) Give an example of a number field K and an element α ∈ K r OK for
which |σ1(α)| = · · · = |σn(α)| = 1.

21I Algebraic Topology
Suppose f, g : C∗ → C ′∗ are chain maps. Define what it means for f and g to be

chain homotopic. Show that if f and g are chain homotopic then f∗ = g∗.

Let C∗ = C̃∗(∆n) be the reduced chain complex of the n-dimensional simplex. Show
that idC∗ is chain homotopic to 0C∗ . Hence compute H∗(∆n).

Now let K = ∆6
2 be the 2-skeleton of ∆6. Compute H∗(K). Let f : K → K be the

simplicial map given by f(ei) = eσ(i), where σ is the permutation given in cycle notation
by (0123)(456). Compute the trace of the linear map f∗ : H2(K;Q) → H2(K;Q).

22G Linear Analysis
Let `∞ denote the space of bounded real sequences and let `1 denote the space of

summable real sequences. Suppose that ϕ : `∞ → R is linear and continuous, that ϕ
is non-negative on non-negative sequences, that ϕ((xn)n>1) = ϕ((xn+1)n>1), and that ϕ
maps the constant sequence equal to one to one.

(a) Prove that lim infn→∞ xn 6 ϕ((xn)n>1) 6 lim supn→∞ xn for all (xn)n>1 ∈ `∞.

(b) Is there (yn)n>1 ∈ `1 so that ϕ((xn)n>1) =
∑

n>1 xnyn for all (xn)n>1 ∈ `∞?

(c) Give an example of (xn)n>1 ∈ `∞ that does not converge but for which all ϕ
defined as above give the same value.

(d) Let y ∈ R. Assume (xn)n>1 ∈ `∞ satisfies
xn+1 + xn+2 + · · ·+ xn+p

p
→ y as

p→∞ uniformly in n > 1. Prove that ϕ((xn)n>1) = y.
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23G Analysis of Functions
In this question,M is the σ-algebra of Lebesgue measurable sets and λ is Lebesgue

measure on Rn.

State Lebesgue’s differentiation theorem and the Radon–Nikodym theorem. For a
set A ∈M, and a measure µ defined on M, let the µ-density of A at x ∈ Rn be

ρµ,A(x) = lim
r↘0

µ(A ∩Br(x))

µ(Br(x))
,

whenever the limit exists, where Br(x) = {y ∈ Rn : |x− y| < r} is the open ball of radius
r centred at x.

For each t ∈ [0, 1], give an example of a set B ⊂ R2 and point z ∈ R2 for which
ρλ,B(z) exists and is equal to t.

Show that for λ-almost every x ∈ Rn, ρλ,A(x) exists and takes the value 0 or 1.
Show that ρλ,A vanishes λ-almost everywhere if and only if A has Lebesgue measure zero.

Let ν be a measure on M such that ν � λ and λ � ν. Show that ρν,A(x) exists
and takes the value 0 or 1 at λ-almost every x ∈ Rn.

24F Riemann Surfaces
(a) State the Uniformisation theorem, and deduce the Riemann mapping theorem.

(b) Let
E = {x+ iy | x, y ∈ R , −π < x < π}

be an infinite vertical strip in C, and let U ⊆ C consist of C with the negative real axis
(and zero) removed. A Mercator projection is a conformal equivalence f : U → E such
that Im f(z)→ −∞ as z → 0 and Im f(z)→ +∞ as z →∞. Exhibit an explicit Mercator
projection.

(c) Consider a conformal equivalence φ : E → E such that Imφ(z) → +∞ as
Im z → +∞ and Imφ(z) → −∞ as Im z → −∞. Prove that φ is translation by an
imaginary number, stating carefully any results that you use.

(d) Characterise all Mercator projections.
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25H Algebraic Geometry
Define the local ring at a point p of an irreducible algebraic variety V . Define the

Zariski tangent space to V at p.

Let V ⊂ A2 × P1 be defined by the equation

XZ −WY = 0 ,

where X and Y are the coordinates on A2 and W and Z are the homogeneous coordinates
on P1. Determine whether V is smooth.

Consider the projection morphism

π : V → A2

obtained by restricting the projection from A2 × P1 onto the first factor. Prove that π is
birational but not an isomorphism. Use this to calculate the function field of V .

Let V ′ be an affine variety and ϕ : V → V ′ a morphism. Prove that ϕ is not
injective. Deduce that V is not affine.

Assume the ground field is C. Prove that if V is equipped with the Euclidean
topology, then it is not homeomorphic to any projective variety.

26I Differential Geometry
Let S ⊂ R3 be an oriented surface. Define its Gauss map N . For each p ∈ S, show

that the derivative of N defines a self-adjoint operator on TpS, and define the principal
curvatures of S at a point p. What does it mean for p to be an umbilical point? What
does it mean for S to be a minimal surface?

(a) We say that a smooth map f : S → R between two surfaces in R3 is conformal
if

〈Dfp(u), Dfp(v)〉 = λ(p)〈u, v〉
for all p ∈ S and u, v ∈ TpS, where λ(p) > 0.

Show that, if S does not have any umbilical points, then S is a minimal surface if
and only if its Gauss map is conformal.

(b) Now drop the assumption about umbilical points. If S is a minimal surface,
must its Gauss map be conformal? If the Gauss map is conformal, must S be a minimal
surface? Justify your answers.

(c) Suppose S is a connected minimal surface. Can the image of its Gauss map be
a great circle in S2?
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27G Probability and Measure
(a) State and prove Kolmogorov’s zero-one law.

(b) Consider the product space E = RN equipped with the σ-algebra σ(C) generated
by the cylinder sets

C =
{
A = ×∞

n=1An |An ⊆ R, An Borel for n 6 N,An = R for n > N, some N ∈ N
}
.

For m a probability measure on R, show that there exists a unique product measure µ on
(E, σ(C)) for which µ(A) =

∏∞
n=1m(An) for all A ∈ C. Show further that the shift map θ

defined on E by θ((x1, x2, . . . )) = (x2, x3, . . . ) is measure-preserving and ergodic for µ.

[You may use without proof the existence of an infinite sequence of i.i.d. real random
variables defined on any probability space.]

28J Applied Probability
(a) Define what it means for a matrix Q to be a Q-matrix on a finite or countably

infinite state space S.

Suppose S is a finite state space. Express the generator Q of a continuous-time
Markov chain X = (Xt) on S in terms of its transition semigroup (P (t))t>0, and conversely
express the semigroup in terms of the generator. You do not need to prove the expressions
you give.

Write down the forward and backward Kolmogorov equations for a chain X as above.

(b) Let X = (Xt) be a continuous-time Markov chain on the state space S = {1, 2},
with generator

Q =

(
−µ µ
λ −λ

)
,

where λµ > 0.

(i) Compute the transition probabilities pij(t), i, j ∈ S, t > 0.

(ii) Find Qn for n > 1, and compute
∑∞

n=0
tn

n!Q
n for t > 0. Compare the result

with your answer in part (i).

(iii) Solve the equation πQ = 0 for a probability distribution π and identify the
invariant distribution of X. Use your result in part (i) to verify that, indeed,
the semigroup converges to the invariant distribution as t→∞.

(iv) Compute the probability P(X(t) = 2|X(0) = 1, X(3t) = 1).
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29K Principles of Statistics
(a) Suppose that Θ is an open subset of Rp, that Φ : Θ → R is continuously

differentiable at some θ0 ∈ Θ, and that {θ̂n}n>1 is a sequence of random vectors in Rp

satisfying
√
n(θ̂n − θ0) d→ Z, where Z ∈ Rp. Prove that

√
n(Φ(θ̂n)− Φ(θ0))

d→ ∇θΦ(θ0)
TZ .

For the remainder of this problem, consider the N(0, σ2) model, where σ ∈ (0,∞).

(b) Derive the maximum likelihood estimator σ̂MLE of σ based on an i.i.d. sample
of size n from the model. What is the asymptotic distribution of

√
n(σ̂MLE − σ)? [Hint:

You may use, without proof, the fact that E[Z4] = 3 when Z ∼ N(0, 1).]

(c) What is the Fisher information I(σ) (for the sample size n = 1)?

(d) Now consider the alternative parametrization of the model in terms of ρ = σ2,
where ρ ∈ (0,∞). What is the maximum likelihood estimator ρ̂MLE of ρ?

30K Stochastic Financial Models
Fix a positive integer N and consider the problem of minimising

E

(
X2

N +
N∑

n=1

u2n

)
,

where X0 is given and
Xn = Xn−1 + un + ξn

for 1 6 n 6 N . Here (ξn)16n6N is an IID sequence of random variables with E(ξ1) = 0 and
Var(ξ1) = σ2, and the controls (un)16n6N are previsible with respect to the filtration generated by
(ξn)16n6N .

(a) Write down the Bellman equation for this problem.

(b) Show that the value function can be expressed as

V (n, x) = An +Bnx+ Cnx
2

for constants (An, Bn, Cn)06n6N to be found.

(c) Show that the optimal control is

u∗n = − X0

N + 1
− ξ1
N

− ξ2
N − 1

− · · · − ξn−1

N − n+ 2

for 1 6 n 6 N .
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31J Mathematics of Machine Learning
(a) Let F be a family of functions f : X → {0, 1} with |F| > 2.

Define the shattering coefficient s(F , n) and the VC dimension VC(F) of F .

State the Sauer–Shelah lemma.

(b) (i) Let

A1 =

{ m⋃

k=1

[ak, bk] : ak, bk ∈ R for k = 1, . . . ,m

}
.

Show that F1 := {1A : A ∈ A1} satisfies VC(F1) = 2m.

(ii) Let F2 be a class of functions from Rp to {0, 1} given by

F2 := {x 7→ 1(0,∞)(µ+ xTβ) : β ∈ Rp, µ ∈ R} .

Stating any result from the course you need, give an upper bound on
VC(F2).

(c) (i) Let G be a family of functions g : Z → {0, 1} with |G| > 2 and define H to
be the set of functions h : X ×Z → {0, 1} for which h(x, z) = f(x)g(z) for
some f ∈ F and g ∈ G. Show that s(H, n) 6 s(F , n)s(G, n).

(ii) Now let G be a family of functions g : X → {0, 1} with |G| > 2 and define
H to be the set of functions h : X → {0, 1} for which h(x) = f(x)g(x) for
some f ∈ F and g ∈ G. Show that s(H, n) 6 s(F , n)s(G, n).

(d) (i) Let

A3 =

{ p∏

j=1

( m⋃

k=1

[ajk, bjk]
)

: ajk, bjk ∈ R for j = 1, . . . , p, k = 1, . . . ,m

}
.

Show that F3 := {1A : A ∈ A3} satisfies s(F3, n) 6 (n+ 1)2mp.

(ii) For m > 3, let A4 be the set of all convex polygons in R2 with m sides,
and set F4 := {1A : A ∈ A4}. Show that s(F4, n) 6 (n+ 1)3m.
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32B Dynamical Systems
(a) Consider a dynamical system of the form

ẋ = f(x, y) ,

ẏ = g(x, y) + εp(x, y) ,

which is Hamiltonian for ε = 0. Explain the energy balance method. What does it tell us
about periodic orbits of this system for small ε?

(b) (i) For 0 < ε � 1, use the energy balance method to seek leading-order
approximations to periodic orbits of this system

ẋ = y ,

ẏ = −4x+ ε
[
(1− 2x2)ky − (1− 3x2)y3

]
,

where k > 0.

[Hint:
∫ 2π
0 sin4 θdθ = 3

4π and
∫ 2π
0 sin6 θdθ = 5

8π.]

(ii) For the cases 0 < k < 6 and for k > 6, deduce the stability of any periodic
orbits.

(iii) What can we deduce from this approach about the existence of periodic orbits
near k = 6?
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33E Integrable Systems
(a) Show that if L is a symmetric n×n matrix (L = LT ) and B is a skew-symmetric

n × n matrix (B = −BT ) then [B,L] = BL − LB is symmetric. If L evolves in time
according to

dL

dt
= [B,L] ,

show that the eigenvalues of L are constant in time.

Write the harmonic oscillator equation q̈ + ω2q = 0 in Hamiltonian form. (The
frequency ω is a fixed real number). Starting with the symmetric matrix

L =

(
p ωq
ωq −p

)

find a Lax pair formulation for the harmonic oscillator and use this formulation to obtain
the conservation of energy for the oscillator.

(b) Consider the Airy partial differential equation, given for −∞ < x < ∞ and
t > 0 by

qt + qxxx = 0. (1)

Show that this is a compatibility condition for the pair of linear equations

ψx − ikψ = q (2)

ψt − ik3ψ = −qxx − ikqx + k2q (3)

for a function ψ = ψ(x, t, k) ∈ C. Show that for each t, equation (2) has a solution ψ+

which is defined for Im k > 0, analytic in k for Im k > 0, and satisfies

lim
x→+∞

e−ikxψ+(x, t, k) = q̂(k, t) =

∫ +∞

−∞
e−ikxq(x, t)dx .

Deduce from this and equation (3) that q̂(k, t) evolves in time according to

q̂t − ik3q̂ = 0

and hence obtain a representation for the solution of the Airy equation (1).

[You may assume that q is a smooth function whose derivatives are rapidly decreasing
in x.]
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34A Principles of Quantum Mechanics
Let A and A† respectively be the lowering and raising operator for a one-dimensional

quantum harmonic oscillator, with [A,A†] = 1. Also let |n〉 be the nth excited state of the
oscillator, obeying N |n〉 = n|n〉 where N = A†A is the number operator.

(a) Show that A|n〉 ∝ |n− 1〉 and find the constant of proportionality.

(b) For any z ∈ C, define the coherent state |z〉 by

|z〉 = e−|z|
2/2

∞∑

n=0

zn√
n!
|n〉 .

Show that 〈z|z〉 = 1 and that A|z〉 = z|z〉.
(c) Calculate the expectation value 〈N〉 and uncertainty ∆N of the number operator

in the state |z〉. Show that the relative uncertainty ∆N/〈N〉 → 0 as 〈N〉 → ∞.

(d) A harmonic oscillator is prepared to be in state |z〉 at time t = 0. Using the
properties of the Hamiltonian of the one-dimensional harmonic oscillator, show that the
state evolved to time t > 0 is still an eigenstate of A and find its eigenvalue. Calculate the
probability that the oscillator is found to be in the original state |z〉 at time t, and show
that this probability is 1 whenever t = kT , where k ∈ N and T is the classical period of
the oscillator.

35D Applications of Quantum Mechanics
A particle of mass m and energy E = ~2k2/2m, moving in one dimension, is incident

on a localised potential barrier.

(a) Define reflection and transmission coefficients, r and t, for a right-moving particle
incident from x = −∞. Define corresponding coefficients r′ and t′ for a left-moving particle
incident from x = +∞. Prove that the S-matrix

S =

(
t′ r
r′ t

)

is unitary. [You may use without proof the conservation of the probability current.]

(b) Explain what is meant by the parity of a wavefunction. Under what circum-
stances do energy eigenstates of the system described above have definite parity?

(c) Consider the potential barrier

V (x) =

{
V0 for |x| < a/2

0 for |x| > a/2,

where V0 > 0. Find an even parity wavefunction satisfying the Schrödinger equation for a
particle of energy E = ~2k2/2m with E < V0. Hence compute r + t.
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36A Statistical Physics
(a) What systems are described by a grand canonical ensemble? If there are Nn

particles in microstate n each with energy En, write down an expression for the grand
canonical partition function Z in terms of the temperature T , the chemical potential µ
and the Boltzmann constant kB.

(b) Define the grand canonical potential Φ in terms of the average energy E, T , the
entropy S, µ, and the average number of particles 〈N〉. Write down the relation between
Φ and Z.

(c) Using scaling arguments, express Φ(T, V, µ) in terms of the pressure p and the
volume V .

(d) Consider the grand canonical ensemble for a classical ideal gas of non-relativistic
particles of mass m in a fixed 3-dimensional volume V .

(i) Compute Z and Φ.

(ii) Calculate 〈N〉 and ∆N/〈N〉, where (∆N)2 = 〈N2〉 − 〈N〉2. Comment on
the latter result.

(iii) Derive the equation of state for the gas.

[You may assume that

∫ ∞

−∞
e−a x

2
dx =

√
π/a for a > 0. ]

(e) Using the grand canonical ensemble and your results from part (d), derive
the equation of state for a classical ideal gas of relativistic particles with energies√
|p|2 c2 +m2c4. Compute ∆N/〈N〉.
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37B Electrodynamics
Consider a localised electromagnetic field in vacuum with electric and magnetic

fields E and B respectively in the absence of charges and currents.

(a) Show that the energy density ε = ε0
2 E

2 + 1
2µ0

B2 obeys a local conservation law

∂tε+ ∇ ·N = 0 .

Hence obtain an expression for the vector N and remark on its physical significance.
Here ε0 and µ0 are the electric and magnetic permeabilities of the vacuum.

(b) Show that the momentum density g = ε0E×B obeys a local conservation law

∂tgj +∇iσij = 0 .

Hence obtain an expression for the second-rank tensor σij and remark on its physical
significance.

(c) Defining the tensor

Tµν =

[
ε cgj

Ni/c σij

]

show that the results of (a) and (b) can be expressed as ∂µT
µν = 0.

(d) Using the fact that the tensor σij is symmetric, show that the integral over all
space of the angular momentum density L = x× g is independent of time. Here x is the
position with respect to the origin of an inertial frame.

(e) Show that the symmetry of σij in all inertial frames requires µ0ε0 = 1/c2.
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38D General Relativity
A Milne universe is an isotropic, homogeneous model of cosmology which has

negative spatial curvature, k = −1, and an expanding scale factor, ȧ(t) > 0, even though
there is no matter or radiation (Tαβ = 0) and no cosmological constant (Λ = 0).

(a) Write down the FLRW metric for this cosmological model. Calculate the scale
factor a(t) as an explicit function of the proper time t of a stationary observer.

(b) Verify that the singularity as a → 0 is a coordinate singularity by calculating
the Kretschmann scalar. [Hint: You may find it useful to relate the Riemann tensor to
the Ricci tensor.]

(c) By constructing an appropriate coordinate transformation, show that the Milne
universe is equivalent to the interior of the future light-cone of a point p in Minkowski
space-time. What do the spatial isometries of the hyperbolic t = const. slices correspond
to in this Minkowski space-time?

[Hint: You may wish to use the following formulae:

3
ȧ+ k

a2
− Λ = 8πρ , (Friedmann I)

2aä+ ȧ2 + ka2 − Λ = −8πP . (Friedmann II)

Riemann tensor in normal coordinates:

Rαβµν =
1

2
(∂β∂µgαν + ∂α∂νgβµ − ∂α∂µgβν − ∂β∂νgαµ). ]
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39C Fluid Dynamics II

A viscous fluid of viscosity µ and density ρ is located in the annulus confined between
two long co-axial cylinders of radii R and αR with α < 1. The ends of the annular space are
open to the atmosphere. The axes of the cylinders are aligned in the vertical direction. We
use cylindrical coordinates (r, θ, z) with unit vector ez in the downward vertical direction.
There is a gravitational force g per unit mass acting on the fluid in the downward direction.
In the following you may consider the flow in the long central region of the annulus, far
from the ends, and neglect any details of the flow near the ends.

The outer cylinder is fixed and stationary. The inner cylinder steadily translates
along its axis with velocity V ez. The fluid flow between the two cylinders may be assumed
to be steady and unidirectional.

(a) Explain why we expect the velocity u to be of the form u = u(r)ez.

(b) Derive the equation satisfied by u(r) and state the corresponding boundary
conditions.

(c) Show that the pressure gradient in the z-direction is constant and compute its
value.

(d) Solve for the flow u(r) in the annular gap and sketch it for V = 0, and for two
further values of V , one positive and one negative.

(e) Calculate the force per unit length acting on the inner cylinder and the
corresponding force per unit length acting on the outer cylinder. Comment on the sum of
these forces.

[Hint: in cylindrical coordinates (r, θ, z) with velocity components (ur, uθ, uz) we
have

∇2uz =
1

r

∂

∂r

(
r
∂uz
∂r

)
+

1

r2
∂2uz
∂θ2

+
∂2uz
∂z2

.

The rz-component of the rate-of-strain tensor is erz =
1

2

(
∂ur
∂z

+
∂uz
∂r

)
. ]
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40C Waves
(a) Starting from the equations for mass and momentum conservation and a suitable

equation of state, derive the linearised wave equation for perturbation pressure p̃(x, t) for
3-dimensional sound waves in a compressible gas with sound speed c0 and density ρ0.

(b) For a 1-dimensional wave of given frequency ω propagating in the x-direction,
the perturbation pressure p̃(x, t) may be written in the form <(p̂(x)eiωt). What is the form
of p̂ for a harmonic plane wave of frequency ω propagating in the positive x-direction?
Express the perturbation fluid speed ũ(x, t) in terms of p̃(x, t).

(c) The gas occupies the region x < L, with a rigid boundary at x = L. A thin
flexible membrane of mass m per unit area is located within the gas at equilibrium position
x = 0. A plane wave of unit amplitude of the form specified in part (b) is incident
from x = −∞. The combined effects of the membrane and the rigid boundary result in
a reflected wave of complex amplitude R, where R is the ratio between the individual
complex amplitudes at x = 0− of the reflected and incident waves.

(i) Show that

R =
cosβ + (α− i) sinβ

cosβ + (α+ i) sinβ
where α =

ωm

ρ0c0
and β =

ωL

c0
.

Deduce that |R| = 1 in general and briefly discuss this result physically.

(ii) Identify a condition on β so that the membrane is stationary and there is non-
trivial pressure perturbation in 0 < x < L. Briefly discuss this result physically.

(iii) Identify and interpret a limit for α in which the pressure perturbation in 0 < x < L
becomes very small relative to that in x < 0.
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41C Numerical Analysis
(a) Let H ∈ Rn×n be diagonalisable. Show that the sequence defined by z(k+1) =

Hz(k) converges to 0 for all initial vectors z(0) ∈ Cn if, and only if, ρ(H) < 1 where ρ(H)
is the spectral radius of H.

Let A ∈ Rn×n be a symmetric positive definite matrix, and let b ∈ Rn.

(b) Prove that the solution to Ax = b is the unique minimiser of the function
f(x) = (1/2)xTAx− bTx.

(c) The steepest descent method with constant step size α is defined by

x(k+1) = x(k) − α∇f(x(k)).

Applying the method to the function f given in (b), write down the iterations explicitly in
terms of A and b. Under what conditions on α does the sequence x(k) converge to A−1b?

(d) Consider the steepest descent method with exact line search, where at each
iteration k, the constant α = α(k) is chosen so that f(x(k+1)) is as small as possible.
Give an explicit expression for the step size α(k). Show that, in this case, the residuals
r(k) = b−Ax(k) satisfy (r(k))T r(k+1) = 0 for all k.

END OF PAPER

Part II, Paper 1


	1I - Number Theory
	2G - Topics in Analysis
	3K - Coding and Cryptography
	4I - Automata and Formal Languages
	5J - Statistical Modelling
	6C - Mathematical Biology
	7E - Further Complex Methods
	8B - Classical Dynamics
	9A - Cosmology
	10D - Quantum Information and Computation
	11K - Coding and Cryptography
	12I - Automata and Formal Languages
	13J - Statistical Modelling
	14E - Further Complex Methods
	15A - Cosmology
	16F - Logic and Set Theory
	17F - Graph Theory
	18H - Galois Theory
	19H - Representation Theory
	20H - Number Fields
	21I - Algebraic Topology
	22G - Linear Analysis
	23G - Analysis of Functions
	24F - Riemann Surfaces
	25H - Algebraic Geometry
	26I - Differential Geometry
	27G - Probability and Measure
	28J - Applied Probability
	29K - Principles of Statistics
	30K - Stochastic Financial Models
	31J - Mathematics of Machine Learning
	32B - Dynamical Systems
	33E - Integrable Systems
	34A - Principles of Quantum Mechanics
	35D - Applications of Quantum Mechanics
	36A - Statistical Physics
	37B - Electrodynamics
	38D - General Relativity
	39C - Fluid Dynamics II
	40C - Waves
	41C - Numberical Analysis

