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SECTION I
1E Groups, Rings and Modules

State the first isomorphism theorem for rings.

Let R be a subring of a ring S, and let J be an ideal in S. Show that R + J is a
subring of S and that

R

R ∩ J
∼= R+ J

J
.

Compute the characteristics of the following rings, and determine which are fields.

Q[X]

(X + 2)

Z[X]

(3, X2 +X + 1)

2F Geometry
Consider the space Sa,b ⊂ R3 defined by

x2 + y2 + z3 + az + b = 0

for unknown real constants a, b with (a, b) 6= (0, 0).

(a) Stating any result you use, show that Sa,b is a smooth surface in R3 whenever
4a3 + 27b2 6= 0.

(b) What about the cases where 4a3 + 27b2 = 0? Briefly justify your answer.

3A Complex Methods
The function f(x) has Fourier transform

f̃(k) =

∫ ∞

−∞
f(x)e−ikx dx =

−2ki

p2 + k2
,

where p > 0 is a real constant. Using contour integration, calculate f(x) for x > 0.

[Jordan’s lemma and the residue theorem may be used without proof.]

4D Variational Principles
Explain the method of Lagrange multipliers for finding the stationary values of a

function F (x, y, z) subject to the constraint G(x, y, z) = 0.

Use the method of Lagrange multipliers to find the minimum of x2 +y2 +z2 subject
to the constraint z − xy = 1.

Find the maximum of z − xy subject to the constraint x2 + y2 + z2 = 1.

Part IB, Paper 3



3

5A Methods
The Legendre polynomial Pn(x) satisfies

(1− x2)P ′′
n − 2xP ′

n + n(n+ 1)Pn = 0, n = 0, 1, . . . , for − 1 6 x 6 1.

Show that Qn(x) = P ′
n(x) satisfies an equation which can be recast in self-adjoint form

with eigenvalue (n − 1)(n + 2). Write down the orthogonality relation for Qn(x), Qm(x)
for n 6= m.

6B Quantum Mechanics
(a) A beam of identical, free particles, each of mass m, moves in one dimension.

There is no potential. Show that the wavefunction χ(x) = Aeikx is an energy eigenstate
for any constants A and k.

What is the energy E and the momentum p in terms of k? What can you say about
the sign of E?

(b) Write down expressions for the probability density ρ and the probability current
J in terms of the wavefunction ψ(x, t). Use the current conservation equation, i.e.

∂ρ

∂t
+
∂J

∂x
= 0

to show that, for a stationary state of fixed energy E, the probability current J is
independent of x.

(c) A beam of particles in a stationary state is incident from x → −∞ upon a
potential U(x) with U(x)→ 0 as x→ ±∞. Given the asymptotic behaviour of the form

ψ(x) =





eikx +Re−ikx , x→ −∞ ,

T eikx , x→∞ ,

show that |R|2 + |T |2 = 1. Interpret this result.
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7C Fluid Dynamics
A two-dimensional flow has velocity given by

u(x) = 2
x(d · x)

r4
− d

r2

as a function of the position vector x, with r = |x|, where d is a fixed vector.

(a) Show that this flow is incompressible for r 6= 0.

(b) Compute the stream function ψ for this flow in polar coordinates (r, θ) with
θ = 0 aligned with the vector d.

[Hint: in polar coordinates

∇ · F =
1

r

∂

∂r
(rFr) +

1

r

∂Fθ
∂θ

for a vector F = (Fr, Fθ).]

8H Markov Chains
LetX be an irreducible, positive recurrent and reversible Markov chain taking values

in S and let π be its invariant distribution. For A ⊆ S, we write

TA = min{n > 0 : Xn ∈ A} and T+
A = min{n > 1 : Xn ∈ A}.

(a) Prove that for all A ⊆ S and z ∈ A, we have

Pπ(XTA = z) = π(z)Ez
[
T+
A

]
.

(b) Let πA be the probability measure defined by πA(x) = π(x)/π(A) for x ∈ A. Prove
that

EπA
[
T+
A

]
=

1

π(A)
.
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SECTION II
9F Linear Algebra

Suppose that α is an endomorphism of an n-dimensional complex vector space.
Define the minimal polynomial mα of α. State the Cayley–Hamilton theorem, and explain
why mα exists and is unique.

(a) If α has minimal polynomial mα(x) = xm, what is the minimal polynomial of α3?

(b) If λ 6= 0 is an eigenvalue for α, show that λ3 is an eigenvalue for α3. Describe the
λ3–eigenspace of α3 in terms of eigenspaces of α.

(c) Assume α is invertible with minimal polynomial mα(x) =
∏k
i=1(x− λi)ci .

(i) Show that the minimal polynomial mα3 of α3 must divide
∏k
i=1(x− λ3i )ci .

(ii) Prove that equality holds if in addition all λi are real (in other words, we have
mα3(x) =

∏k
i=1(x− λ3i )ci).

10E Groups, Rings and Modules
Let R be a Euclidean domain. What does it mean for two matrices with entries in

R to be equivalent? Prove that any such matrix is equivalent to a diagonal matrix. Under
what further conditions is the diagonal matrix said to be in Smith normal form?

Let M 6 Zn be the subgroup generated by the rows of an n × n matrix A. Show
that G = Zn/M is finite if and only if detA 6= 0, and in that case the order of G is | detA|.

Determine whether the groups G1 and G2 corresponding to the following matrices
are isomorphic.

A1 =




5 0 4
0 1 2
2 0 0


 A2 =




7 2 −1
6 2 0
1 0 3




11G Analysis and Topology
Define a contraction mapping between two metric spaces. State and prove the

contraction mapping theorem. Use this to show that the equation x = cosx has a unique
real solution.

State the mean value inequality. Let f : R2 → R2 be the map given by

f(x, y) =

(
cosx+ cos y − 1

2
, cosx− cos y

)
.

Prove that f has a fixed point. [Hint: Find a suitable subset of R2 on which f is a
contraction mapping.]
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12F Geometry

(a) Define a topological surface. Consider the topological spaces S1 and S2 given by
identifying the sides of a square as drawn. Show that S1 is a topological surface.
[Hint: It may help to find a finite group G acting on the 2-sphere S2 such that S2/G
is homeomorphic to S1.]

Is S2 a topological surface? Briefly justify your answer.

(b) By cutting each along a suitable diagonal, show that the two topological surfaces
S3 and S4 defined by gluing edges of polygons as shown are homeomorphic.

If you delete an open disc from S4, can the resulting surface be embedded in R3?
Briefly justify your answer. Can S4 itself be embedded in R3? State any result you
use.

13G Complex Analysis
Let U ⊂ C be a (non-empty) connected open set and let fn be a sequence of

holomorphic functions defined on U . Suppose that fn converges uniformly to a function
f on every compact subset of U . Show that f is holomorphic in U . Furthermore, show
that f ′n converges uniformly to f ′ on every compact subset of U .

Suppose in addition that f is not identically zero and that for each n, there is a
unique cn ∈ U such that fn(cn) = 0. Show that there is at most one c ∈ U such that
f(c) = 0. Find an example such that f has no zeros in U . Give a necessary and sufficient
condition on the cn for this to happen in general.
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14A Methods
(a) Prove Green’s third identity for functions u(r) satisfying Laplace’s equation in

a volume V with surface S, namely

u(r0) =

∫

S

(
u
∂Gfs
∂n

− ∂u

∂n
Gfs

)
dS,

where Gfs(r; r0) = −1/(4π|r − r0|) is the free space Green’s function.

(b) A solution is sought to the Neumann problem for ∇2u = 0 in the half-space
z > 0 with boundary condition

∂u

∂z

∣∣∣∣
z=0

= p(x, y),

where both u and its spatial derivatives decay sufficiently rapidly as |r| → ∞.

(i) Explain why it is necessary to assume that

∫ ∞

−∞

∫ ∞

−∞
p(x, y)dx dy = 0.

(ii) Using the method of images or otherwise, construct an appropriate Green’s function
G(r; r0) satisfying ∂G/∂z = 0 at z = 0.

(iii) Hence find the solution in the form

u(x0, y0, z0) =

∫ ∞

−∞

∫ ∞

−∞
p(x, y)f(x− x0, y − y0, z0)dx dy ,

where f is to be determined.

(iv) Now let

p(x, y) =

{
sin(x) for |x|, |y| < π

2 ,

0 otherwise.

By expanding f in inverse powers of z0, determine the leading order term for u
(proportional to z−30 ) as z0 →∞.
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15D Electromagnetism
(a) A Lorentz transformation is given by

Λµ
ν =




γ −γv/c 0 0
−γv/c γ 0 0

0 0 1 0
0 0 0 1


 ,

where γ = 1/
√

1 − v2/c2. How does a 4-vector Xµ = (ct, x, y, z) transform?

(b) The electromagnetic field is an anti-symmetric tensor with components

Fµν =




0 −E1/c −E2/c −E3/c
E1/c 0 B3 −B2

E2/c −B3 0 B1

E3/c B2 −B1 0


 .

Determine how the components of the electric field E and the magnetic field B transform
under the Lorentz transformation given in part (a).

(c) An infinite, straight wire has uniform charge per unit length λ and carries no
current. Determine the electric field and magnetic field. By applying a Lorentz boost,
find the fields seen by an observer who travels with speed v in the direction parallel to the
wire. Interpret your results using the appropriate Maxwell equation.

Part IB, Paper 3



9

16C Fluid Dynamics
Consider an axisymmetric, two-dimensional, incompressible flow u(r) = (ur, uθ) in

polar coordinates (r, θ).

(a) Determine the behaviour of ur if it is finite everywhere in space.

(b) Representing uθ = Ω(r)r, express the vorticity of the flow ω in terms of Ω.

(c) Starting from the Navier-Stokes equation

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+ µ∇2u

derive the vorticity evolution equation

Dω

Dt
= (ω · ∇)u + ν∇2ω

for a general incompressible flow with kinematic viscosity ν = µ/ρ.

(d) Deduce the form of the evolution equation for the scalar vorticity ω = |ω| for
the axisymmetric two-dimensional flow of part (a).

(e) Show that the equation derived in part (d) adopts a self-similar form ω(r, t) =
ω(ξ), where ξ = r/

√
νt is the similarity variable.

[You may use the fact that, in polar coordinates,

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2

and

∇× F =
1

r

[
∂

∂r
(rFθ)−

∂Fr
∂θ

]
ez

for a vector F = (Fr, Fθ), where ez is a unit vector normal to the flow plane.]
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17C Numerical Analysis
(a) The equation y′ = f(t, y) is solved using the following multistep method with s

steps,

s∑

k=0

ρkyn+k = h

s∑

k=0

σkf(tn+k, yn+k) ,

where h is the step size and ρk, σk are specified constants with ρs = 1. Prove that this
method is of order p if and only if

s∑

k=0

ρkP (tn+k) = h

s∑

k=0

σkP
′(tn+k) ,

for all polynomials P of degree p.

(b) State the Dahlquist equivalence theorem regarding the convergence of a mul-
tistep method. Consider a multistep method

yn+3 + (2a− 3)(yn+2 − yn+1)− yn = ha(fn+2 + fn+1) ,

where a 6= 0 is a real parameter. Determine the values of a for which this method is
convergent, and find its order.
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18H Statistics
Consider a linear model Y = Xβ + ε, where X ∈ Rn×p is a fixed design matrix

of rank p < n/2, β ∈ Rp, and ε ∼ N(0, σ2Σ0), for some known positive definite matrix
Σ0 ∈ Rn×n and an unknown scalar σ2 > 0.

(a) Derive the maximum likelihood estimators (β̂, σ̂2) for the parameters (β, σ2).

(b) Find the distribution of β̂.

(c) Prove that β̂ is the Best Linear Unbiased Estimator for β.

Now, suppose that ε ∼ N(0,Σ) where Σ ∈ Rn×n is a diagonal matrix with

Σii =

{
σ21 if i 6 n/2 ,

σ22 if i > n/2 ,

and where σ21 and σ22 are unknown parameters and n is even.

(d) Describe a test of size α for the null hypothesis H0 : σ21 = σ22 against the
alternative H1 : σ21 < σ22, using the test statistic

T =
‖Y1 −X1(X

T
1 X1)

−1XT
1 Y1‖2

‖Y2 −X2(XT
2 X2)−1XT

2 Y2‖2

where,

Y =

(
Y1
Y2

)
and X =

(
X1

X2

)
,

with Y1, Y2 ∈ Rn/2 and X1, X2 ∈ Rn/2×p. [You must specify the null distribution of T and
the critical region, and you may quote any result from the lectures that you need without
proof.]
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19H Optimisation
Explain what is meant by a transportation problem with n suppliers and m

consumers.

A straight road contains three bakeries, B1, B2, and B3, and four cafes, C1, C2,
C3, and C4. They are arranged in the following order:

<latexit sha1_base64="8/R1d95csd0Mmb+p8pOKksrJPi4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBahp5JIUY9FLx6r2FpoQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/DEY38z8xyeujYjVA04S7kd0qEQoGEUr3V97/XLFrblzkFXi5aQCOZr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+aXTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPIzoZIUuWKLRWEqCcZk9jYZCM0ZyokllGlhbyVsRDVlaMMp2RC85ZdXSfu85l3U6nf1SqOax1GEEziFKnhwCQ24hSa0gEEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH/7njPA=</latexit>

B1
<latexit sha1_base64="tKb4QBE7b9v1ck7VqTcyJLfqngM=">AAAB6XicbVDLTgJBEOzFF+IL9ehlIjHhRHYJUY9ELx7RyCOBDZkdZmHC7OxmpteEEP7AiweN8eofefNvHGAPClbSSaWqO91dQSKFQdf9dnIbm1vbO/ndwt7+weFR8fikZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38799hPXRsTqEScJ9yM6VCIUjKKVHm6q/WLJrbgLkHXiZaQEGRr94ldvELM04gqZpMZ0PTdBf0o1Cib5rNBLDU8oG9Mh71qqaMSNP11cOiMXVhmQMNa2FJKF+ntiSiNjJlFgOyOKI7PqzcX/vG6K4bU/FSpJkSu2XBSmkmBM5m+TgdCcoZxYQpkW9lbCRlRThjacgg3BW315nbSqFe+yUruvlerlLI48nME5lMGDK6jDHTSgCQxCeIZXeHPGzovz7nwsW3NONnMKf+B8/gAAeozx</latexit>

B2
<latexit sha1_base64="6bYRB89i55wqorcqJtulXcz+9PI=">AAAB6XicbVDLTgJBEOzFF+IL9ehlIjHhRHaVqEeiF49o5JHAhswOvTBhdnYzM2tCCH/gxYPGePWPvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJaPZpygH9GB5CFn1Fjp4eaiVyy5FXcOskq8jJQgQ71X/Or2Y5ZGKA0TVOuO5ybGn1BlOBM4LXRTjQllIzrAjqWSRqj9yfzSKTmzSp+EsbIlDZmrvycmNNJ6HAW2M6JmqJe9mfif10lNeO1PuExSg5ItFoWpICYms7dJnytkRowtoUxxeythQ6ooMzacgg3BW355lTTPK95lpXpfLdXKWRx5OIFTKIMHV1CDO6hDAxiE8Ayv8OaMnBfn3flYtOacbOYY/sD5/AEB/ozy</latexit>

B3

<latexit sha1_base64="JCHfvbSJkoj184elJmmi1JeCac0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBahp5JIUY+FXjxWsbXQhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJR8epYthmsYhVN6AaBZfYNtwI7CYKaRQIfAwmzbn/+IRK81g+mGmCfkRHkoecUWOl+6Y3KFfcmrsAWSdeTiqQozUof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/W1w6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEN37GZZIalGy5KEwFMTGZv02GXCEzYmoJZYrbWwkbU0WZseGUbAje6svrpHNZ865q9bt6pVHN4yjCGZxDFTy4hgbcQgvawCCEZ3iFN2fivDjvzseyteDkM6fwB87nDwB7jPE=</latexit>

C1
<latexit sha1_base64="xMoBNH8Fvlvd06WEUFTHnfJIgek=">AAAB6XicbVDLTgJBEOzFF+IL9ehlIjHhRHYJUY8kXDyikUcCGzI7zMKE2dnNTK8JIfyBFw8a49U/8ubfOMAeFKykk0pVd7q7gkQKg6777eS2tnd29/L7hYPDo+OT4ulZ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4waSz8zhPXRsTqEacJ9yM6UiIUjKKVHhrVQbHkVtwlyCbxMlKCDM1B8as/jFkacYVMUmN6npugP6MaBZN8XuinhieUTeiI9yxVNOLGny0vnZMrqwxJGGtbCslS/T0xo5Ex0yiwnRHFsVn3FuJ/Xi/F8NafCZWkyBVbLQpTSTAmi7fJUGjOUE4toUwLeythY6opQxtOwYbgrb+8SdrVinddqd3XSvVyFkceLuASyuDBDdThDprQAgYhPMMrvDkT58V5dz5WrTknmzmHP3A+fwAB/4zy</latexit>

C2
<latexit sha1_base64="CUMQO6q+pvZAavwjsmOzx8BTlAQ=">AAAB6XicbVDLTgJBEOzFF+IL9ehlIjHhRHaVqEcSLh7RyCOBDZkdemHC7OxmZtaEEP7AiweN8eofefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj+txvP6HSPJaPZpKgH9Gh5CFn1FjpoX7VL5bcirsAWSdeRkqQodEvfvUGMUsjlIYJqnXXcxPjT6kynAmcFXqpxoSyMR1i11JJI9T+dHHpjFxYZUDCWNmShizU3xNTGmk9iQLbGVEz0qveXPzP66YmvPWnXCapQcmWi8JUEBOT+dtkwBUyIyaWUKa4vZWwEVWUGRtOwYbgrb68TlqXFe+6Ur2vlmrlLI48nME5lMGDG6jBHTSgCQxCeIZXeHPGzovz7nwsW3NONnMKf+B8/gADg4zz</latexit>

C3
<latexit sha1_base64="rbn1CzJxD011qg16RfvtiA2gEIM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBahp5JIUY+FXjxWsbXQhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJR8epYthmsYhVN6AaBZfYNtwI7CYKaRQIfAwmzbn/+IRK81g+mGmCfkRHkoecUWOl+2Z9UK64NXcBsk68nFQgR2tQ/uoPY5ZGKA0TVOue5ybGz6gynAmclfqpxoSyCR1hz1JJI9R+trh0Ri6sMiRhrGxJQxbq74mMRlpPo8B2RtSM9ao3F//zeqkJb/yMyyQ1KNlyUZgKYmIyf5sMuUJmxNQSyhS3txI2pooyY8Mp2RC81ZfXSeey5l3V6nf1SqOax1GEMziHKnhwDQ24hRa0gUEIz/AKb87EeXHenY9la8HJZ07hD5zPHwUHjPQ=</latexit>

C4

The distance between consecutive establishments is 1 mile: For example, the distance
between B1 and C2 is 3 miles. Bakeries B1, B2, and B3 produce 6, 4, and 8 cakes daily,
respectively. Cafes C1, C2, C3, and C4 consume 3, 5, 7, and 3 cakes daily, respectively.
The cost of transporting one cake from a bakery to a cafe is equal to the distance between
the two locations, measured in miles. Cakes may be cut into arbitrary pieces before
transporting. The resulting cost matrix is

C =




1 3 4 6
1 1 2 4
4 2 1 1


 .

(a) Use the north-west corner rule to find a basic feasible solution. Is this solution
degenerate? If not, find a degenerate basic feasible solution to this problem.

(b) Consider the following transportation plan:

– B1 delivers 3 cakes each to C1 and C3,

– B2 delivers 4 cakes to C2, and

– B3 delivers 1 cake to C2, 4 cakes to C3, and 3 cakes to C4.

Explain why this is a basic feasible solution. Calculate the complete transportation
tableau for this solution. Is the solution optimal? If not, perform one step of the
transportation algorithm. Is the solution optimal now?

END OF PAPER
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