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SECTION I
1A Differential Equations

Consider the integral

I(x) =

∫ π

0
ex cos θdθ .

Show, by differentiating under the integral sign, that

dI

dx
=

∫ π

0
x sin2 θ ex cos θdθ .

Hence, or otherwise, show that

d2I

dx2
+

1

x

dI

dx
− I = 0 .

2B Differential Equations
Solve the difference equation

xn+3 − 6xn+2 + 12xn+1 − 8xn = 0 ,

given initial conditions x0 = 0, x1 = 4, x2 = 24.

3F Probability
What does it mean to say a function is convex? State Jensen’s inequality for a

convex function f and an integrable random variable X.

Let x1, . . . , xn be positive real numbers. Show that

∑n
i=1 xi log xi∑n

i=1 xi
> log

(∑n
i=1 xi
n

)
.

[You may use without proof a standard sufficient condition for convexity if it is stated
carefully.]
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4F Probability
Let X be a random variable with mean µ and variance σ2. Let

G(a) = E
[
(X − a)2

]
.

Show that G(a) > σ2 for all a. For what value of a is there equality?

Let
H(a) = E

[
|X − a|

]
.

Supposing that X is a continuous random variable with probability density function f ,
express H(a) in terms of f . Show that H is minimised for a such that

∫ a
−∞ f(x)dx = 1/2.
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SECTION II
5C Differential Equations

(a) What is meant by an ordinary point and a regular singular point of a linear
second-order ordinary differential equation?

Consider

x
d2y

dx2
+ (1− x)

dy

dx
+ λy = 0, (†)

where λ is a real constant.

Find a solution to (†) in the form of a series expansion around x = 0. Obtain the
general expression for the coefficients in the series.

For what values of λ do you obtain polynomial solutions?

(b) Determine the Wronskian of the equation (†) as a function of x.

Let λ = 1. Verify that y1 = 1−x is a solution to (†). Using the Wronskian, calculate
a second solution y2 in the form

y2 = (1− x) log x+ b1x+ b2x
2 + . . . ,

where b1 and b2 are constants you need to find.

6A Differential Equations

(a) Let f(x, y) be a real-valued function depending smoothly on real variables x and
y, and g(t) = f( a+ t cos γ, b+ t sin γ ), where a, b and γ are constants. Express g′(t) and
g′′(t) in terms of partial derivatives of f .

Write down sufficient conditions for g to have a local minimum at t = 0 and deduce
that a stationary point of f at (x, y) = (a, b) is a local minimum if

∂2f

∂y2
> 0 and

∂2f

∂x2
∂2f

∂y2
>

( ∂2f

∂x∂y

)2
.

(b) Now let
f(x, y) = x4 − 3x2 + 2xy + y2 .

Find all stationary points of f and show that those at (x, y) 6= (0, 0) are local minima.

Show also that g(t) with a = b = 0 has either (i) a local minimum or (ii) a local
maximum at t = 0, depending on the value of γ. Determine carefully the ranges of values
of tan γ for which cases (i) and (ii) occur and sketch the typical behaviour of g(t) in each
of these cases.
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7C Differential Equations
Consider the system of linear differential equations

dz

dt
−Az = f , where A =

(
3 −6
1 −2

)
. (†)

(a) Suppose f = 0. Show that the general solution to (†) takes the form

z = αu1e
λ1t + βu2e

λ2t, (?)

where α and β are arbitrary constants. Calculate u1, u2, λ1, and λ2.

(b) Suppose now that f = (1, a)T , where a is a constant parameter.

By writing f as a linear combination of u1 and u2, determine the value(s) of a for
which the particular integral depends on time.

Using matrix methods, find the general solution to (†).

(c) Consider
dnz

dtn
−Az = 0,

where n > 1 is an integer.

Show that (?) is a solution to this system of equations. How many other linearly
independent solutions must there be?

8B Differential Equations
(a) Consider the system

ẋ = 8x− 2x2 − 2xy2 , ẏ = xy − y , (∗)

for x(t) > 0 , y(t) > 0.

Find all the equilibrium points of (∗) and determine their type. Explain how
solutions close to each equilibrium point will evolve, sketching their trajectories. [You
may quote general results without proof.]

(b) Consider the system

ẋ = x(1 − y) , ẏ = 3y(x− 1) , (∗∗)

defined for x > 0, y > 0.

Show that it has precisely one equilibrium point in the given range. Obtain an
equation for dy/dx. Show that this equation is separable and hence obtain a solution
in the form E(x, y) = C, where C is a constant and E(x, y) is a nontrivial conserved
quantity for solutions of (∗∗). Show that E(x, y) has a single stationary point in the
quadrant x > 0, y > 0, and identify what type of stationary point it is. Hence show that
solutions close to the equilibrium point at time t = 0 remain close at all times.
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9F Probability
(a) Let U and V be two bounded random variables such that E[Uk] = E[V k] for all

non-negative integers k. Show that U and V have the same moment generating function.

(b) Let X be a continuous random variable with probability density function

f(x) = Ae−x2/2

for all real x, where A is a normalising constant. Compute the moment generating function
of X.

(c) Let Y be a discrete random variable with probability mass function

P(Y = n) = Be−n2/2

for all integers n, where B is a normalising constant. Show that

E[ekY ] = E[ekX ]

for all integers k, where X is a standard normal random variable.

(d) Let U and V be unbounded random variables such that Uk and V k are integrable
and E[Uk] = E[V k] for all non-negative integers k. Does it follow that U and V have the
same distribution?

10F Probability
(a) LetX be a random variable valued in {1, 2, . . .} and letGX be its probability generating
function. Show that

P(X = n) =
G

(n)
X (0)

n!

where G
(n)
X denotes the nth derivative of GX .

(b) Let Y be another random variable valued in {1, 2, . . .}, independent of X. Prove that
GX+Y (s) = GX(s)GY (s) for all 0 6 s 6 1.

(c) Compute GX in the case where X is a geometric random variable taking values in
{1, 2, . . .} with P(X = 1) = p for a given constant 0 < p 6 1.

(d) A jar contains n marbles. Initially, all of the marbles are red. Every minute, a marble
is drawn at random from the jar, and then replaced with a blue marble. Let T be the
number of minutes until the jar contains only blue marbles. Compute the probability
generating function GT .
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11F Probability
Consider a coin that is biased such that when tossed the probability of heads is p

and tails is 1− p.

(a) Suppose that the coin was tossed n times. What is the probability that the coin
came up heads exactly k times?

(b) Suppose that the coin was tossed n times. Given that the coin came up heads
exactly k times, what is the probability that the coin came up heads k times in a row?

(c) Suppose that the coin was tossed repeatedly until heads came up k times. What
is the probability that the total number of tosses was n?

(d) Suppose that the coin was tossed repeatedly until heads came up k times in a
row. Find the expected number of tosses.

12F Probability
Let A1, A2, . . . be a collection of events. Let N =

∑
n>1 1An be the random variable

that counts how many of these events occur. Note that N takes values in {0, 1, . . .}∪{∞}.
(a) By considering the quantity E(N), show that if

∑
n>1 P(An) < ∞ then

P(an infinite number of the events occur) = 0.

(b) Suppose now that the events are independent. Show the inequality E(2−N ) 6 e−
1
2
E(N),

with the convention that 2−∞ = 0. [Hint: use the inequality 1− x 6 e−x for all x.]

(c) Again suppose that the events are independent. Show that if
∑

n>1 P(An) = ∞ then
P(an infinite number of the events occur) = 1.

(d) A monkey types by randomly striking keys on a 26-letter keyboard, with each letter of
the alphabet equally likely to be struck and the keystrokes independent. Show that with
probability one, the word HELLO appears infinitely often.

END OF PAPER
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