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SECTION I
1F Linear Algebra

Define the determinant of a matrix A ∈Mn(C).

(a) Assume A is a block matrix of the form

(
M X
0 N

)
, where M and N are square

matrices. Show that detA = detM detN .

(b) Assume A is a block matrix of the form

(
0 M
N 0

)
, where M and N are square

matrices of sizes k and n− k. Express detA in terms of detM and detN .

[You may assume properties of column operations if clearly stated.]

2E Geometry
Give a characterisation of the geodesics on a smooth embedded surface in R3.

Write down all the geodesics on the cylinder x2 + y2 = 1 passing through the point
(x, y, z) = (1, 0, 0). Verify that these satisfy your characterisation of a geodesic. Which of
these geodesics are closed?

Can R2 \ {(0, 0)} be equipped with an abstract Riemannian metric such that every
point lies on a unique closed geodesic? Briefly justify your answer.

3G Complex Analysis or Complex Methods
Show that f(z) = z

sin z has a removable singularity at z = 0. Find the radius of
convergence of the power series of f at the origin.

4D Variational Principles
Write down the Euler-Lagrange equation for the functional

I[y] =

∫ π/2

0

[
y′ 2 − y2 − 2y sin(x)

]
dx .

Solve it subject to the boundary conditions y′(0) = y′(π/2) = 0.
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5C Numerical Analysis
Use the Gram–Schmidt algorithm to compute a reduced QR factorization of the

matrix

A =




2 2 0
2 0 −4
2 2 2
−2 0 2


 ,

i.e. find a matrix Q ∈ R4×3 with orthonormal columns and an upper triangular matrix
R ∈ R3×3 such that A = QR.

6H Statistics
State the Rao-Blackwell theorem.

Suppose X1, X2, . . . , Xn are i.i.d. Geometric(p) random variables; i.e., X1 is distrib-
uted as the number of failures before the first success in a sequence of i.i.d. Bernoulli trials
with probability of success p.

Let θ = p − p2, and consider the estimator θ̂ = 1{X1=1}. Find an estimator for θ
which is a function of the statistic T =

∑n
i=1Xi and which has variance strictly smaller

than that of θ̂. [Hint: Observe that T is a sufficient statistic for p.]

7H Optimisation
Let f : Rn → R be a continuously differentiable convex function. Briefly describe

the steps of the gradient descent method for minimizing f .

Suppose f : Rn → R is a twice-differentiable function satisfying αI � ∇2f(x) � βI
for some α, β > 0 and all x ∈ Rn. Suppose the gradient descent method is run with step
size η = 1

β . How does the rate of convergence of the gradient descent method depend on

the condition number β
α?

Now let f(x, y, z) = x2+100y2+10000z2. Compute a condition number for f . Find
a linear transformation A : R3 → R3 such that f ◦A has a condition number of 1.

[For two matrices A,B ∈ Rn, we write A � B to denote the fact that B − A is a
positive semidefinite matrix.]
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SECTION II
8F Linear Algebra

(a) Let V be a finite dimensional complex inner product space, and let α be an
endomorphism of V . Define its adjoint α∗.

Assume that α is normal, i.e. α commutes with its adjoint: αα∗ = α∗α.

(i) Show that α and α∗ have a common eigenvector v. What is the relation
between the corresponding eigenvalues?

(ii) Deduce that V has an orthonormal basis of eigenvectors of α.

(b) Now consider a real matrix A ∈ Matn(R) which is skew-symmetric, i.e. AT = −A.

(i) Can A have a non-zero real eigenvalue?

(ii) Use the results of part (a) to show that there exists an orthogonal matrix
R ∈ O(n) such that RTAR is block-diagonal with the non-zero blocks of the

form

(
0 λ
−λ 0

)
, λ ∈ R.

9E Groups, Rings and Modules
Define a Euclidean domain. Briefly explain how Z[i] satisfies this definition.

Find all the units in Z[i]. Working in this ring, write each of the elements 2, 5 and
1 + 3i in the form u pα1

1 . . . pαt
t where u is a unit, and p1, . . . , pt are pairwise non-associate

irreducibles.

Find all pairs of integers x and y satisfying x2 + 4 = y3.
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10G Analysis and Topology
Let X and Y be metric spaces. Determine which of the following statements are

always true and which may be false, giving a proof or a counterexample as appropriate.

(a) Let fn and f be real-valued functions on X and let A,B be two subsets of X
such that X = A∪B. If fn converges uniformly to f on both A and B, then fn converges
uniformly to f on X.

(b) If the sequences of real-valued functions fn and gn converge uniformly on X to
f and g respectively, then fngn converges uniformly to fg on X.

(c) Let X be the rectangle [1, 2]× [1, 2] ⊂ R2 and let fn : X → R be given by

fn(x, y) =
1 + nx

1 + ny
.

Then fn converges uniformly on X.

(d) Let A be a subset of X and x0 a point such that any neighbourhood of x0
contains a point of A different from x0. Suppose the functions fn : A → Y converge
uniformly on A and, for each n, limx→x0 fn(x) = yn. If Y is complete, then the sequence
yn converges.

(e) Let fn converge uniformly on X to a bounded function f and let g : R→ R be
continuous. Then the composition g ◦ fn converges uniformly to g ◦ f on X.

11E Geometry
(a) Let H be the upper half plane model of the hyperbolic plane. Let G be the group

of orientation preserving isometries of H. Write down the general form of an element of
G. Show that G acts transitively on (i) the points in H, (ii) the boundary R ∪ {∞} of H,
and (iii) the set of hyperbolic lines in H.

(b) Show that if P ∈ H then {g ∈ G | g(P ) = P} is isomorphic to SO(2).

(c) Show that for any two distinct points P,Q ∈ H there exists a unique g ∈ G with
g(P ) = Q and g(Q) = P .

(d) Show that if `,m are hyperbolic lines meeting at P ∈ H with angle θ then the
points of intersection of `,m with the boundary of H, when taken in a suitable order, have
cross ratio cos2(θ/2).
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12G Complex Analysis or Complex Methods
(a) Let Ω ⊂ C be an open set such that there is z0 ∈ Ω with the property that for

any z ∈ Ω, the line segment [z0, z] connecting z0 to z is completely contained in Ω. Let
f : Ω→ C be a continuous function such that

∫

Γ
f(z) dz = 0

for any closed curve Γ which is the boundary of a triangle contained in Ω. Given w ∈ Ω,
let

g(w) =

∫

[z0,w]
f(z) dz.

Explain briefly why g is a holomorphic function such that g′(w) = f(w) for all w ∈ Ω.

(b) Fix z0 ∈ C with z0 6= 0 and let D ⊂ C be the set of points z ∈ C such that the
line segment connecting z to z0 does not pass through the origin. Show that there exists
a holomorphic function h : D → C such that h(z)2 = z for all z ∈ D. [You may assume
that the integral of 1/z over the boundary of any triangle contained in D is zero.]

(c) Show that there exists a holomorphic function f defined in a neighbourhood U
of the origin such that f(z)2 = cos z for all z ∈ U . Is it possible to find a holomorphic
function f defined on the disk |z| < 2 such that f(z)2 = cos z for all z in the disk? Justify
your answer.
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13B Methods
A uniform string of length l and mass per unit length µ is stretched horizontally

under tension T = µc2 and fixed at both ends. The string is subject to the gravitational
force µg per unit length and a resistive force with value

−2kµ
∂y

∂t

per unit length, where y(x, t) is the transverse, vertical displacement of the string and k
is a positive constant.

(a) Derive the equation of motion of the string assuming that y(x, t) remains small.

[In the remaining parts of the question you should assume that gravity is negligible.]

(b) Find y(x, t) for t > 0, given that

y(x, 0) = 0,
∂y

∂t
(x, 0) = A sin

(πx
l

)
(?)

with A constant, and k = πc/l.

(c) An extra transverse force

αµ sin

(
3πx

l

)
cos kt

per unit length is applied to the string, where α is a constant. With the initial conditions
(?), find y(x, t) for t > 0 and comment on the behaviour of the string as t→∞.

Compute the total energy E of the string as t→∞.
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14B Quantum Mechanics
(a) Write down the time-dependent Schrödinger equation for a harmonic oscillator

of mass m, frequency ω and coordinate x.

(b) Show that a wavefunction of the form

ψ(x, t) = N(t) exp
(
− F (t)x2 +G(t)x

)
,

where F,G and N are complex functions of time, is a solution to the Schrödinger equation,
provided that F,G,N satisfy certain conditions which you should establish.

(c) Verify that

F (t) = A tanh(a+ iωt), G(t) =

√
mω

~
sech(a+ iωt) ,

where a is a real positive constant, satisfy the conditions you established in part (b). Hence
determine the constant A. [You do not need to find the time-dependent normalization
function N(t).]

(d) By completing the square, or otherwise, show that |ψ(x, t)|2 is peaked around a
certain position x = h(t) and express h(t) in terms of F and G.

(e) Find h(t) as a function of time and describe its behaviour.

(f) Sketch |ψ(x, t)|2 for a fixed value of t. What is the value of 〈x̂〉ψ ?

[You may find the following identities useful:

cosh(α+ iβ) = coshα cosβ + i sinhα sinβ ,

sinh(α+ iβ) = sinhα cosβ + i coshα sinβ . ]

15D Electromagnetism
(a) Use Gauss’ law to compute the electric field E and electric potential φ due to

an infinitely long, straight wire with charge per unit length λ > 0.

(b) Two infinitely long wires, both lying parallel to the z-axis, intersect the z = 0
plane at (x, y) = (±a, 0). They carry charge per unit length ±λ respectively. Show that
the equipotentials on the z = 0 plane form circles and determine the centres and radii of
these circles as functions of a and

k =
2πε0φ

λ
,

where ε0 is the permittivity of free space.

Sketch the equipotentials and the electric field. What happens in the case φ = 0?

Find the electric field in the limit a→ 0 with λa = p fixed.
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16C Fluid Dynamics
Consider a steady viscous flow (with viscosity µ) of constant density ρ through a

long pipe of circular cross-section with radius R. The flow is driven by a constant pressure
gradient ∂p/∂z along the pipe (z is the coordinate along the pipe).

The Navier-Stokes equation describing this flow is

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+ µ∇2u.

(a) Using cylindrical coordinates (r, θ, z) aligned with the pipe, determine the
velocity u = (0, 0, w(r)) of the flow.

[Hint: in cylindrical coordinates

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
+

∂2

∂z2
.]

(b) The viscous stress exerted on the flow by the pipe boundaries is equal to

µ

(
∂w

∂r

)∣∣∣∣
r=R

.

Demonstrate the overall force balance for the (cylindrical) volume of the fluid enclosed
within the section of the pipe z0 6 z 6 z0 + L.

(c) Compute the mass flux through the pipe.

17C Numerical Analysis
For a function f ∈ C3[−1, 1] consider the following approximation of f ′′(0):

f ′′(0) ≈ η(f) = a−1f(−1) + a0f(0) + a1f(1) ,

with the error

e(f) = f ′′(0)− η(f).

We want to find the smallest constant c such that

|e(f)| 6 c max
x∈[−1,1]

∣∣f ′′′(x)
∣∣ . (?)

(a) State the necessary conditions on the approximation scheme η for the inequality
(?) to be valid with some c <∞. Hence, determine the coefficients a−1, a0, a1.

(b) State the Peano kernel theorem and use it to find the smallest constant c in the
inequality (?).

(c) Explain briefly why this constant is sharp.
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18H Statistics
A clinical study follows n patients being treated for a disease for T months. Suppose

we observe X1, . . . , Xn, where Xi = t if patient i recovers at month t, and Xi = T + 1 if
the patient does not recover at any point in the observation period. For t = 1, . . . , T , the
parameter qt ∈ [0, 1] is the probability that a patient recovers at month t, given that they
have not already recovered.

We select a prior distribution which makes the parameters q1, . . . , qT i.i.d. and
distributed as Beta(T, 1).

(a) Write down the likelihood function. Compute the posterior distribution of
(q1, . . . , qT ).

(b) The parameter γ is the probability that a patient recovers at or before month
M . Write down γ in terms of q1, . . . , qT . Compute the Bayes estimator for γ under the
quadratic loss.

(c) Suppose we wish to estimate γ, but our loss function is asymmetric; i.e., we
prefer to underestimate rather than overestimate the parameter. In particular, the loss
function is given by

L(δ, γ) =

{
2|γ − δ| if δ > γ

|γ − δ| if δ < γ.

Find an expression for the Bayes estimator of γ under this loss function, in terms of the
posterior distribution function F of γ. [You need not derive F .]
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19H Markov Chains
The n-th iteration of the Sierpinski triangle is constructed as follows: start with

an equilateral triangle, subdivide it into 4 congruent equilateral triangles, and remove the
central one. Repeat the same procedure n − 1 times on each smaller triangle that is not
removed. We call Gn the graph whose vertices are the corners of the triangles and edges
the segments joining them, as shown in the figure:

A

B

C

G1

A

B

C

G2

A C

B

Gn

Let A, B, and C be the corners of the original triangle. Let X be a simple random
walk on Gn, i.e., from every vertex, it jumps to a neighbour chosen uniformly at random.
Let

TBC = min{i > 0 : Xi ∈ {B,C}}.

(a) Suppose n = 1. Show that EA[TBC ] = 5.

(b) Suppose n = 2. Show that EA[TBC ] = 52.

(c) Show that EA[TBC ] = 5n when X is a simple random walk on Gn, for n ∈ N.

END OF PAPER
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