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Paper 1, Section II
25H Algebraic Geometry

Define the local ring at a point p of an irreducible algebraic variety V . Define the
Zariski tangent space to V at p.

Let V ⊂ A2 × P1 be defined by the equation

XZ −WY = 0 ,

where X and Y are the coordinates on A2 and W and Z are the homogeneous coordinates
on P1. Determine whether V is smooth.

Consider the projection morphism

π : V → A2

obtained by restricting the projection from A2 × P1 onto the first factor. Prove that π is
birational but not an isomorphism. Use this to calculate the function field of V .

Let V ′ be an affine variety and ϕ : V → V ′ a morphism. Prove that ϕ is not
injective. Deduce that V is not affine.

Assume the ground field is C. Prove that if V is equipped with the Euclidean
topology, then it is not homeomorphic to any projective variety.

Paper 2, Section II
25H Algebraic Geometry

State the Riemann–Hurwitz theorem. Show that, if C and C ′ are smooth projective
connected curves over a characteristic zero field with g(C) < g(C ′), then any morphism

C → C ′

is constant.

Let Cd ⊂ P2 be a smooth plane curve of degree d. Construct a morphism

ϕ : Cd → P1

of degree d − 1. Let B ⊂ P1 be the set of branch points for ϕ. Give an upper bound for
the cardinality of B in terms of d.

Now let D be the divisor on Cd associated to a hyperplane section of Cd. Prove
that if d > 5 then D is not linearly equivalent to the canonical divisor of Cd.

The gonality of a curve C is the minimum degree of a non-constant morphism
C → P1. Prove that a smooth plane curve of degree 4 has gonality equal to 3. What is
the gonality of a smooth projective curve of genus 1?
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Paper 3, Section II
24H Algebraic Geometry

What is a singular point on an irreducible algebraic variety? Let X be an irreducible
affine variety. Prove that the set of nonsingular points in X is dense in the Zariski topology.

Find the set of singular points on the projective variety

V(X2
0 + · · · +X2

n−1) ⊂ Pn,

where X0, . . . , Xn are the homogeneous coordinates on Pn.

Let X be an irreducible variety of dimension n and let Z ⊂ X be the closed
subvariety consisting of all singular points of X. Suppose the dimension of Z is k. If
Y is smooth of dimension m, what is the dimension of the set of singular points of X×Y ?
Justify your answer.

Given integers n > k > 0, give an example of an n-dimensional irreducible subvariety
of projective space whose subvariety of singular points is nonempty and has dimension k.

Let C be an irreducible curve in P2. If C is birational to a smooth projective curve
of genus 2, show that C contains a singular point.

Paper 4, Section II
24H Algebraic Geometry

What is the degree of a divisor on a smooth projective algebraic curve? What is a
principal divisor on a smooth projective algebraic curve?

Let D =
∑
aipi be a divisor of degree 0 on P1. Construct a rational function f such

that div(f) is D. Deduce that if E and E′ are divisors of the same degree on P1 then E
is linearly equivalent to E′.

Let X0, X1 be the usual homogenous coordinates on P1, and let t be the rational
function X0/X1. Calculate the divisor associated to the rational differential dt on P1.

Fix an integer m and let D be a divisor equivalent to mKP1 , where KP1 is the
canonical divisor computed above. Without appealing to the Riemann–Roch theorem,
calculate the dimension of the vector space L(D) of rational functions with poles bounded
by D.

Let C be a smooth projective curve of genus at least 1. Prove that for distinct
points p and q in C, the divisor p− q is not principal.

Part II, Paper 1
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Paper 1, Section II
21I Algebraic Topology

Suppose f, g : C∗ → C ′∗ are chain maps. Define what it means for f and g to be
chain homotopic. Show that if f and g are chain homotopic then f∗ = g∗.

Let C∗ = C̃∗(∆n) be the reduced chain complex of the n-dimensional simplex. Show
that idC∗ is chain homotopic to 0C∗ . Hence compute H∗(∆n).

Now let K = ∆6
2 be the 2-skeleton of ∆6. Compute H∗(K). Let f : K → K be the

simplicial map given by f(ei) = eσ(i), where σ is the permutation given in cycle notation
by (0123)(456). Compute the trace of the linear map f∗ : H2(K;Q) → H2(K;Q).

Paper 2, Section II
21I Algebraic Topology

State the snake lemma and derive the exactness of the Mayer–Vietoris sequence
from it.

Suppose that K is a simplicial complex of dimension n > 1, that every (n − 1)-
simplex of K is a face of precisely two n-simplices, and that if σ and σ′ are n-simplices of
K then there is a sequence σ = σ0, σ1, . . . , σk = σ′ of n-simplices in K such that for all
i, σi and σi+1 have an (n − 1)-simplex in common. Show that Hn(K) is either trivial or
isomorphic to Z.

Now suppose that K is as above and that Hn(K) ∼= Z is generated by x ∈ Hn(K).
If K is the union of subcomplexes L1 and L2 such that L1 ∩ L2 has dimension less than
n, describe ∂x, where ∂ is the boundary map in the Mayer–Vietoris sequence associated
to the decomposition K = L1 ∪ L2. Justify your answer. When is ∂x 6= 0?

Finally, suppose that K,L1 and L2 are as in the previous paragraph, that K is
homeomorphic to S3, that L1 is homeomorphic to S1×D2, and that the image of L1 ∩L2

under this homeomorphism is S1 × S1 ⊂ S1 ×D2. Compute H∗(L2).

Paper 3, Section II
20I Algebraic Topology

Suppose f : Sn−1 → X is a continuous map. Show that f extends to a continuous
map F : Dn → X if and only if f is homotopic to a constant map.

Let X be a path-connected and locally path-connected topological space. Define
what it means for a space X̃ to be a universal covering space of X. State a suitable lifting
property and use it to prove that any two universal covering spaces ofX are homeomorphic.

Now suppose that X̃ is a universal covering space of X, and that X̃ is contractible.
Let K be a path-connected simplicial complex with 1-skeleton K1, and let i : K1 → K be
the inclusion. Given a continuous map f : |K1| → X, prove that f extends to a continuous
map F : |K| → X if and only if there is a homomorphism Φ : π1(|K|, v) → π1(X, f(v))
with f∗ = Φ ◦ i∗, where v is any vertex of K. [Hint: Induct on the number of simplices in
K \K1.]
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Paper 4, Section II
21I Algebraic Topology

Let K be the Klein bottle obtained by identifying the sides of the unit square as
shown in the figure, and let k0 ∈ K be the image of the corners of the square.

Show that K is the union of two Möbius bands with their boundaries identified. Deduce
that π1(K, k0) has a presentation

π1(K, k0) = 〈a, b | a2b−2〉.

Show that there is a degree two covering map p : (T 2, x0)→ (K, k0). Describe generators
α, β for π1(T

2, x0) and express p∗(α) and p∗(β) in terms of a and b.

Let Y = T 2 × [0, 1)/ ∼, where ∼ is the smallest equivalence relation with
(x, 0) ∼ (x′, 0) whenever p(x) = p(x′). What is π1(Y, y0), where y0 is the image of (x0, 0)
in Y ?

Suppose X is a path-connected Hausdorff space, that U ⊂ X is an open subset, and
that U is homeomorphic to Y . Can X be simply connected? Justify your answer.

Part II, Paper 1
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Paper 1, Section II
23G Analysis of Functions

In this question,M is the σ-algebra of Lebesgue measurable sets and λ is Lebesgue
measure on Rn.

State Lebesgue’s differentiation theorem and the Radon–Nikodym theorem. For a
set A ∈M, and a measure µ defined on M, let the µ-density of A at x ∈ Rn be

ρµ,A(x) = lim
r↘0

µ(A ∩Br(x))

µ(Br(x))
,

whenever the limit exists, where Br(x) = {y ∈ Rn : |x− y| < r} is the open ball of radius
r centred at x.

For each t ∈ [0, 1], give an example of a set B ⊂ R2 and point z ∈ R2 for which
ρλ,B(z) exists and is equal to t.

Show that for λ-almost every x ∈ Rn, ρλ,A(x) exists and takes the value 0 or 1.
Show that ρλ,A vanishes λ-almost everywhere if and only if A has Lebesgue measure zero.

Let ν be a measure on M such that ν � λ and λ � ν. Show that ρν,A(x) exists
and takes the value 0 or 1 at λ-almost every x ∈ Rn.

Paper 2, Section II
23G Analysis of Functions

Let X be a real vector space. State what it means for a functional p : X → R to be
sublinear.

Let M ( X be a proper subspace. Suppose that p : X → R is sublinear and the
linear map ` : M → R satisfies `(y) 6 p(y) for all y ∈ M . Fix x ∈ X \ M and let

M̃ = span{M,x}. Show that there exists a linear map ˜̀ : M̃ → R such that ˜̀(z) 6 p(z)

for all z ∈ M̃ and ˜̀(y) = `(y) for all y ∈M .

State the Hahn–Banach theorem.

Let {z1, . . . , zn} be a set of linearly independent elements of a real Banach space Z.
Show that for each j = 1, . . . , n there exists `j ∈ Z ′ with `j(zk) = δjk for all k = 1, . . . , n.
Suppose M ⊂ Z is a finite dimensional subspace. Show that there exists a closed subspace
N such that Z = M ⊕N .
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Paper 3, Section II
22G Analysis of Functions

State and prove the Riemann–Lebesgue lemma. State Parseval’s identity, including
any assumptions you make on the functions involved.

Suppose that f : Rn → C is given by

f(x) =
|x|a

(1 + |x|2) b+a
2

.

Show that if 2a > −n and b > n then f̂ ∈ Lp(Rn) for all 2 6 p 6 ∞, where f̂ is the
Fourier transform of f .

Paper 4, Section II
23G Analysis of Functions

For s ∈ R, define the Sobolev space Hs(Rn). Show that for any multi-index α, the
map u 7→ Dαu is a bounded linear map from Hs(Rn) to Hs−|α|(Rn).

Given f ∈ Hs(Rn), show that the PDE

−∆u+ u = f

admits a unique solution with u ∈ Hs+2(Rn). Show that the map taking f to u is a linear
isomorphism of Hs(Rn) onto Hs+2(Rn).

Let Ω ⊂ Rn be open and bounded. Consider a sequence of functions (uj)
∞
j=1 with

uj ∈ C∞(Rn), supported in Ω, such that

‖∆uj‖L2(Ω) + ‖uj‖L2(Ω) 6 K ,

for some constant K independent of j. Show that there exists a subsequence (ujk)∞k=1

which converges strongly in H1(Rn).

Part II, Paper 1
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Paper 1, Section II
35D Applications of Quantum Mechanics

A particle of mass m and energy E = ~2k2/2m, moving in one dimension, is incident
on a localised potential barrier.

(a) Define reflection and transmission coefficients, r and t, for a right-moving particle
incident from x = −∞. Define corresponding coefficients r′ and t′ for a left-moving particle
incident from x = +∞. Prove that the S-matrix

S =

(
t′ r
r′ t

)

is unitary. [You may use without proof the conservation of the probability current.]

(b) Explain what is meant by the parity of a wavefunction. Under what circum-
stances do energy eigenstates of the system described above have definite parity?

(c) Consider the potential barrier

V (x) =

{
V0 for |x| < a/2

0 for |x| > a/2,

where V0 > 0. Find an even parity wavefunction satisfying the Schrödinger equation for a
particle of energy E = ~2k2/2m with E < V0. Hence compute r + t.

Paper 2, Section II
36D Applications of Quantum Mechanics

A particle of mass m moves in one dimension in the periodic potential

V (x) =
∑

n∈Z
Vn exp

(
2πinx

a

)
,

where V−n = (Vn)
∗. Treating the Hamiltonian Ĥ = Ĥ0 + V (x) as a small perturbation

of the free Hamiltonian Ĥ0, show that the energy spectrum consists of continuous bands
separated by gaps of width 2|Vn| that occur for each positive integer n.

What is meant by the dispersion relation of the particle? Determine an explicit
form of the dispersion relation near each band gap.

Work out the locations and widths of the gaps in the energy spectrum for the
potential

V (x) =
8

3
V0 cos4

(
2πx

a

)
.

Sketch the dispersion relation of a particle moving in this potential.
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Paper 3, Section II
34D Applications of Quantum Mechanics

A two-dimensional Bravais lattice Λ has primitive basis vectors {a1,a2}, where

a1 = x̂ , a2 = −1

2
x̂ +

√
3

2
ŷ ,

and {x̂, ŷ} is the standard Cartesian basis. Express a general primitive basis {a′1,a′2} for
Λ in terms of {a1,a2}.

Find the lattice Λ∗ which is dual to Λ, giving a basis of primitive vectors dual to
{a1,a2}. Sketch the region of the lattice Λ∗ containing the origin, indicating all those
points which are nearest neighbours of the origin. Determine the Wigner-Seitz unit cell of
Λ∗ as polygonal region of the plane, giving the coordinates of all vertices of this polygon.
Determine the area of this unit cell.

A particle of mass m moves in a potential V (x) which is invariant under shifts by
vectors in Λ,

V (x + l) = V (x) ∀ l ∈ Λ .

Define the nth Brillouin zone of this system and briefly describe its physical significance.
Draw a sketch showing the first and second Brillouin zones.

Part II, Paper 1
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Paper 4, Section II
34D Applications of Quantum Mechanics

A particle of mass m and charge e moves in a constant homogeneous magnetic field
B = ∇×A with vector potential

A(x) =
B

2
(−y, x, 0) ,

where x = (x, y, z) are Cartesian coordinates on R3.

(a) Write down the Hamiltonian Ĥ for the particle as a differential operator
in Cartesian coordinates. Find a corresponding expression for Ĥ in cylindrical polar
coordinates (r, θ, z), where x = r cos θ and y = r sin θ.

[You may use without proof the relations

∂2

∂x2
+

∂2

∂y2
=

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
and x

∂

∂y
− y ∂

∂x
=

∂

∂θ
. ]

(b) Consider wavefunctions of the form

ψkz ,n (r, θ, z) = exp(ikzz) exp(inθ)φn(r) .

What is the physical interpretation of the quantum numbers kz ∈ R and n ∈ Z? For
n > 0, show that ψkz ,n is an eigenstate of Ĥ provided that

φn(r) = rα exp

(
−β r

2

2

)
,

where α and β are (possibly n-dependent) constants which you should determine. Find
the corresponding energy eigenvalue E.

(c) By noting that φn(r) is sharply peaked at a particular value of r, work out the
total degeneracy of this energy level when the particle is confined to lie inside a large circle
of radius R. Determine the number of states per unit area.
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Paper 1, Section II
28J Applied Probability

(a) Define what it means for a matrix Q to be a Q-matrix on a finite or countably
infinite state space S.

Suppose S is a finite state space. Express the generator Q of a continuous-time
Markov chain X = (Xt) on S in terms of its transition semigroup (P (t))t>0, and conversely
express the semigroup in terms of the generator. You do not need to prove the expressions
you give.

Write down the forward and backward Kolmogorov equations for a chain X as above.

(b) Let X = (Xt) be a continuous-time Markov chain on the state space S = {1, 2},
with generator

Q =

(
−µ µ
λ −λ

)
,

where λµ > 0.

(i) Compute the transition probabilities pij(t), i, j ∈ S, t > 0.

(ii) Find Qn for n > 1, and compute
∑∞

n=0
tn

n!Q
n for t > 0. Compare the result

with your answer in part (i).

(iii) Solve the equation πQ = 0 for a probability distribution π and identify the
invariant distribution of X. Use your result in part (i) to verify that, indeed,
the semigroup converges to the invariant distribution as t→∞.

(iv) Compute the probability P(X(t) = 2|X(0) = 1, X(3t) = 1).

Paper 2, Section II
28J Applied Probability

(a) Let X = (Xt) be a right-continuous process with values in a finite state space
S, and let Q be a Q-matrix on S. State two different conditions that are equivalent to the
statement that X is a continuous-time Markov chain with generator Q. Prove that these
two conditions are equivalent.

(b) Let G be a finite connected graph and let A be a connected subgraph of G. Let
X be a continuous time Markov chain that takes values in the vertices of A and evolves as
follows: when at x it stays there for an exponential time of parameter 1 and then chooses
a neighbour of x in G uniformly at random. If the neighbour is in A, then X jumps there,
otherwise it waits for another independent exponential time of parameter 1 and proceeds
as before. This continues until the first time that X chooses a neighbour of x in A and
then jumps there. Find the Q-matrix and the invariant distribution of X. Justify your
answer.

[You may use the fact that, if N is a geometric random variable of parameter p and
(Ei)i>1 is an i.i.d. sequence of exponential random variables of parameter 1 independent
of N , then

∑N
i=1Ei is exponentially distributed with parameter p.]

Part II, Paper 1
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Paper 3, Section II
27J Applied Probability

(a) Define what we mean by a renewal process associated with the independent and
identically distributed sequence of nonnegative random variables {ξn}.

(b) Define the size-biased distribution corresponding to ξ1.

(c) Define the excess process E = (E(t)) and state a result regarding its asymptotic
behaviour, giving the required conditions carefully.

(d) Let X = (Xt) be a Poisson process and N = (Nt) be a renewal process with
non-arithmetic inter-renewal times, independent of X. Suppose that Y = (Yt) defined by
Yt = Xt +Nt, t > 0 is also a renewal process. Show that the first event time of Y has an
exponential distribution by deriving an integral equation for its distribution function that
is satisfied by the exponential.

Paper 4, Section II
27J Applied Probability

(a) Let X = (Xt) be the queue length process of an M/M/1 queue with arrival rate
λ > 0 and service rate µ > 0. Suppose ρ = λ/µ < 1. Show that X is positive recurrent
and derive its invariant distribution π.

(b) Now suppose that each arriving customer observes the current queue length
Xt = n, and either decides to join the queue with probability p(n) or to leave the system
with probability 1− p(n), independently of all other customers.

(i) Find the invariant distribution π of X if p(n) = 1/(n+ 1), n > 0.

(ii) Find the invariant distribution π of X if p(n) = 2−n, n > 0, and show that, in
equilibrium, an arriving customer joins the queue with probability µ(1−π0)/λ.
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Paper 2, Section II
32E Asymptotic Methods

(a) Let n = 1, 2, . . . . Which of the following sequences are asymptotic and why?

(i) φn(x) = ln(cos(xn)) as x→ 0 .

(ii) ψn(x) = n1/x as x→∞ .

(iii) χn(x) = sin(xn) as x→∞ .

(b) Let φn(x) and ψn(x), for n = 0, 1, 2, . . . , be two sequences of real positive
functions defined on {x ∈ R : 0 < |x − x0| < 1} which are asymptotic sequences as
x→ x0.

For n = 0, 1, 2, . . . , show that the sequence

χn(x) =
n∑

k=0

φk(x)ψn−k(x) ,

is an asymptotic sequence as x→ x0 .

Paper 3, Section II
30E Asymptotic Methods

(a) Derive the leading order term of the asymptotic expansion, as x → ∞, for the
integral

I(x) =

∫ 2

0
ln t ex(t

3−2t2+t) dt .

Justify your steps.

(b) The derivative of the Gamma function has the following integral representation

Γ′(z) =

∫ ∞

0

ln t

t
ez ln t−t dt for Re z > 0.

In what follows we assume z ∈ R and z > 0.

(i) Justify briefly why the integral converges. Explain why Laplace’s method
cannot be used directly to find the leading order behaviour of Γ′(z) as
z →∞.

(ii) Now perform the change of variables t = zs, then apply Laplace’s method
to show that

Γ′(z) ∼
√
a

z
ez ln z−z ln z as z →∞ ,

for a real number a, which you should determine.

Part II, Paper 1
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Paper 4, Section II
31E Asymptotic Methods

Consider the differential equation

x2y′′ + xy′ − 1

x2
y = 0 . (∗)

(i) What type of regular or singular point does equation (∗) have at x = 0?

(ii) For x > 0, find a transformation that maps equation (∗) to an equation of
the form

u′′ + q(x)u = 0 (†)
and compute q(x) .

(iii) Determine the leading asymptotic behaviour of the solution u of equation
(†), as x → 0+ , using the Liouville-Green method and justifying your
assumptions at each stage.

(iv) Conclude from the above an asymptotic expansion of two linearly inde-
pendent solutions of equation (∗), as x→ 0+ .
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Paper 1, Section I
4I Automata and Formal Languages

What are the nth register machine Pn and the nth recursively enumerable set Wn?

Given subsets A,B ⊆ N, define a many–one reduction A 6m B of A to B.

State Rice’s theorem.

Is there a total algorithm that, on input n in register 1 andm in register 2, terminates
with 0 if Wm = Wn and 1 if Wm 6= Wn? Is there a partial algorithm that, with the same
inputs as above, terminates with 0 if Wm = Wn and never halts if Wm 6= Wn? Justify
your answers.

[You may assume without proof that the halting set K is not recursive.]

Paper 2, Section I
4I Automata and Formal Languages

State and prove the pumping lemma for regular languages.

Are the following languages over the alphabet Σ = {0, 1} regular? Justify your
answers.

(i) {0n1 |n > 0}.

(ii) {0n1n
2 |n > 0}.

(iii) The set of all words in Σ∗ containing the same number of 0s and 1s.

Paper 3, Section I
4I Automata and Formal Languages

Define a context-free grammar (CFG) and a context-free language (CFL).

State the pumping lemma for CFLs.

Which of the following languages over the alphabet {a, b, c} are CFLs? Justify your
answers.

(i) {anb2ncn |n > 0}.

(ii) {anb2icn |n, i > 0}.

Part II, Paper 1
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Paper 4, Section I
4I Automata and Formal Languages

Define what it means for a context-free grammar (CFG) to be in Chomsky normal
form.

What are an ε–production and a unit production?

Let G1 be the CFG

S → ε | aTa | bTa
T → Ta |Tb | c

and let G2 be the CFG

S → XZ |Y Z
T → TX |TY | c
X → a, Y → b, Z → TX.

What is the relationship between the language of G1 and the language of G2? Justify your
answer carefully.

Paper 1, Section II
12I Automata and Formal Languages

Give the definition of a primitive recursive function f : Nk → N.

Show directly from the definition that, when k = 2, the functions

P (m,n) = m+ n and T (m,n) = mn

are both primitive recursive.

Show further that for k > 2 the function

Tk(n1, . . . , nk) = n1 · · ·nk

is primitive recursive, as is Ea : N → N given by Ea(n) = an, where a > 1 is a fixed
integer.

Suppose F : Nk → Nk, where F = (f0, . . . , fk−1) with each coordinate function
fi primitive recursive. Describe how F can be encoded as a primitive recursive function
F : N→ N.

Let the Fibonacci function B : N → N be defined by B(0) = 0, B(1) = 1 and
B(n+ 2) = B(n+ 1) +B(n) for n > 0. Is B primitive recursive? Justify your answer.

If f : N → N is a primitive recursive function, must there exist some R > 0 such
that f(n) 6 Rn for all n > 1? Justify your answer.

[You may use without proof that for fixed j > 2 the maxpower function Mj is
primitive recursive, where Mj(n) is the exponent of the highest power of j that divides
n. If you use any other results from the course, you should prove them.]
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Paper 3, Section II
12I Automata and Formal Languages

Let D = (Q,Σ, δ, q0, F ) be a deterministic finite-state automaton (DFA).

What does it mean to say that q ∈ Q is an accessible state? What does it mean to
say that p, q ∈ Q are equivalent states?

Explain the construction of the minimal DFA D/∼ and show that the languages of
D and of D/∼ are the same. Show also that no two distinct states of D/∼ are equivalent.

Now let Σ be the single-letter alphabet {1}. Suppose that D is a DFA with no
inaccessible states and exactly one accept state. Justifying your answer, describe the
corresponding minimal DFA D/∼ in the form of a transition diagram or otherwise.
[Remember that you need only consider accessible states.]

Part II, Paper 1
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Paper 1, Section I
8B Classical Dynamics

(a) Show that the canonical transformation (q,p) 7→ (Q,P) associated with a
generating function F2(q,P) of type 2 satisfies

p =
∂F2

∂q
, Q =

∂F2

∂P
.

(b) A physical system with two degrees of freedom is described by the Hamiltonian

H(q,p) = H0(p1, p2) +H1(p1, p2) cos θ ,

where
θ = n1q1 + n2q2

and n1 and n2 are non-zero integers.

Show that a certain linear combination of p1 and p2 is conserved, and that there is a
(linear) canonical transformation (q,p) 7→ (Q,P) such that Q1 = θ and the transformed
Hamiltonian does not depend on Q2.

Explain why the system is integrable.

Paper 2, Section I
8B Classical Dynamics

Show that Hamilton’s equations for a system with n degrees of freedom can be
written in the form

ẋa = Ωab
∂H

∂xb
,

where a, b ∈ {1, 2, . . . , 2n} and Ω is a matrix that you should define.

Using a similar notation, define the Poisson bracket {f, g} of two functions f(x, t)
and g(x, t). Evaluate the Poisson bracket {xa, xb}.

Show that the transformation x 7→ X(x) preserves the form of Hamilton’s equations
if and only if the Jacobian matrix

Jab =
∂Xa

∂xb

satisfies
JΩJT = Ω .

Deduce that such a canonical transformation leaves the phase-space volume invariant.
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Paper 3, Section I
8B Classical Dynamics

The Lagrangian of the Lagrange top can be written as

L =
1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3

(
ψ̇ + φ̇ cos θ

)2
−Mgl cos θ .

Define the generalized momenta pφ and pψ, and describe how they evolve in time.

Show that the nutation of the top is governed by the equation

1

2
I1θ̇

2 + Veff(θ) = constant ,

where Veff(θ) is an effective potential energy that you should define.

Explain why pφ and pψ must be equal in order for the top to reach the vertical
position θ = 0. In this case, show that θ = 0 is a stable equilibrium provided that the top
spins sufficiently fast.

Paper 4, Section I
8B Classical Dynamics

A particle of mass m1 = 3m is connected to a fixed point by a massless spring of
natural length l and spring constant k. A second particle of mass m2 = 2m is connected
to the first particle by an identical spring. The masses move along a vertical line in a
uniform gravitational field g, such that mass mi is a distance zi(t) below the fixed point
and z2 > z1 > 0.

[You may assume that the potential energy of a spring of length l+x is 1
2kx

2, where
k is the spring constant and l is the natural length.]

Write down the Lagrangian of the system.

Determine the equilibrium values of zi.

Let qi be the departure of zi from its equilibrium value. Show that the Lagrangian
can be written as

L =
1

2
Tij q̇iq̇j −

1

2
Vijqiqj + constant ,

and determine the matrices T and V .

Calculate the angular frequencies and eigenvectors of the normal modes of the
system.

In what sense are the eigenvectors orthogonal?
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Paper 2, Section II
14B Classical Dynamics

(a) A homogeneous, solid ellipsoid of mass M occupies the region

x2

a2
+
y2

b2
+
z2

c2
< 1 ,

where a, b and c are positive constants. Calculate the inertia tensor of the ellipsoid.

(b) According to Poinsot’s construction, the evolution of the angular velocity vector
ω(t) of a rigid body undergoing free rotational motion corresponds to the movement of
an inertia ellipsoid on an invariable plane. Derive this construction, explaining why the
inertia ellipsoid is tangent to the invariable plane and rolls on it.

(c) Describe qualitatively the general free rotational motion of the body considered
in part (a) in an inertial frame of reference, in the special case a = b < c.

Paper 4, Section II
15B Classical Dynamics

An isolated three-body system consists of particles with masses m1, m2 and m3 and
position vectors r1(t), r2(t) and r3(t). The particles move under the action of their mutual
gravitational attraction. Write down the Lagrangian L of the system.

Let a, b and c be defined by

a = r1 − r2 , b =
m1r1 +m2r2
m1 +m2

− r3 , c =
m1r1 +m2r2 +m3r3

m1 +m2 +m3
.

By expressing r1, r2 and r3 in terms of a, b and c, or otherwise, show that the total
kinetic energy can be written as

1

2
α|ȧ|2 +

1

2
β|ḃ|2 +

1

2
γ|ċ|2 ,

and obtain expressions for α, β and γ.

Show that the total potential energy can be expressed as a function of a and b only.
What does this imply for the evolution of c? Give a physical interpretation of this result.

Show also that the total angular momentum of the system about the origin is

α a× ȧ + β b× ḃ + γ c× ċ .
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Paper 1, Section I
3K Coding and Cryptography

(a) State Kraft’s inequality.

Show that Kraft’s inequality gives a necessary condition for the existence of a prefix-
free code with given codeword lengths.

(b) A comma code is one where a special letter—the comma—occurs at the end of
each codeword and nowhere else. Show that a comma code is prefix-free and give a direct
argument to show that comma codes must satisfy Kraft’s inequality.

Give an example of a non-decipherable code satisfying Kraft’s inequality.

Paper 2, Section I
3K Coding and Cryptography

What is a discrete memoryless channel (DMC)? State Shannon’s second coding
theorem.

Consider two DMCs of capacities C1 and C2, each having input alphabet A and
output alphabet B. The product of these channels is a channel whose input and output
alphabets are A×A and B × B, respectively, with channel probabilities given by

P(y1y2|x1x2) = P1(y1|x1) P2(y2|x2),

where Pi(y|x) is the probability that y is received when x is transmitted through the ith
channel (i = 1, 2). Find the capacity of the product channel in terms of C1 and C2.

Paper 3, Section I
3K Coding and Cryptography

(a) Let C1 and C2 be (binary) linear codes with C2 ⊆ C1. Define their bar product
C1|C2.

(b) (i) Let d > 1. Identify the Reed–Muller codes RM(d, 0) and RM(d, d) as
well-known codes of a certain length. [Proofs are not required.]

For 0 < r < d, identify the Reed–Muller code RM(d, r) as a bar product of
certain Reed–Muller codes. [Proofs are not required.] Use this to compute
the rank of RM(d, r).

(ii) By considering the original definition of Reed-Muller codes, show that every
codeword in RM(d, d− 1) has even weight. Deduce that RM(d, r) has dual
code RM(d, d− r − 1).
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Paper 4, Section I
3K Coding and Cryptography

In this question we work over F2.

What is a general feedback shift register of length d with initial fill (x0, . . . , xd−1)?
What does it mean for such a register to be linear?

Describe the Berlekamp–Massey method for breaking a cipher stream arising from
a linear feedback shift register.

Use the Berlekamp–Massey method to find a linear recurrence with first eight terms
1, 1, 0, 0, 1, 0, 1, 1.

Paper 1, Section II
11K Coding and Cryptography

(a) Let n be an odd integer. What does it mean to say that a code is a cyclic code
of length n with a defining set? Define a BCH code with design distance δ. Show that
a BCH code with design distance δ has minimum distance at least δ. [Properties of the
Vandermonde determinant may be assumed.]

(b) Let α ∈ F16 be a root of X4 +X + 1. Let C be the BCH code of length 15 and
design distance 5, with defining set the first few powers of α.

(i) Find the minimal polynomial for each element of the defining set, and hence find
the generator polynomial of C.

(ii) Define the error locator polynomial σ(X) ∈ F16[X] for any received word r(X).
[Properties of σ(X) may be stated without proof.]

(iii) Suppose you receive the word r(X) = 1 + X + X7. Find the error locator
polynomial. Hence, either determine the error position or positions of r(X), or
explain why this is not possible.
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Paper 2, Section II
12K Coding and Cryptography

(a) Consider two large distinct primes p, q ≡ 3 (mod 4) and let N = pq. Briefly
describe the Rabin cipher with modulus N .

I announce that I shall be using the Rabin cipher with modulus N . My friendly
agent in Doxfor sends me a message m (with 1 6 m 6 N − 1) encoded in the required
form. Unfortunately, my cat eats the piece of paper on which the prime factors of N are
recorded so I am unable to decipher it. I therefore find a new pair of primes and announce
that I shall be using the Rabin code with modulus N ′ > N . My agent now re-encodes the
message and sends it to me again.

The enemy agent Omicron intercepts both code messages. Show that Omicron can
find m. Can Omicron decipher any other messages sent to me using only one of the coding
schemes?

(b) Let p be a large prime and g a primitive root modulo p. What is the discrete
logarithm problem? Explain what is meant by the Diffie-Hellmann key exchange and
say briefly how an enemy can break the cipher if she can compute discrete logarithms
efficiently.

Extend the Diffie–Hellman key exchange to cover three participants in a way that
is likely to be as secure as the two-party system.

Extend the system further to n parties in such a way that they can compute their
common secret key in at most n2 − n communications. (The numbers p and g of our
original Diffie-Hellman system are known by everybody in advance.)
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Paper 1, Section I
9A Cosmology

Consider the process where protons and electrons combine to form neutral hydrogen
atoms at temperature T . Let nH be the number density of hydrogen atoms, ne the number
density of electrons, me the mass of the electron and Ebind the binding energy of hydrogen.
Derive Saha’s equation which relates the ratio nH/n

2
e to me, Ebind and T . Clearly describe

the steps required.

[You may use without proof that at temperature T and chemical potential µ, the
number density n of a non-relativistic particle species with mass m� kBT/c

2 is given by

n = g

(
mkBT

2π~2

)3/2

exp

[
−(mc2 − µ)

kB T

]
,

where g is the number of degrees of freedom of this particle species and kB, ~ and c are
the Boltzmann, Planck and speed of light constants, respectively.]

Paper 2, Section I
9A Cosmology

Consider a ball centered on the origin which is initially of uniform energy density
ρ and radius L. The ball expands outwards away from the origin. Additionally, take a
particle of mass m at some position x with r ≡ |x| � L. Assume that the particle only
experiences gravity through Newton’s inverse-square law.

Using the above model of the expanding universe, derive the Friedmann equation
describing the evolution of the scale factor a(t) appearing in the relation x(t) = a(t)x0.

Describe the two main flaws in this derivation of the Friedmann equation.

Paper 3, Section I
9A Cosmology

Combining the Friedmann and continuity equations

H2 =
8πG

3c2

(
ρ− k c2

R2 a2

)
, ρ̇+ 3H (ρ+ P ) = 0 ,

derive the Raychaudhuri equation (also known as the acceleration equation), which
expresses ä/a in terms of the energy density ρ and pressure P .

Assume that the strong energy condition ρ+ 3P > 0 holds. Show that

d

dt

(
H−1

)
> 1.

Deduce that H → +∞ and a→ 0 at a finite time in the past or in the future. What
property of H distinguishes the two cases? In one sentence, describe the implications for
the evolution of this model universe.
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Paper 4, Section I
9A Cosmology

Consider a closed Friedmann-Robertson-Walker universe filled with a fluid endowed
with an energy density ρ > 0 and pressure P > 0. For such a universe the Friedmann
equation reads (

ȧ

a

)2

=
8πG

3c2
ρ− c2

R2 a2
,

where a(t) is the scale factor.

What is the meaning of R? Show that a closed universe cannot expand forever.

[Hint: Use the continuity equation to show that

d

dt
(ρ a3) 6 0 . ]
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Paper 1, Section II
15A Cosmology

The continuity, Euler and Poisson equations governing how a non-relativistic fluid
composed of particles with mass m, number density n, pressure P and velocity v propagate
in an expanding universe take the form

∂ρ

∂t
+ 3Hρ+

1

a
∇ · (ρv) = 0 ,

ρa

(
∂

∂t
+

v

a
·∇
)
u = −c2∇P − ρ∇Φ ,

∇2Φ =
4πG

c2
ρ a2 ,

where ρ = mc2n, u = v + aH x, H = ȧ/a, Φ is the gravitational potential and a(t) is the
scale factor.

Consider small perturbations about a homogeneous and isotropic flow,

n = n̄(t) + ε δn , v = ε δv , P = P̄ (t) + ε δP and Φ = Φ̄(t,x) + ε δΦ ,

with ε� 1.

(a) Show that, to first order in ε, the continuity equation can be written as

δ̇ +
1

a
∇ · δv = 0 , (†)

where δ = δn/n̄ is the density contrast.

(b) Show that, to first order in ε, the Euler equation can be written as

mn̄a ( ˙δv +H δv) = −∇δP −mn̄∇δΦ . (††)

(c) Now assume that δP = c2smδn. Using (†), (††) and the perturbed Poisson
equation, show that the density contrast δ obeys

δ̈ + 2H δ̇ − c2s
(

1

a2
∇2 + k2J

)
δ = 0 (?)

and express kJ as a function of n̄, m and c2s.

(d) Neglecting the bracketed terms in equation (?), solve it to find the form of the
growth of matter perturbations in a radiation-dominated universe.
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Paper 3, Section II
14A Cosmology

(a) What are the cosmological flatness and horizon problems? Explain what forms
of time evolution of the cosmological scale factor a(t) must occur during a period of
inflationary expansion in a Friedmann-Robertson-Walker universe. How can inflation
solve the flatness and horizon problems? [You may assume an equation of state where
the pressure P is proportional to the energy density ρ.]

(b) Consider a universe with a Hubble expansion rate H = ȧ/a containing a single
inflaton field φ with a potential V (φ) > 0. The density and pressure are given by

ρ =
1

2
φ̇2 + V (φ) ,

P =
1

2
φ̇2 − V (φ) .

Show that the continuity equation

ρ̇+ 3H(ρ+ P ) = 0

demands

φ̈+ 3Hφ̇+
dV

dφ
= 0 . (†)

(c) Consider the Friedmann equation

(
ȧ

a

)2

=
8πG

3c2
ρ , (††)

and show that
ä

a
=

8πG

3c2

[
V (φ)− φ̇2

]
.

Under what conditions does an inflationary phase occur?

(d) What is slow roll inflation? Show that in slow roll inflation, the scalar equation
(†) and Friedmann equation (††) reduce to

3Hφ̇ ≈ −dV

dφ
and H2 ≈ 8πG

3c2
V (φ) . (?)

(e) Using the slow roll equations (?), determine a(φ) and φ(t) when V (φ) = 1
4λφ

4,
with λ > 0.
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Paper 1, Section II
26I Differential Geometry

Let S ⊂ R3 be an oriented surface. Define its Gauss map N . For each p ∈ S, show
that the derivative of N defines a self-adjoint operator on TpS, and define the principal
curvatures of S at a point p. What does it mean for p to be an umbilical point? What
does it mean for S to be a minimal surface?

(a) We say that a smooth map f : S → R between two surfaces in R3 is conformal
if

〈Dfp(u), Dfp(v)〉 = λ(p)〈u, v〉
for all p ∈ S and u, v ∈ TpS, where λ(p) > 0.

Show that, if S does not have any umbilical points, then S is a minimal surface if
and only if its Gauss map is conformal.

(b) Now drop the assumption about umbilical points. If S is a minimal surface,
must its Gauss map be conformal? If the Gauss map is conformal, must S be a minimal
surface? Justify your answers.

(c) Suppose S is a connected minimal surface. Can the image of its Gauss map be
a great circle in S2?

Paper 2, Section II
26I Differential Geometry

Define a k-dimensional smooth manifold, and a regular value of a smooth map
between smooth manifolds. State the inverse function theorem, and use it to prove the
preimage theorem.

Suppose X and Y are smooth manifolds and f : X → Y is a smooth map. If X is
compact, show that the set of regular values of f in Y is open.

Consider the space

Xa = {x+ y − z2 − w2 = a} ∩ {x2 + y2 − z4/2 = 0} ,

where x, y, z, w are the standard coordinates on R4, and a ∈ R is a constant. Show that
Xa is a 2-dimensional manifold whenever a 6= 0. Is X0 a manifold? Justify your answer.
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Paper 3, Section II
25I Differential Geometry

Let S ⊂ R3 be a surface. Define the first fundamental form of S. If R ⊂ R3 is also
a surface, we say that a smooth map φ : S → R is a local isometry if Dφ preserves the
first fundamental form at each point.

(a) Let α : I → S be a curve, and let V be a vector field along α. Define the
covariant derivative of V . What does it mean for α to be geodesic? If φ : S → R is a local
isometry, show that for an arbitrary geodesic α : I → S, φ◦α is also a geodesic. [You may
use without proof the fact that Christoffel symbols only depend on the first fundamental
form.] Must the converse be true? Give a proof or counterexample.

(b) Define the Gauss curvature of S. Suppose φ : S → R is a local isometry, and
let KS and KR denote the Gauss curvatures of S and R respectively. Is it true that
KR ◦ φ = KS? State any theorem you use.

(c) Let R be the surface of revolution defined by the curve γ(u) = (eu, 0, u), with
−∞ < u <∞. Let S be the surface of revolution defined by the curve δ(s) = (cosh s, 0, s),
with 0 < s <∞.

(i) Show that there is a diffeomorphism φ : S → R such that KR ◦ φ = KS .

(ii) Does there exist a local isometry ψ : S → R? Justify your answer.

[Hint: You may use without proof that the surface of revolution defined by the curve
(f, 0, g) has Gauss curvature given by

(f ′g′′ − f ′′g′)g′
((f ′)2 + (g′)2)2f

.

Standard facts about surfaces of revolution may be used without proof if clearly stated.]

Paper 4, Section II
25I Differential Geometry

(a) State Wirtinger’s inequality. State and prove the isoperimetric inequality for
domains Ω ⊂ R2 with compact closure and C1 boundary ∂Ω.

(b) Let Q ⊂ R2 be a cyclic quadrilateral, meaning that there is a circle through its
four vertices. Say its edges have lengths a, b, c and d (in cyclic order). Assume Q′ ⊂ R2

is another quadrilateral with edges of lengths a, b, c and d (in the same order). Show that
Area(Q) > Area(Q′). Explain briefly for which Q′ equality holds.
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Paper 1, Section II
32B Dynamical Systems

(a) Consider a dynamical system of the form

ẋ = f(x, y) ,

ẏ = g(x, y) + εp(x, y) ,

which is Hamiltonian for ε = 0. Explain the energy balance method. What does it tell us
about periodic orbits of this system for small ε?

(b) (i) For 0 < ε � 1, use the energy balance method to seek leading-order
approximations to periodic orbits of this system

ẋ = y ,

ẏ = −4x+ ε
[
(1− 2x2)ky − (1− 3x2)y3

]
,

where k > 0.

[Hint:
∫ 2π
0 sin4 θdθ = 3

4π and
∫ 2π
0 sin6 θdθ = 5

8π.]

(ii) For the cases 0 < k < 6 and for k > 6, deduce the stability of any periodic
orbits.

(iii) What can we deduce from this approach about the existence of periodic orbits
near k = 6?
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Paper 2, Section II
33B Dynamical Systems

(a) Let F : I → I be a continuous one-dimensional map of an interval I ∈ R. Define
what it means for F to have a horseshoe.

Define what it means for F to be chaotic. [Glendinning’s definition should be used
throughout this question.]

Prove that if F has a 3-cycle then F 2 has a horseshoe. [You may assume corollaries
of the Intermediate Value Theorem.]

(b) Suppose now that F has a 4-cycle, and consider each of these orderings of the
points of the 4-cycle:

(i) x0 < x1 < x2 < x3

(ii) x0 < x1 < x3 < x2

(iii) x0 < x2 < x1 < x3

For each of these orderings, construct a suitable directed graph. Based on each of
these directed graphs, determine if the corresponding F must be chaotic and also give the
minimum number of distinct 3-cycles that F must have.

Give an explicit example of a continuous map F : [0, 1] → [0, 1] which has a 4-cycle
and is not chaotic. [Hint: choose a suitable ordering for the points on the 4-cycle, construct
a function which is piece-wise linear between these points, and examine the dynamics of
this map.]
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Paper 3, Section II
31B Dynamical Systems

Consider the system

ẋ = −ax+ 3y + x(x2 + y2)

ẏ = −x− ay + y(x2 + y2) ,

where a > 0 is a real constant. Throughout this question, you should state carefully any
theorems or standard results used.

(a) Show that the origin is asymptotically stable.

(b) Define the term Lyapunov function. For the system above, for what values of
k is V (x, y) = x2 + ky2 a valid Lyapunov function in some neighbourhood of the origin?
Give your answer in the form k1(a) < k < k2(a) where k1(a) and k2(a) should be given
explicitly.

(c) By considering V (x, y) for k = 1, what can be deduced about the domain of
stability (for values of a for which V (x, y) is a valid Lyapunov function)?

(d) State the Poincaré-Bendixson theorem. Show that the system above has a
periodic orbit.

Paper 4, Section II
32B Dynamical Systems

Consider the dynamical system

ẋ = x(y − k − 3x+ x2)

ẏ = y(y − 1 − x) ,

where k is a constant.

(a) Find all the fixed points of this system. By considering the existence and location
of the fixed points, determine the values of k for which bifurcations occur. For each of
these, what types of bifurcation are suggested from this approach?

(b) For the fixed points whose positions are independent of k, determine their linear
stability. Verify that these results are consistent with the bifurcations suggested above.

(c) Focusing only on the bifurcations which occur for 0 6 k 6 1
2 , use centre manifold

theory to analyse these bifurcations. In particular, for each bifurcation derive an equation
for the dynamics on the extended centre manifold and hence classify the bifurcation. [Hint:
There are two bifurcations in this range.]
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Paper 1, Section II
37B Electrodynamics

Consider a localised electromagnetic field in vacuum with electric and magnetic
fields E and B respectively in the absence of charges and currents.

(a) Show that the energy density ε = ε0
2 E

2 + 1
2µ0

B2 obeys a local conservation law

∂tε+ ∇ ·N = 0 .

Hence obtain an expression for the vector N and remark on its physical significance.
Here ε0 and µ0 are the electric and magnetic permeabilities of the vacuum.

(b) Show that the momentum density g = ε0E×B obeys a local conservation law

∂tgj +∇iσij = 0 .

Hence obtain an expression for the second-rank tensor σij and remark on its physical
significance.

(c) Defining the tensor

Tµν =

[
ε cgj

Ni/c σij

]

show that the results of (a) and (b) can be expressed as ∂µT
µν = 0.

(d) Using the fact that the tensor σij is symmetric, show that the integral over all
space of the angular momentum density L = x× g is independent of time. Here x is the
position with respect to the origin of an inertial frame.

(e) Show that the symmetry of σij in all inertial frames requires µ0ε0 = 1/c2.
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Paper 3, Section II
36B Electrodynamics

Consider a time-dependent localised electromagnetic field in vacuum with a four-
current density Jµ and vector potential Aµ.

(a) Determine the differential equation that relates the four-current density to the
vector potential in the gauge choice ∂µA

µ = 0.

(b) Show that the solution to the above differential equation can be expressed as

Aµ(x, t) =
µ0
4π

∫
Jµ(x′, t′)
|x− x′| d

3x′

where you should specify the form of t′.

(c) Show that the time derivative of the dipole moment p satisfies

ṗ =

∫
J(x, t) d3x

where J is the current density.

(d) A small circular loop of radius r is centred at the origin. The unit vector normal
to the plane of the loop is n. A current I(t) =

∑∞
n=0 In sin(nωt) flows in the loop. Find

the three vector potential A(x, t) to first order in r/|x|.

Paper 4, Section II
36B Electrodynamics

(a) Explain what is meant by a dielectric material.

(b) Define the polarisation of, and the bound charge in, a dielectric material. Explain
the reason for the distinction between the electric field E and the electric displacement D
in a dielectric material.

Consider a sphere of a dielectric material of radius R and permittivity ε1 embedded
in another dielectric material of infinite extent and permittivity ε2. A point charge q is
placed at the centre of the sphere. Determine the bound charge on the surface of the
sphere.

(c) Define the magnetisation of, and the bound current in, a dielectric material.
Explain the reason for making a distinction between the magnetic flux density B and the
magnetic intensity H in a dielectric material.

Consider a cylinder of dielectric material of infinite length, radius R and permeab-
ility µ1 embedded in another dielectric material of infinite extent and permeability µ2. A
line current I is placed on the axis of the cylinder. Determine the magnitude and direction
of the bound current density on the surface of the cylinder.
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Paper 1, Section II
39C Fluid Dynamics II

A viscous fluid of viscosity µ and density ρ is located in the annulus confined between
two long co-axial cylinders of radii R and αR with α < 1. The ends of the annular space are
open to the atmosphere. The axes of the cylinders are aligned in the vertical direction. We
use cylindrical coordinates (r, θ, z) with unit vector ez in the downward vertical direction.
There is a gravitational force g per unit mass acting on the fluid in the downward direction.
In the following you may consider the flow in the long central region of the annulus, far
from the ends, and neglect any details of the flow near the ends.

The outer cylinder is fixed and stationary. The inner cylinder steadily translates
along its axis with velocity V ez. The fluid flow between the two cylinders may be assumed
to be steady and unidirectional.

(a) Explain why we expect the velocity u to be of the form u = u(r)ez.

(b) Derive the equation satisfied by u(r) and state the corresponding boundary
conditions.

(c) Show that the pressure gradient in the z-direction is constant and compute its
value.

(d) Solve for the flow u(r) in the annular gap and sketch it for V = 0, and for two
further values of V , one positive and one negative.

(e) Calculate the force per unit length acting on the inner cylinder and the
corresponding force per unit length acting on the outer cylinder. Comment on the sum of
these forces.

[Hint: in cylindrical coordinates (r, θ, z) with velocity components (ur, uθ, uz) we
have

∇2uz =
1

r

∂

∂r

(
r
∂uz
∂r

)
+

1

r2
∂2uz
∂θ2

+
∂2uz
∂z2

.

The rz-component of the rate-of-strain tensor is erz =
1

2

(
∂ur
∂z

+
∂uz
∂r

)
. ]
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Paper 2, Section II
39C Fluid Dynamics II

(a) A fluid has kinematic viscosity ν > 0. In flow over a stationary rigid boundary
with length scale L, the fluid velocity far from the boundary has typical magnitude U .
Define the Reynolds number. Explain why even if the Reynolds number is large the effects
of viscosity cannot be neglected and explain briefly how boundary layer theory provides a
useful approximate approach to including these effects.

(b) A steady high-Reynolds number flow is induced in a semi-infinite fluid otherwise
at rest, in the region y > 0, by the in-plane motion of an extensible sheet lying along
x > 0, y = 0. Points on the sheet move with velocity V = αx ex, where α is the prescribed
constant rate of extension and ex is the unit vector in the x-direction.

(i) What should be chosen for the typical flow speed U(x) in the boundary layer?
Give an estimate of the corresponding x-dependent Reynolds number and
deduce that, for x sufficiently large, the flow is described by the boundary
layer equations. Derive the fundamental boundary-layer scaling relating U(x)
and the thickness δ(x) of the boundary layer and deduce the scaling for δ(x)
as a function of x.

(ii) State the two-dimensional boundary layer equations and their boundary
conditions for this problem in terms of a streamfunction ψ(x, y).

(iii) Seek a similarity solution to the boundary layer equations using

ψ(x, y) = U(x)δ(x)f(η) ,

where η ≡ y
δ(x) . Derive the ODE and boundary conditions satisfied by f(η).

(iv) Show that the ODE satisfied by f has a solution of the form A+B exp(−Cη)
and determine the values of the constants A, B and C.

(i) Comment on the behaviour of f as η →∞. What are the implications for the
flow external to the boundary layer?
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38C Fluid Dynamics II

A uniform rod in the shape of an elongated cylinder falls through a viscous fluid
under the action of gravity. The motion is sufficiently slow that the fluid flow is described
by the Stokes equations.

(a) Show that when the long axis of the rod is initially aligned with the horizontal
direction the rod falls vertically.

(b) Show that for any initial orientation of the rod the motion of the rod occurs
with no rotation.

(c) Denoting by F the hydrodynamic force exerted on the rod and U its translation
speed, explain why we expect a linear relationship of the form F = −R ·U, where R is a
matrix.

(d) State the reciprocal theorem of Stokes flows. Show that it implies that R is
symmetric.

(e) Use the energy equation, as applied to this steady flow problem, to deduce that
the matrix R is also positive definite.

(f) We denote by t the unit tangent vector along the rod and by θ the angle between
t and the vertical. Writing R = c1tt + c2(1 − tt) with c2 > c1 > 0, compute the value
of cosα where α is the angle between the vertical and the direction of motion of the rod.
Check the case where c1 = c2 and comment.

Paper 4, Section II
38C Fluid Dynamics II

A thin layer of fluid is flowing down an inclined plane due to the action of
gravity. The gravitational acceleration is g, the viscosity of the fluid is µ and the density
of the fluid is ρ. The angle between the plane and the horizontal is denoted by α.
Cartesian coordinates are defined with x along the plane in the downward direction and y
perpendicular to the plane. All quantities may be assumed to be constant in the in-plane
direction perpendicular to the slope. The thickness of the fluid layer is denoted by h(x, t).

(a) Assume that the dynamics of the layer is described by the lubrication equations
and hence estimate the order of magnitude for the flow speed u in the film. Deduce the two
conditions involving h, ∂h/∂x and the other parameters of the problem that are required
for the assumption of the lubrication limit to be self-consistent.

(b) State the momentum equations in the (x, y) coordinates under the lubrication-
limit assumption. What are the boundary conditions for the velocity and the pressure?

(c) Solve for the pressure in the fluid and deduce the flow velocity along the plane.

(d) Applying conservation of mass, deduce the partial differential equation satisfied
by h(x, t).

(e) Seek a travelling-wave solution h(x, t) = f(x− ct) and hence derive a first-order
ODE (containing an unknown constant of integration) satisfied by the function f .
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7E Further Complex Methods

Show that

P
∫ ∞

−∞

sz−1

s− t ds = πitz−1,

where t is real and positive, 0 < Re(z) < 1 and the branch of sz is chosen so that, for
z real, sz is real and positive for s real and positive and sz = (−s)zeiπz for s real and
negative.

Deduce that for z real with 0 < z < 1

∫ ∞

0

sz−1

s+ t
ds = πtz−1cosecπz

and

P
∫ ∞

0

sz−1

s− t ds = −πt
z−1 cotπz.

Why do these results actually hold for a large set of non-real z?

Paper 2, Section I
7E Further Complex Methods

A complex function Arcsinh(z) may be defined by

Arcsinh(z) =

∫ z

0

1

(1 + t2)1/2
dt ,

where the integrand (1 + t2)−1/2 is equal to 1/
√

2 at t = 1 and has a branch cut along the
imaginary axis between the points ±i (deformed very slightly to the left of the origin).

Explain how to choose the path of integration to ensure that Arcsinh(z) is analytic
and single valued in 0 6 arg z < 2π, except for z on the branch cut specified for (1+t2)−1/2.

Evaluate Arcsinh(− sinh(u)), where u is real and u > 0.

Deduce that if arcsinh(z) is an analytic continuation of Arcsinh(z) to the whole
complex plane, omitting the branch cut, but without restriction on arg(z), then it is
multivalued. What are the possible values of arcsinh(sinh(u)), with u real and u > 0?
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7E Further Complex Methods

Consider the partial differential equation

∂T

∂t
= κ

∂2T

∂x2

in x > 0 subject to the initial condition T (x, 0) = 0 for all x > 0 and the boundary
condition T (0, t) = sinωt for t > 0.

Show that the Laplace transform of T (x, t) takes the form

T̃ (x, p) = T̃0(p) exp(−(p/κ)1/2x)

and determine the function T̃0(p).

Consider I(t) =
∫∞
0 T (x, t) dx. Write down an expression for Ĩ(p).

Applying the Bromwich contour inversion expression for Laplace transforms gives
the result that for t > 0

I(t) = A cos(ωt) +B sin(ωt) +
1

π

∫ ∞

0

ωκ1/2

(s2 + ω2)

e−st

s1/2
ds ,

where A and B are independent of t. Draw a diagram showing the Bromwich contour and
explain clearly how the terms appearing in the above expression arise.

Paper 4, Section I
7E Further Complex Methods

What type of equation has solutions described by the following Papperitz symbol?

P




z1 z2 z3
α1 α2 α3 z
β1 β2 β3





Explain the meaning of each of the quantities appearing in the symbol.

The hypergeometric function F (a, b, c; z) is defined by

F (a, b; c; z) = P





0 1 ∞
0 0 a z

1− c c− a− b b





with F (a, b; c; z) analytic at z = 0 and satisfying F (a, b; c; 0) = 1.

Explain carefully why there are constants A and B such that

F (a, b; c; z) = Az−aF (a, 1 + a− c; 1 + a− b; z−1) +Bz−bF (b, 1 + b− c; 1 + b− a; z−1).

[You may neglect complications associated with special cases such as a = b.]
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The polylogarithm function Lis(z) is defined for complex values of z (|z| < 1) and s
(all complex s) by

Lis(z) =
∞∑

n=1

zn

ns
.

(a) Briefly justify why the conditions given on z and s given above are appropriate.

Consider the integral

I(z, s) =
Γ(1− s)

2πi

∫ (0+)

−∞

zts−1

e−t − z dt , (1)

where the integral is taken along a Hankel contour, as indicated by the limits.

(b) Show that I(z, s) provides an analytic continuation of Lis(z) for all z /∈ (1,∞).
[Hint: You may assume where needed the Hankel representation of the Gamma function,

Γ(z) = (2i sinπz)−1
∫ (0+)
−∞ ettz−1 dt, and the result Γ(z)Γ(1− z) = πcosec(πz).]

Include in your answer a sketch of the Hankel contour, with particular attention to
the path of the contour relative to any singularities in the integrand when z is close to,
but not on the part (1,∞) of the real axis.

(c) Describe how to evaluate I(z, s) when s is a non-positive integer. Hence give
explicit expressions for Lis(z) for s = 0, s = −1 and s = −2.

(d) For s > 0 show that I(z, s) can be expressed in the form

I(z, s) =

∫ ∞

0
K(z, s, t) dt,

where t is a real variable and K(z, s, t) is to be determined. Comment on the required
interpretation of the expression (1) when s is a positive integer.

Without detailed calculation, explain (for s > 0) why I(z, s) jumps by the value
2πi(log x)s−1/Γ(s) when z moves from just below (1,∞) to just above (1,∞) at the point
x (x > 1).
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13E Further Complex Methods

Consider the differential equation

d3w

dz3
− zw = 0 .

Use Laplace’s method to find solutions of the form

w(z) =

∫

γ
ezt f(t) dt ,

where γ is a contour in the complex t-plane. Determine the function f(t) and state clearly
the condition required for the contour γ.

Draw a sketch of the complex t-plane showing the possible choices of γ, relating
these to the behaviour of f(t).

Show that three different suitable contours γi, i = 1, 2, 3, may be formed from the
positive real axis plus parts of the real axis or the imaginary axis, with each γi defining a
function wi(z). Write down expressions for the values of wi(0), w′

i(0) and w′′
i (0) (i = 1, 2, 3)

and evaluate them in terms of Gamma functions.

Give an expression for

det



w1(0) w′

1(0) w′′
1(0)

w2(0) w′
2(0) w′′

2(0)
w3(0) w′

3(0) w′′
3(0)


.

Deduce that the functions wi(z) (i = 1, 2, 3) are linearly independent.
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18H Galois Theory

(a) Let K be a field with charK 6= 2, 3. If f = x3 + px + q ∈ K[x], define the
discriminant of f , and compute it in terms of p and q.

Let L be the splitting field of f and let G = Aut(L/K) be the Galois group. Describe
all possibilities for G. Justify your answer. [Do not assume that f is irreducible.]

Compute all subfields of L when f = x3 + 3x + 1 ∈ Q[x]. You may specify the
subfields in terms of the roots; you do not need to determine the roots explicitly in terms
of radicals.

(b) Let L/K be a Galois extension, and suppose f ∈ L[x]. Show that there exists a
non-zero polynomial g ∈ L[x] such that fg ∈ K[x].

Now suppose only that L/K is a finite separable extension, and that f ∈ L[x]. Show
that there exists a non-zero polynomial g ∈ L[x] such that fg ∈ K[x].

Paper 2, Section II
18H Galois Theory

(a) Let L be a finite field of order pn. Suppose that γ ∈ L, and let f ∈ Fp[x] be the
minimal polynomial of γ over Fp. Show that deg f divides n. Prove that there is a γ ∈ L
for which deg f = n.

Show that for every r > 1, there is an irreducible polynomial g ∈ Fp[x] of degree r.

[You may assume the tower law and the existence of splitting fields, but should prove
any results about finite fields that you use.]

(b) Suppose that K is a field and that L is a finite extension of K. Define what it
means for α ∈ L to be separable over K. If f ∈ K[x] is the minimal polynomial of α and
gcd(f, f ′) = 1 show that α is separable over K.

Now suppose that L = K(β) is a finite extension of K and that charK = p. Show
there exists a unique intermediate field M with K ⊆ M ⊆ L, such that the following
conditions hold: M is a separable extension of K, [L : M ] = ph for some h, and γp

h ∈M
for all γ ∈ L. [Hint: If β is not separable, what is its minimal polynomial? ]
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18H Galois Theory

(a) Let L/K be an extension of fields, and suppose that K contains a primitive nth
root of unity ζ. Let σ ∈ Aut(L/K) be a K-automorphism of L of order n. Prove that
there exists a nonzero element α ∈ L with σ(α) = ζα. What is the minimal polynomial
of α over Lσ, the fixed field of σ?

(b) Define what it means for L to be an algebraic closure of K. Given that

Q = {α ∈ C | α is algebraic over Q}

is a field, show that Q is an algebraic closure of Q. State carefully any results that you
use.

(c) Let L be an algebraically closed field of characteristic zero, and σ : L → L a
homomorphism of fields. Suppose σd = 1 for some d > 0, and let K = Lσ be the fixed field
of σ. If M/K is a finite extension, show that M/K is a Galois extension with cyclic Galois
group. [Hint: Show that there is a K-homomorphism from M to L.] Give an example
showing that the assumption that L is algebraically closed is necessary.

Paper 4, Section II
18H Galois Theory

(a) Stating carefully all the theorems that you use, prove that for every integer r > 1
there is a Galois extension L/Q with Galois group Z/rZ.

(b) Suppose L1 and L2 are two extensions of a field K, and both L1 and L2 are
subfields of some field M . Let L1L2 be the smallest subfield of M containing both L1 and
L2. If [Li : K] = di and gcd(d1, d2) = 1, show that [L1L2 : K] = d1d2.

(c) Let p > 3 be a prime number. Give examples of two non-isomorphic groups G,G′

of order p(p− 1) containing normal subgroups N,N ′ of order p such that G/N ∼= G′/N ′.

Fix p = 3. For the groups G,G′ above, give explicit examples of Galois extensions
L/Q and L′/Q with Aut(L/Q) ∼= G and Aut(L′/Q) ∼= G′. Identify the fixed fields LN and
(L′)N

′
. Justify your answer.

Now suppose p > 3 is an arbitrary prime. Prove that there are extensions L and L′

of Q with Aut(L/Q) ∼= G and Aut(L′/Q) ∼= G′.
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38D General Relativity

A Milne universe is an isotropic, homogeneous model of cosmology which has
negative spatial curvature, k = −1, and an expanding scale factor, ȧ(t) > 0, even though
there is no matter or radiation (Tαβ = 0) and no cosmological constant (Λ = 0).

(a) Write down the FLRW metric for this cosmological model. Calculate the scale
factor a(t) as an explicit function of the proper time t of a stationary observer.

(b) Verify that the singularity as a → 0 is a coordinate singularity by calculating
the Kretschmann scalar. [Hint: You may find it useful to relate the Riemann tensor to
the Ricci tensor.]

(c) By constructing an appropriate coordinate transformation, show that the Milne
universe is equivalent to the interior of the future light-cone of a point p in Minkowski
space-time. What do the spatial isometries of the hyperbolic t = const. slices correspond
to in this Minkowski space-time?

[Hint: You may wish to use the following formulae:

3
ȧ+ k

a2
− Λ = 8πρ , (Friedmann I)

2aä+ ȧ2 + ka2 − Λ = −8πP . (Friedmann II)

Riemann tensor in normal coordinates:

Rαβµν =
1

2
(∂β∂µgαν + ∂α∂νgβµ − ∂α∂µgβν − ∂β∂νgαµ). ]
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38D General Relativity
(a) Consider a 2-sphere with coordinates (θ, φ) and metric

ds2 = dθ2 + sin2θ dφ2 .

(i) Show that lines of constant longitude (φ = constant) are geodesics, and that the only
line of constant latitude (θ = constant) that is a geodesic is the equator (θ = π/2).

(ii) Take a vector with components V µ = (1, 0) in these coordinates, and parallel
transport it once around a circle of constant latitude. What are the components of
the resulting vector, as functions of θ?

(b) In units where 8πG = 1, the Einstein equation states that Tαβ = Rαβ − 1
2gαβR. Solve

for Rαβ in terms of Tαβ and T = gαβTαβ, in general space-time dimension n > 2.

(c) Using the symmetries of the Riemann curvature tensor, show that in n = 2 dimensions,
Rαβ = 1

2gαβR. [Hint: Since this is a tensor equation, it only needs to be proved in one
particular coordinate system.] Explain the implications of this if we try to define General
Relativity in n = 2 space-time dimensions.
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37D General Relativity

Recall that the Schwarzschild metric is

ds2 = −(1− 2M/r) dt2 + (1− 2M/r)−1dr2 + r2(dθ2 + sin2 θ dφ2) ,

in units where c = G = 1. An advanced alien civilization builds a static, spherically-
symmetrical space station surrounding a non-rotating black hole of mass M . The station
itself has mass Mst � M and is located at a radius rst > 2M (in Schwarzschild
coordinates). It occupies a very thin shell of width δr � rst.

(a) Some sodium lamps, which emit photons at a characteristic wavelength λ, are
attached to the space station. In terms of rst, what is the wavelength of these photons as
seen by an observer at radius r � rst? What happens in the limit that rst approaches the
event horizon?

(b) What is the magnitude and direction of the proper acceleration of the space
station (i.e. the acceleration in its own instantaneous rest frame)? Verify that in the limit
rst →∞, the magnitude is equal to the acceleration due to Newtonian gravity.

Now suppose we wish to take into account the gravitational effects of the space
station itself, even though Mst � M . The space station has a mass per unit area of ρ as
measured in its own local frame of reference. However, its effective gravitational energy is
reduced by the fact that it is in a gravitational potential.

(c) What is an appropriate metric to use outside of the space station? Your answer
should indicate how the metric depends on ρ. Why is this justified? [Hint: You do not
need to explicitly solve the Einstein equation in order to answer this problem.]
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37D General Relativity

(a) Determine whether each of the following spaces is, or is not, a manifold. Justify
your answers.

(i) R3 with points identified if they are related by the transformation
(x, y, z)→ (−x,−y,−z).

(ii) R3, except that the closed ball of all points with x2+y2+z2 6 1 is removed.

(b) Let a tensor S at point p ∈M be defined as a linear map

S : T ∗
p (M)→ Tp(M)× Tp(M) ,

where Tp is tangent space and T ∗
p is cotangent space.

(i) What is the rank of S? Use
(
r
s

)
notation.

(ii) What is the rank of S ⊗ ∇S, where ⊗ is an outer product and ∇ is the
covariant derivative?

Consider a spacelike geodesic which goes from point p to point q. As a geodesic,
this curve minimizes the action

S =

∫ 1

0

√
gµν ẋµẋν dλ ,

where x = x(λ) with x(0) = p, x(1) = q and ẋµ = dxµ/dλ. Show using the Euler-Lagrange
equations that

d2xβ

ds2
+ Γβµν

dxµ

ds

dxν

ds
= 0 ,

where s is the proper distance along the geodesic and Γβµν is the Levi-Civita connection.
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17F Graph Theory

(a) Define a proper k-colouring of a graph G. Define the chromatic number χ(G)
of a graph G. Prove that χ(G) 6 ∆(G) + 1 for all graphs G. Do there exist graphs G for
which χ(G) = ∆(G) + 1 for each ∆(G) = 0, 1, 2, . . .?

(b) What does it mean for a graph to be k-connected? If G is a non-complete
3-connected graph, show that χ(G) 6 ∆(G).

(c) State Euler’s formula. If G is a triangle-free planar graph, prove that χ(G) 6 4.

(d) Define the edge-chromatic number χ′(G) of a graph G. State Hall’s theorem. If
G is a 4-regular bipartite graph, determine χ′(G).

Paper 2, Section II
17F Graph Theory

(a) For a graph H and a positive integer n, define ex(n,H). Prove that ex(n,K3) 6
n2/4. [You may not assume Turan’s theorem without proof.]

(b) For a fixed δ > 0, suppose thatG is a graph on n vertices with e(G) > (1+δ)n2/4.
Prove that G must contain at least εn3 triangles, where ε > 0 is a constant that does not
depend on n or G.

(c) Prove that ex(n,K3,2) < cn3/2, for some constant c > 0.

(d) Let x1, . . . , xn be distinct points in R2. Show that there exists a constant c > 0
such that at most cn3/2 of the ordered pairs (xi, xj) can satisfy |xi − xj | = 1.

Paper 3, Section II
17F Graph Theory

(a) Let G be a graph. Show that G contains a subgraph H with χ(H) 6 3 and

e(H) = b(2/3)e(G)c.

Show that the constant 2/3 is sharp, in the following sense: for any ε > 0 there
exists a graph G (with e(G) > 0) such that every subgraph H of G with χ(H) 6 3 has
e(H) 6 (2/3 + ε)e(G).

(b) An unfriendly partition of a graph G = (V,E) is a partition V = A ∪B, where
every v ∈ A has |N(v)∩B| > |N(v)∩A| and every vertex v ∈ B has |N(v)∩A| > |N(v)∩B|.
Show that every finite graph G has an unfriendly partition. [Hint: Consider a partition
A ∪B = V maximizing the number of edges with one end in A and one end in B.]

(c) Let G = (N, E) be a countably infinite graph in which all the vertices have finite
degree. Show that G has an unfriendly partition.

(d) Let G = (N, E) be a countably infinite graph in which all the vertices have
infinite degree. Show that G has an unfriendly partition. (In other words, in this infinite
degree case, we want each vertex v ∈ A to have N(v) ∩B infinite and each v ∈ B to have
N(v) ∩A infinite.)
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17F Graph Theory

Define the binomial random graph G(n, p), where n ∈ N and p ∈ [0, 1].

Let Gn ∼ G(n, p) and let En be the event that δ(Gn) > 0. Show that for every
ε > 0, if p = p(n) satisfies p > (1 + ε)n−1 log n then P(En)→ 1.

State Chebyshev’s inequality and show that for every ε > 0, if p is such that
p 6 (1− ε)n−1 log n then P(En)→ 0.

For Gn ∼ G(n, p), let Fn be the event that Gn is connected. Prove that for every
ε > 0, if p > (1 + ε)n−1 log n then P(Fn) → 1 as n → ∞ and if p 6 (1− ε)n−1 log n then
P(Fn) → 0 as n → ∞. [You may wish to consider separately the case when there is a
component of size at most say nε/10 and the case when there is not.]

[You may use, without proof, the fact that 1 − x 6 e−x for all x ∈ [0, 1], and also
that for any fixed δ ∈ (0, 1) we have 1− x > e−(1+2δ)x for all x ∈ [0, δ). All logarithms in
this question are natural logarithms.]
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33E Integrable Systems

(a) Show that if L is a symmetric n×n matrix (L = LT ) and B is a skew-symmetric
n × n matrix (B = −BT ) then [B,L] = BL − LB is symmetric. If L evolves in time
according to

dL

dt
= [B,L] ,

show that the eigenvalues of L are constant in time.

Write the harmonic oscillator equation q̈ + ω2q = 0 in Hamiltonian form. (The
frequency ω is a fixed real number). Starting with the symmetric matrix

L =

(
p ωq
ωq −p

)

find a Lax pair formulation for the harmonic oscillator and use this formulation to obtain
the conservation of energy for the oscillator.

(b) Consider the Airy partial differential equation, given for −∞ < x < ∞ and
t > 0 by

qt + qxxx = 0. (1)

Show that this is a compatibility condition for the pair of linear equations

ψx − ikψ = q (2)

ψt − ik3ψ = −qxx − ikqx + k2q (3)

for a function ψ = ψ(x, t, k) ∈ C. Show that for each t, equation (2) has a solution ψ+

which is defined for Im k > 0, analytic in k for Im k > 0, and satisfies

lim
x→+∞

e−ikxψ+(x, t, k) = q̂(k, t) =

∫ +∞

−∞
e−ikxq(x, t)dx .

Deduce from this and equation (3) that q̂(k, t) evolves in time according to

q̂t − ik3q̂ = 0

and hence obtain a representation for the solution of the Airy equation (1).

[You may assume that q is a smooth function whose derivatives are rapidly decreasing
in x.]
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34E Integrable Systems

It is possible to obtain solutions of the partial differential equation

uXT = sinu , (1)

at time T from certain discrete scattering data {λm(T ), cm(T )}Nm=1 and corresponding
eigenfunctions ψm(X,T ) for an associated linear problem by means of the formula

uX(T,X) = −4
∑

m

cmψ
(1)
m (X,T )eiλmX ,

where ψm =

(
ψ
(1)
m

ψ
(2)
m

)
and ψ̃m =

(
−ψ(2)

m

ψ
(1)
m

)
solve

ψ̃n(X,T )eiλn(T )X −
(

0
1

)
=
∑

m

cm(T )ψm(X,T )

(λn(T )− λm(T ))
eiλm(T )X .

Given the fact that the discrete scattering data {λm(T ), cm(T )}Nm=1 evolve according

to λm(T ) = λm(0) = λm and cm(T ) = cm(0)e−
iT
2λn , obtain the solution in the case N = 1

with λ1(T ) = il purely imaginary and c1(0) = c = 2l > 0. Show that there is a unique
positive value of l for which the solution is of the form F (X + T ) for some function F ,
which you should give.

Show that

gs :



X
T
u


 7→



esX
e−sT
u


 (2)

defines a group of Lie point symmetries of (1). Show that all the solutions to (1) you
obtained for N = 1 transform under (2) into F (X + T ), with F as above.

In the case N = 2 and λ1 = il + m, λ2 = il −m with real l > 0,m > 0 there is a
solution of (1) given by

u(T,X) = 4 arctan
l sin

(
2mX − 2mT

4(l2+m2)

)

m cosh
(

2lT
4(l2+m2)

+ 2lX
) . (3)

Show that if l2 +m2 = 1
4 then this solution is periodic in t = T −X for fixed x = X + T ;

find the period.

Show that for arbitrary l2 + m2 the solutions (3) may be transformed by (2) into
the case l2 +m2 = 1

4 .
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Paper 3, Section II
32E Integrable Systems

Explain what it means for a vector field V = V1(x, u)∂x + φ(x, u)∂u to generate a
Lie symmetry for a differential equation ∆(x, u, ∂xu, . . . , ∂

n
xu) = 0. State a condition for

this to hold in terms of the nth prolongation of V , pr(n)V , giving also a definition of this
latter concept.

Calculate the second prolongation of the vector field V , and hence show that if V
generates an infinitesimal Lie symmetry for the equation

u′′ =
(u′)2

u
− u2 (1)

then V1 must be of the form

V1(x, u) = F (x) ln |u|+G(x)

for some functions F,G.

Show that if c and d are arbitrary real numbers then

V = (cx+ d)∂x − 2cu∂u

is an infinitesimal Lie symmetry for equation (1), and give the form of the group of
symmetries that it generates.

[Assume u > 0 throughout.]
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Paper 1, Section II
22G Linear Analysis

Let `∞ denote the space of bounded real sequences and let `1 denote the space of
summable real sequences. Suppose that ϕ : `∞ → R is linear and continuous, that ϕ
is non-negative on non-negative sequences, that ϕ((xn)n>1) = ϕ((xn+1)n>1), and that ϕ
maps the constant sequence equal to one to one.

(a) Prove that lim infn→∞ xn 6 ϕ((xn)n>1) 6 lim supn→∞ xn for all (xn)n>1 ∈ `∞.

(b) Is there (yn)n>1 ∈ `1 so that ϕ((xn)n>1) =
∑

n>1 xnyn for all (xn)n>1 ∈ `∞?

(c) Give an example of (xn)n>1 ∈ `∞ that does not converge but for which all ϕ
defined as above give the same value.

(d) Let y ∈ R. Assume (xn)n>1 ∈ `∞ satisfies
xn+1 + xn+2 + · · ·+ xn+p

p
→ y as

p→∞ uniformly in n > 1. Prove that ϕ((xn)n>1) = y.

Paper 2, Section II
22G Linear Analysis

(a) Given a complex Banach space (V, ‖ · ‖), prove that the space of bounded linear
maps (B(V, V ), ||| · |||) endowed with the norm

|||T ||| = sup
v∈V, ‖v‖=1

‖Tv‖

is a Banach space.

(b) Assume (V, ‖ · ‖) is a complex Hilbert space. State the definitions of a compact
operator T : V → V and of a Hilbertian basis. Suppose T ∈ B(V, V ) and V has a Hilbertian
basis (en)n>1 such that T (en) = λnen for complex numbers λn, n > 1. Prove that T is
compact if and only if λn → 0.

(c) Given a complex Hilbert space (V, ‖ · ‖) and (en)n>1 a Hilbertian basis of V ,
consider H(V, V ), the set of linear operators T such that

∑
n>1 ‖Ten‖2 < +∞. Prove that

operators in H(V, V ) are bounded and compact, and that (H(V, V ), ||| · |||∗) with

|||T |||∗ =

(∑

n>1

‖Ten‖2
)1/2

is a Hilbert space. Are ||| · ||| and ||| · |||∗ equivalent norms on H(V, V )?

Paper 3, Section II
21G Linear Analysis

(a) Prove that any metric space (X, d) is normal for the induced topology.

(b) State the Urysohn lemma and the Tietze extension theorem.

(c) Prove that a metric space (X, d) is compact if and only if all continuous functions
from X to R are bounded.
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Paper 4, Section II
22G Linear Analysis

(a) Define what it means for a sequence of functions fn : R → R to be equi-
continuous on [0, 1]. State the Arzelà–Ascoli theorem.

(b) Given a continuous function ϕ : R → R, we can inductively define functions
fn : R→ R for n > 0 by fn+1(t) =

∫ t
0 ϕ(fn(s)) ds, and f0(t) = 0 for all t ∈ R. Show that

there exists T1 > 0 so that the sequence (fn)n>1 is equi-bounded and equi-continuous on
[0, T1].

(c) Deduce the existence of T2 ∈ (0, T1] and a continuously differentiable function
f : [0, T2] → R such that f(0) = 0 and f ′(t) = ϕ(f(t)) on [0, T2]. [Hint: Prove that if
T2 ∈ (0, T1] is small enough, Rn(t) = fn+1(t)− fn(t)→ 0 uniformly on [0, T2].]
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Paper 1, Section II
16F Logic and Set Theory

State and prove the Knaster–Tarski fixed-point theorem.

A subset S of a poset X is called a down-set if whenever x, y ∈ X satisfy x ∈ S and
y 6 x then also y ∈ S. Show that the set P of down-sets of X, ordered by inclusion, is a
complete poset.

Now let X and Y be totally ordered sets.

(i) Give an example to show that we may have X isomorphic to a down-set in Y ,
and Y isomorphic to a down-set in X, and yet X is not isomorphic to Y . [Hint: Consider
suitable subsets of the reals.]

(ii) Show that if X is isomorphic to a down-set in Y , and Y is isomorphic to the
complement of a down-set in X, then X is isomorphic to Y .

Paper 2, Section II
16F Logic and Set Theory

(a) Give the inductive and synthetic definitions of ordinal addition, and prove that
they are equivalent.

(b) Which of the following assertions about ordinals α, β and γ are always true,
and which can be false? Give proofs or counterexamples as appropriate.

(i) (α+ β)γ = αγ + βγ.

(ii) α(β + γ) = αβ + αγ.

(iii) If α is a limit ordinal then αω = ωα.

(iv) If α > ω1 and β < ω1 then β + α = α.

(v) If α+ α+ β and β + α+ α are equal then they are both equal to α+ β + α.
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Paper 3, Section II
16F Logic and Set Theory

State and prove the Compactness Theorem for first-order predicate logic. State and
prove the Upward Löwenheim–Skolem Theorem.

[You may assume the Completeness Theorem for first-order predicate logic.]

For each of the following theories, is the theory axiomatisable (in the language of
posets, extended by some set of constants if necessary) or not? Justify your answers.

(i) The theory of posets having only finitely many maximal elements.

(ii) The theory of posets having uncountably many maximal elements.

(iii) The theory of posets having infinitely many maximal elements or infinitely
many minimal elements (or both).

(iv) The theory of posets having infinitely many maximal elements or infinitely
many minimal elements, but not both.

(v) The theory of the total orders that are isomorphic to a subset of the reals.

Paper 4, Section II
16F Logic and Set Theory

(a) Define the von Neumann hierarchy of sets Vα. Show that each Vα is transitive,
and explain why Vα ⊂ Vβ whenever α 6 β. Prove that every set x is a member of some
Vα.

(b) What does it mean to say that a relation r on a set x is well-founded and
extensional? State Mostowski’s Collapsing Theorem. Give an example of a set x whose
rank is greater than ω but for which the Mostowski collapse of x (equipped with the
relation ∈) is equal to ω.

Which of the following statements are always true and which can be false? Give
proofs or counterexamples as appropriate.

(i) If a relation r on a set x is isomorphic to the relation ∈ on some transitive set
y then r is well-founded and extensional.

(ii) If a relation r on a set x is isomorphic to the relation ∈ on some (not necessarily
transitive) set y then r is well-founded.

(iii) If a relation r on a set x is isomorphic to the relation ∈ on some (not necessarily
transitive) set y then r is extensional.
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Paper 1, Section I
6C Mathematical Biology

Consider the discrete delay equation

xn+1 = xn exp [r (1− xn−1)] ,

with r > 0 a constant.

(a) Find the positive fixed point x∗ of the model. Setting xn = x∗ + un, with
|un| � 1, determine the linearised stability equation for un.

(b) Find the range of r for which the fixed point x∗ is stable and for which
perturbations decay monotonically in time.

(c) Find the range of r for which the decay of perturbations to x∗ is oscillatory.

(d) Find the critical value r∗ for x∗ to become unstable, and show that at that value
of r the system exhibits oscillations of period p > 1. Find p.

Paper 2, Section I
6C Mathematical Biology

Two species with populations N1 and N2 compete according to the equations

dN1

dt
= r1N1

(
1 − N1

K1
− b12

N2

K1

)

dN2

dt
= r2N2

(
1 − b21

N1

K2

)
,

so that only species 1 has limited carrying capacity. Assume that the parameters
r1, r2,K1,K2, b12, and b21 are all strictly positive.

(a) Rescale the variables N1, N2 and t to leave three parameters, ρ = r1/r2,
α = b12K2/K1 and β = b21K1/K2 and determine the steady states.

(b) Assuming β > 1, investigate the stability of the biologically relevant steady
states and sketch the phase plane trajectories.

(c) Assuming β > 1, show that irrespective of the size of the parameters the principle
of competitive exclusion holds. Briefly describe under what ecological circumstances
species 2 becomes extinct.
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Paper 3, Section I
6C Mathematical Biology

A biological population contains n individuals. The population increases or de-
creases according to the transition rates

n
λ−→ n+ 1 n

βn2

−−→ n− 2 .

(a) Derive the master equation for P (n, t), the probability that the population
contains n individuals at time t, and a corresponding equation for 〈n〉. What condition
does the latter imply on the steady state?

(b) The Fokker-Planck equation has the form:

∂

∂t
P (n, t) = − ∂

∂n

[
A(n)P (n, t)

]
+ 1

2

∂2

∂n2
[
B(n)P (n, t)

]
. (1)

Derive the Fokker-Planck equation from your master equation. Deduce the forms
of A(n) and B(n) for this system.

(c) Give brief arguments why in the steady state (1) has the approximate solution
(2πσ2)−1/2 exp(−(n− µ)2/2σ2) and derive the corresponding values of σ and µ.

(d) Comment on the relation to the steady-state condition you have derived in (a).
Under what conditions on β and λ is the Fokker-Planck equation likely to give an accurate
description of the steady state?
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Paper 4, Section I
6C Mathematical Biology

An allosteric enzyme E reacts with substrate S to produce a product P according
to the mechanism

E + S
k1−−⇀↽−−
k−1

C1

C1 + S
k2−→ C2

k3−→ C1 + P ,

where the kis are rate constants, and C1 and C2 are enzyme-substrate complexes.

(a) With lowercase letters denoting concentrations, write down the differential
equation model based on the Law of Mass Action for the dynamics of e, s, c1, c2 and
p.

(b) Show that the quantity c1 + c2 + e is conserved and comment on its physical
meaning.

(c) Using the result in (b), assuming initial conditions s(0) = s0, e(0) = e0,
c1(0) = c2(0) = p(0) = 0, and rescaling with ε = e0/s0, τ = k1e0t, u = s/s0, and
vi = ci/e0, show that the reaction mechanism can be reduced to

du

dτ
= f(u, v1, v2) ,

ε
dv1
dτ

= g1(u, v1, v2) ,

ε
dv2
dτ

= g2(u, v1, v2) .

Determine f , g1 and g2 and express them in terms of the three dimensionless quantities
α = k−1/k1s0, β = k2/k1 and γ = k3/k1s0.

(d) On time scales τ � ε, show that the rate of production of P can be expressed
in terms of the rescaled substrate concentration u in the form

dp

dt
= A

u2

α+ u+ (β/γ)u2
,

where A is a constant. Compare this relation to the Michaelis-Menten form by means of
a sketch.
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Paper 3, Section II
13C Mathematical Biology

A chemical species of concentration C(x, t) diffuses in a two-dimensional stationary
medium with diffusivity D(C). Write down an expression for the diffusive flux J that
enters Fick’s law and then show that C obeys the partial differential equation

∂C

∂t
= ∇ · (D(C)∇C) . (1)

Suppose that at time t = 0 an amount 2πM of the chemical is deposited at the
origin and diffuses outward in a circularly symmetric manner, so that C = C(r, t) for
r > 0, t > 0, where r is the radial coordinate. Assume the diffusivity is D = kC for some
constant k. Show, by dimensional analysis or otherwise, that an appropriate similarity
solution has the form

C =
Mα

(kt)β
F (ξ) , ξ =

r

(Mkt)γ
and

∫ ∞

0
ξF (ξ) dξ = 1 ,

where the exponents α, β, γ are to be determined, and derive the ordinary differential
equation satisfied by F .

Solve this ordinary differential equation, subject to appropriate boundary condi-
tions, and deduce that the chemical occupies a finite circular region of radius

r0(t) = (NMkt)1/4 ,

with N a constant which you should find.

Still assuming that D = kC, show that if a term αC is added to the right-hand side
of (1), a solution of the form C(r, t) = G(r, τ)eαt can be found, where τ(t) is a time-like
variable satisfying τ(0) = 0. Show that a suitable choice of τ reduces the dynamics to

∂G

∂τ
= k∇ · (G∇G) ,

and that the previous analysis can be applied to find the concentration. Describe the
evolution in the cases α = 0, α > 0, and α < 0.

[Hint: In plane polar coordinates

∇C(r, t) ≡
(
∂C

∂r
, 0, 0

)
and ∇ · (V (r, t), 0, 0) ≡ 1

r

∂

∂r
(rV ) .

]
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Paper 4, Section II
14C Mathematical Biology

Consider the standard system of reaction-diffusion equations

ut = Du∇2u+ f(u, v)

vt = Dv∇2v + g(u, v) ,

where Du and Dv are diffusion constants and f(u, v) and g(u, v) are such that the system
has a stable homogeneous fixed point at (u, v) = (u∗, v∗).

(a) Show that the condition for a Turing instability can be expressed as

fu + dgv > 2
√
dJ ,

where d = Du/Dv is the diffusivity ratio and J = fugv − fvgu > 0 is the determinant of
the stability matrix of the homogeneous system evaluated at (u∗, v∗).

(b) Show that this result implies that a Turing instability at equal diffusivities
(d = 1) is not possible.

(c) Show that the result in (b) also follows directly from the structure of the reaction-
diffusion equations linearised about the homogeneous fixed point in the case Du = Dv.

(d) Using the example (
−1 −1

1 + δ 1− δ

)
,

for the stability matrix of the homogeneous system, show that the diffusivity ratio at which
Turing instability occurs can be made as close to unity as desired by taking δ sufficiently
small.
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Paper 1, Section II
31J Mathematics of Machine Learning

(a) Let F be a family of functions f : X → {0, 1} with |F| > 2.

Define the shattering coefficient s(F , n) and the VC dimension VC(F) of F .

State the Sauer–Shelah lemma.

(b) (i) Let

A1 =

{ m⋃

k=1

[ak, bk] : ak, bk ∈ R for k = 1, . . . ,m

}
.

Show that F1 := {1A : A ∈ A1} satisfies VC(F1) = 2m.

(ii) Let F2 be a class of functions from Rp to {0, 1} given by

F2 := {x 7→ 1(0,∞)(µ+ xTβ) : β ∈ Rp, µ ∈ R} .

Stating any result from the course you need, give an upper bound on
VC(F2).

(c) (i) Let G be a family of functions g : Z → {0, 1} with |G| > 2 and define H to
be the set of functions h : X ×Z → {0, 1} for which h(x, z) = f(x)g(z) for
some f ∈ F and g ∈ G. Show that s(H, n) 6 s(F , n)s(G, n).

(ii) Now let G be a family of functions g : X → {0, 1} with |G| > 2 and define
H to be the set of functions h : X → {0, 1} for which h(x) = f(x)g(x) for
some f ∈ F and g ∈ G. Show that s(H, n) 6 s(F , n)s(G, n).

(d) (i) Let

A3 =

{ p∏

j=1

( m⋃

k=1

[ajk, bjk]
)

: ajk, bjk ∈ R for j = 1, . . . , p, k = 1, . . . ,m

}
.

Show that F3 := {1A : A ∈ A3} satisfies s(F3, n) 6 (n+ 1)2mp.

(ii) For m > 3, let A4 be the set of all convex polygons in R2 with m sides,
and set F4 := {1A : A ∈ A4}. Show that s(F4, n) 6 (n+ 1)3m.
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Paper 2, Section II
31J Mathematics of Machine Learning

(a)What does it mean for a function f : Z1 × · · · × Zn → R to have the bounded
differences property with constants L1, . . . , Ln?

State the bounded differences inequality.

(b) Let X and Y be input and output spaces respectively. Let H be a machine
learning algorithm taking as its argument a dataset D ∈ (X ×Y)n to output a hypothesis
HD : X → R. For D = (xi, yi)

n
i=1 ∈ (X × Y)n and (x, y) ∈ X × Y, for all i = 1, . . . , n we

write
Di(x, y) := ((x1, y1), . . . , (xi−1, yi−1), (x, y), (xi+1, yi+1), . . . , (xn, yn)) .

Let ` : R×Y → [0,M ] be a bounded loss function. Suppose H has the following property:
there exists β > 0 such that for all i = 1, . . . , n and for all (x, y) ∈ X × Y, we have

sup
(x̃,ỹ)∈X×Y

|`(HDi(x,y)(x̃), ỹ)− `(HD(x̃), ỹ)| 6 β.

Let (X,Y ) ∈ X × Y be a random input–output pair. Show that F : (X × Y)n → R given
by

F ((x1, y1), . . . , (xn, yn)) = E`(HD(X), Y )− 1

n

n∑

i=1

`(HD(xi), yi)

satisfies a bounded differences property with constants all equal to 2β + M/n. [In the
expectation above, the (xi, yi) are considered deterministic.]

(c) Now suppose D = (Xi, Yi)
n
i=1 ∈ (X × Y)n is a collection of i.i.d. input–

output pairs independent of, and each having the same distribution as, (X,Y ). Show
that EF (D) 6 β. [Hint: Find an alternative expression for E`(HD(X), Y ) as a sum of
expectations with the ith term involving HDi(X,Y ).]

(d) Hence conclude that, given 0 < δ 6 1,

1

n

n∑

i=1

`(HD(Xi), Yi) + β + (2nβ +M)

√
log(1/δ)

2n
> E`(HD(X), Y )

with probability at least 1− δ.
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Paper 4, Section II
30J Mathematics of Machine Learning

Throughout this question, you may assume that the optimum is achieved in any
relevant optimisation problems, so for instance in part (a) you may assume f̂ is well-
defined.

Suppose (X1, Y1), . . . , (Xn, Yn) ∈ X × {−1, 1} are i.i.d. input–output pairs. Let B
be a set of classifiers h : X → {−1, 1} such that h ∈ B ⇒ −h ∈ B.

(a) Write down the Adaboost algorithm using B as the base set of classifiers with
tuning parameter M , which produces f̂ : X → R of the form f̂ =

∑M
m=1 β̂mĥm where

β̂m > 0 and ĥm ∈ B for m = 1, . . . ,M . [You need not derive explicit expressions for β̂m
or ĥm.]

(b) For a set S ⊆ Rd, what is meant by the convex hull, convS? What does it mean
for a vector v ∈ Rd to be a convex combination of vectors v1, . . . , vm ∈ Rd? State a result
relating convex hulls and convex combinations.

(c) Let φ denote the exponential loss. What is meant by the φ-risk Rφ(f) of

f : X → R? What is the corresponding empirical φ-risk R̂φ(f)? Let x1:n ∈ X n. What is

meant by the empirical Rademacher complexity R̂(B(x1:n))?

(d) Consider a modification of the Adaboost algorithm where, if at any iteration
m 6 M we have

∑m
k=1 β̂k > 1, we terminate the algorithm and output f̂ :=

∑m−1
k=1 β̂kĥk,

or the zero function if m = 1; otherwise we output f̂ =
∑M

k=1 β̂kĥk as usual. Let

rB = supx1:n∈Xn R̂(B(x1:n)). Show that

ERφ(f̂) 6 ER̂φ(f̂) + 2 exp(1)rB.

[Hint: Introduce

H :=

{
M∑

m=1

βmhm :

M∑

m=1

βm 6 1, βm > 0, hm ∈ B for m = 1, . . . ,M

}
.

You may use any results from the course without proof, but should state or name any result
you use.]
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Paper 1, Section II
20H Number Fields

(a) Let K be a number field of degree n. Show that there are exactly n field
embeddings σ1, . . . , σn : K ↪→ C. [You may assume that K = Q(α) for some α ∈ K.]

Define the discriminant dK of K. Show that the sign of dK is (−1)s, where s is the
number of pairs of complex conjugate embeddings (σi, σ̄i 6= σi). [You may assume that
dK is nonzero.]

(b) If L = Q(θ), where θ3 + 2θ2 + 1 = 0, show that OL = Z[θ].

(c) Let K be as in part (a). Suppose that α ∈ K and that |σj(α)| = 1 for some j.

(i) Prove that
∣∣NK/Q(α)

∣∣ = 1.

(ii) Deduce that if α ∈ OK , then α is a unit.

(iii) Give an example of a number field K and an element α ∈ K r OK for
which |σ1(α)| = · · · = |σn(α)| = 1.

Paper 2, Section II
20H Number Fields

Let K be a number field.

(a) Let P1, . . . , Pk (where k > 1) be distinct nonzero prime ideals of OK and
let m1, . . . ,mk be positive integers. Let I be the product Pm1

1 · · ·Pmk
k . Explain why

I = Pm1
1 ∩ · · · ∩ Pmk

k , and hence show that the map

OK/I → OK/Pm1
1 × · · · × OK/Pmk

k

taking α+ I to (α+ Pm1
1 , . . . , α+ Pmk

k ) is an isomorphism of rings.

Deduce that there exists α ∈ I such that α /∈ PiI for all i. Show that there exists
an ideal I ′ with I + I ′ = OK such that II ′ is principal. Show also that any ideal of OK
can be generated by two elements.

(b) State Dedekind’s criterion for the factorisation of rational primes in OK . Use
it to compute the factorisation of any odd rational prime in OK when K = Q(

√
d) is a

quadratic field.

Show that if d > 0 and K contains an element α with NK/Q(α) = −1, then no
prime p ≡ 3 (mod 4) can ramify in K.
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Paper 4, Section II
20H Number Fields

Let K be a number field. What is an ideal class of K? Show that the set of ideal
classes of K forms an abelian group. [You may use any results about ideals in number
fields provided you state them clearly.]

Assuming that there exists a constant cK such that every nonzero ideal I of OK
contains a nonzero element α with

∣∣NK/Q(α)
∣∣ 6 cK N(I), show that the ideal class group

of K is finite.

Compute the ideal class group of Q(
√
−33). [You may assume that the Minkowski

constant cK of an imaginary quadratic field is
2

π
|dK |1/2.]
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Paper 1, Section I
1I Number Theory

A function f : N → C is multiplicative if f(mn) = f(m)f(n) for all m,n coprime.
Show that if f is multiplicative then so is g(n) =

∑
d|n f(d). Define the Möbius function µ

and Euler function φ. Establish the identities

φ(n)

n
=
∑

d|n

µ(d)

d
and

n

φ(n)
=
∑

d|n

µ(d)2

φ(d)
.

Paper 2, Section I
1I Number Theory

Explain what it means for a positive definite binary quadratic form to be reduced,
and what it means for two such forms to be equivalent. Prove that every positive definite
binary quadratic form is equivalent to a reduced form. Show that any two equivalent
forms represent the same set of integers.

Carefully quoting any further results you need, show that f(x, y) = 6x2 + 5xy+ 2y2

and g(x, y) = 9x2 + 25xy + 18y2 represent the same integers, but are not equivalent.

Paper 3, Section I
1I Number Theory

State Lagrange’s theorem on the possible number of solutions of a polynomial
congruence. State and prove the Chinese remainder theorem.

Find the smallest positive integer x satisfying x3 + 1 ≡ 0 (mod 1729). Hence, or
otherwise, determine the number of solutions of this congruence with 1 6 x 6 1729.

Paper 4, Section I
1I Number Theory

Compute the continued fraction expansion of
√
29.

Find integers x and y satisfying x2 − 29y2 = −1.
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Paper 3, Section II
11I Number Theory

(a) Define what it means for an integer to be a primitive root mod n.

(b) Let p be an odd prime, and b a primitive root mod p. Prove the following are
equivalent.

(i) b is a primitive root mod p2.

(ii) b is a primitive root mod pm for all m > 2.

(iii) No pseudoprime to the base b is divisible by p2.

(c) Find the three smallest positive integers b with the property that b is a primitive
root mod 5m for all m > 1.

(d) Let P (n) be the number of primitive roots mod n. Show that for each k > 1
there are only finitely many integers n with P (n) = k.

Paper 4, Section II
11I Number Theory

(a) Define the Legendre symbol and state Euler’s criterion. State and prove Gauss’
lemma. Determine the primes p for which the congruence x2 ≡ 2 (mod p) is soluble.

(b) Let πk(x) be the number of primes p less than or equal to x with p ≡ k (mod 8).

(i) By considering the prime factorisation of n2 − 2 for suitable n, show that
π7(x)→∞ as x→∞.

(ii) By considering the prime factorisation of n2−2 for all n in a suitable range,
show that for all x sufficiently large we have

π1(x) + π7(x) + 1 > log x

6 log 3
.
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Paper 1, Section II
41C Numerical Analysis

(a) Let H ∈ Rn×n be diagonalisable. Show that the sequence defined by z(k+1) =
Hz(k) converges to 0 for all initial vectors z(0) ∈ Cn if, and only if, ρ(H) < 1 where ρ(H)
is the spectral radius of H.

Let A ∈ Rn×n be a symmetric positive definite matrix, and let b ∈ Rn.

(b) Prove that the solution to Ax = b is the unique minimiser of the function
f(x) = (1/2)xTAx− bTx.

(c) The steepest descent method with constant step size α is defined by

x(k+1) = x(k) − α∇f(x(k)).

Applying the method to the function f given in (b), write down the iterations explicitly in
terms of A and b. Under what conditions on α does the sequence x(k) converge to A−1b?

(d) Consider the steepest descent method with exact line search, where at each
iteration k, the constant α = α(k) is chosen so that f(x(k+1)) is as small as possible.
Give an explicit expression for the step size α(k). Show that, in this case, the residuals
r(k) = b−Ax(k) satisfy (r(k))T r(k+1) = 0 for all k.
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Paper 2, Section II
41C Numerical Analysis

(a) Consider a linear recurrence relation

s∑

k=r

aku
n+1
m+k =

s∑

k=r

bku
n
m+k n > 0, m ∈ Z ,

where (ak) and (bk) are fixed coefficients.

(i) Show that if we define the Fourier transform of un = (unm)m∈Z by ûn(θ) =∑
m∈Z e

−imθunm, then the linear recurrence relation takes the form

ûn+1(θ) = H(θ)ûn(θ) ,

where H(θ) is a function that you should specify.

(ii) Show that the sequence (un)n>0 is bounded in the `2 norm, for all u0, if and
only if |H(θ)| 6 1 for all θ ∈ [−π, π].

[You may assume Parseval’s identity:

‖u‖2`2 =
∑

m∈Z
|um|2 =

1

2π

∫ π

−π
|û(θ)|2 dθ. ]

(b) Consider the following three recurrence relations:

(i) un+1
m = unm + µ(unm − unm−1)

(ii) un+1
m = 1

2µ(1 + µ)unm−1 + (1− µ2)unm − 1
2µ(1− µ)unm+1

(iii) un+1
m − 1

2(µ−α)(un+1
m−1−2un+1

m +un+1
m+1) = unm+ 1

2(µ+α)(unm−1−2unm+unm+1)

where n ∈ N is the time discretization index, m ∈ Z is the spatial discretization index,
µ > 0 is the Courant number, and, for (iii), α > 0 is a parameter. In each case give an
expression for the amplification factor H(θ), and deduce the set of values µ (and α for
(iii)) for which we have stability.
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Paper 3, Section II
40C Numerical Analysis

Let A ∈ Rn×n be a symmetric matrix with real eigenvalues λ1, . . . , λn ordered by
their magnitudes in nonincreasing order, |λ1| > |λ2| > . . . > |λn|.

(a) Define the power method to compute the leading eigenvalue of A. Show that,
under suitable assumptions, the iterates (xk) of the power method satisfy

r(xk)− λ1 = O(|λ2/λ1|2k)

as k →∞, where r(x) = xTAx/xTx is the Rayleigh quotient.

(b) Let

A =




5 1 3
1 7 1
3 1 5




to which we apply the power method with starting vector x0 = (1/
√

2,−1/
√

2, 0).
Compute xk and r(xk) explicitly, and find the limit value limk→∞ r(xk). Compare with
the result in (a) and comment. [Hint: The eigenvalues of A are 9, 6 and 2.]

(c) Define the inverse iteration with shift, and describe (without proof) the conver-
gence of the method, clearly stating the assumptions.

Part II, Paper 1



73

Paper 4, Section II
40C Numerical Analysis

(a) State and prove the Gershgorin circle theorem.

(b) Consider the diffusion equation on the square [0, 1]2

∂u

∂t
=

∂

∂x

(
a(x, y)

∂

∂x
u(x, y)

)
+

∂

∂y

(
a(x, y)

∂

∂y
u(x, y)

)
,

where 0 < a(x, y) < amax for all (x, y) ∈ [0, 1]2 is the diffusion coefficient, and with
Dirichlet boundary conditions u(x, y, t) = 0 for (x, y) on the boundary of [0, 1]2.

Consider a uniform grid of size M × M with step h = 1/(M + 1) and let
ui,j = u(ih, jh) for 1 6 i 6M and 1 6 j 6M .

(i) Using finite differences, show that the right-hand side of the diffusion equation
can be discretised by an expression of the form

1

h2
(αui−1,j + βui+1,j + γui,j−1 + δui,j+1 − (α+ β + γ + δ)ui,j)

for some α, β, γ, δ which you should specify, and which depend on i, j and the
diffusion coefficient. Show that the error of this discretisation is O(h2).

(ii) The time derivative is discretised using a forward Euler scheme with a time
step ∆t = k. Use Gershgorin’s theorem, clearly justifying all your steps, to
show that the resulting scheme is stable when 0 < µ 6 1/(4amax), where
µ = k/h2 is the Courant number.
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Paper 1, Section II
34A Principles of Quantum Mechanics

Let A and A† respectively be the lowering and raising operator for a one-dimensional
quantum harmonic oscillator, with [A,A†] = 1. Also let |n〉 be the nth excited state of the
oscillator, obeying N |n〉 = n|n〉 where N = A†A is the number operator.

(a) Show that A|n〉 ∝ |n− 1〉 and find the constant of proportionality.

(b) For any z ∈ C, define the coherent state |z〉 by

|z〉 = e−|z|
2/2

∞∑

n=0

zn√
n!
|n〉 .

Show that 〈z|z〉 = 1 and that A|z〉 = z|z〉.
(c) Calculate the expectation value 〈N〉 and uncertainty ∆N of the number operator

in the state |z〉. Show that the relative uncertainty ∆N/〈N〉 → 0 as 〈N〉 → ∞.

(d) A harmonic oscillator is prepared to be in state |z〉 at time t = 0. Using the
properties of the Hamiltonian of the one-dimensional harmonic oscillator, show that the
state evolved to time t > 0 is still an eigenstate of A and find its eigenvalue. Calculate the
probability that the oscillator is found to be in the original state |z〉 at time t, and show
that this probability is 1 whenever t = kT , where k ∈ N and T is the classical period of
the oscillator.
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Paper 2, Section II
35A Principles of Quantum Mechanics

(a) Let {| ↑ 〉, | ↓ 〉} be a basis of Sz eigenstates for a spin-12 particle. Find the
eigenstates | ↑θ〉 and | ↓θ〉 of n · S, where n = (sin θ, 0, cos θ), and give their corresponding
eigenvalues.

(b) Two spin-12 particles are in the combined spin state

|ψ〉 =
|↑ 〉|↓ 〉 − |↓ 〉|↑ 〉√

2
.

Show that this state is unchanged under the substitution

(|↑ 〉, |↓ 〉) 7→ (|↑θ〉, |↓θ〉).

Hence show that |ψ〉 is an eigenstate, with eigenvalue zero, of each Cartesian component
of the combined spin operator S = S(1) + S(2), where S(i) is the spin operator of the ith

particle.

(c) Two spin-12 particles are in the spin state

|χ〉 =
|↑ 〉|↓θ〉 − |↓ 〉|↑θ〉√

2
.

A measurement of Sz for the first particle is carried out, followed by a measurement of Sz
for the second particle. List the possible outcomes for this pair of measurements and find
the total probability, in terms of θ, for each pair of outcomes to occur. For which of these
outcomes is the system left in an eigenstate of the combined total spin operator S ·S, and
what are the corresponding eigenvalues?

[Hint: The Pauli sigma matrices are given by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. ]
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Paper 3, Section II
33A Principles of Quantum Mechanics

(a) Show that [Lz, z] = 0 and hence that 〈n′, `′,m′|z|n, `,m〉 vanishes unless m′ = m,
where |n, `,m〉 is a simultaneous eigenstate of H, L2 and Lz.

(b) Given that [L2, [L2, z]] = 2~2(L2z+zL2), show that 〈n′, `′,m′|z|n, `,m〉 vanishes
unless |`′− `| = 1 or `′ = ` = 0. By considering parity, show that this matrix element also
vanishes if `′ = `.

(c) A hydrogen atom in its ground state |n, `,m〉 = |1, 0, 0〉 is placed in a constant,
uniform electric field E. With reference to the atom’s charge distribution, but without
detailed calculation, give a physical explanation of why there is no correction of first-order
(in E) to the ground state energy, but higher-order corrections are possible.

(d) Show that the second-order correction to the energy of the ground state caused
by the electric field is

e2|E|2
R

∞∑

n=2

n2

1− n2 |〈n, 1, 0|z|1, 0, 0〉|
2 ,

where −R is the unperturbed energy of |1, 0, 0〉.
[You may assume that, when a Hamiltonian is perturbed by ∆H, the second-order

correction to the ground state energy is

∑

α

|〈α|∆H|φ〉|2
Eφ − Eα

,

where {|α〉} is a complete set of unperturbed eigenstates states orthogonal to the unper-
turbed ground state |φ〉, and Eα, Eφ are their unperturbed energies.]
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Paper 4, Section II
33A Principles of Quantum Mechanics

A particle travels in one dimension subject to the Hamiltonian

H0 =
P 2

2m
− U δ(x) ,

where U is a positive constant. Let |0〉 be the unique bound state of this potential and
E0 its energy. Further let |k,±〉 be unbound H0 eigenstates of even/odd parity, each with
energy Ek, chosen so that 〈k′,+|k,+〉 = 〈k′,−|k,−〉 = δ(k′ − k).

(a) At times t 6 0 the particle is trapped in the well. From t = 0 it is disturbed by a
time-dependent potential v(x, t) = −Fx e−iωt and subsequently its state may be expressed
as

|ψ(t)〉 = a(t) e−iE0t/~|0〉+

∫ ∞

0

(
bk(t)|k,+〉+ ck(t)|k,−〉

)
e−iEkt/~ dk .

Show that

ȧ(t) e−iE0t/~|0〉+

∫ ∞

0
e−iEkt/~

(
ḃk(t)|k,+〉+ ċk(t)|k,−〉

)
dk =

iF

~
e−iωt x|ψ(t)〉

for all t > 0.

(b) Working to first order in F , hence show that bk(t) = 0 and that

ck(t) =
iF

~
〈k,−|x|0〉 eiΩkt/2

sin(Ωkt/2)

Ωk/2
,

where Ωk = (Ek − E0 − ~ω)/~.

(c) The original bound state has position space wavefunction 〈x|0〉 =
√
K e−K|x|

where K = mU/~2, while the position space wavefunction of the odd parity unbound
state is 〈x|k,−〉 = sin(kx) /

√
π and its energy Ek = ~2k2/2m. Show that at late times the

probability that the particle escapes from the original potential well is

Pfree(t) =
8~F 2t

mE2
0

√
Ef/|E0|

(1 + Ef/|E0|)4

to lowest order in F , where Ef > 0 is the final energy. [You may assume that as t→∞,
the function sin2(λt)/(λ2t)→ π δ(λ).]
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Paper 1, Section II
29K Principles of Statistics

(a) Suppose that Θ is an open subset of Rp, that Φ : Θ → R is continuously
differentiable at some θ0 ∈ Θ, and that {θ̂n}n>1 is a sequence of random vectors in Rp

satisfying
√
n(θ̂n − θ0) d→ Z, where Z ∈ Rp. Prove that

√
n(Φ(θ̂n)− Φ(θ0))

d→ ∇θΦ(θ0)
TZ .

For the remainder of this problem, consider the N(0, σ2) model, where σ ∈ (0,∞).

(b) Derive the maximum likelihood estimator σ̂MLE of σ based on an i.i.d. sample
of size n from the model. What is the asymptotic distribution of

√
n(σ̂MLE − σ)? [Hint:

You may use, without proof, the fact that E[Z4] = 3 when Z ∼ N(0, 1).]

(c) What is the Fisher information I(σ) (for the sample size n = 1)?

(d) Now consider the alternative parametrization of the model in terms of ρ = σ2,
where ρ ∈ (0,∞). What is the maximum likelihood estimator ρ̂MLE of ρ?

Paper 2, Section II
29K Principles of Statistics

Suppose X1, . . . , Xn are i.i.d. samples from a N(θ, 1) distribution. Consider an
estimator θ̂a,b of the form aX̄n + b, where a, b ∈ R and X̄n denotes the sample mean.
Throughout this question, we will consider risks computed with respect to the quadratic
loss.

(a) Compute the risk of θ̂a,b for estimating θ.

(b) Use the formula in part (a) to show that when a > 1, the estimator θ̂a,b is
inadmissible for estimating θ.

(c) Now use the formula in part (a) to show that when a < 0, the estimator θ̂a,b
is also inadmissible for estimating θ. [Hint: Compare the estimator with the constant
estimator δ := −b

a−1 .]

(d) Prove that X̄n is admissible for estimating θ. [Hint: You may use, without
proof, the general Cramér–Rao lower bound, and the facts that I(θ) = 1 and Eθ[δ(X)] is
differentiable for any estimator δ under the Gaussian model.]

(e) Can any of the estimators considered in parts (b) and (c) be minimax for
estimating θ?
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Paper 3, Section II
28K Principles of Statistics

Suppose Tn is an estimator computed from n i.i.d. observations X1, . . . , Xn. Recall
that the jackknife bias-corrected estimate of Tn is given by T̃JACK = Tn − B̂n, where

B̂n = (n− 1)

(
1

n

n∑

i=1

T(−i) − Tn
)
.

(a) Suppose that as n → ∞ the bias function Bn(θ) = Eθ[Tn] − θ can be
approximated as

Bn(θ) =
a

n
+

b

n2
+O

(
1

n3

)
,

for some a, b ∈ R. Prove that

|E[T̃JACK]− θ| = O

(
1

n2

)
.

For the remainder of this problem, suppose Xi
i.i.d.∼ N(µ, 1).

(b) Consider the estimator Tn = (X̄n)2 for θ = µ2, where X̄n denotes the sample
mean. Compute the biases of Tn and T̃JACK.

(c) What is the asymptotic distribution of
√
n(Tn − µ2)?

(d) Show that
√
n(T̃JACK−µ2) has the same asymptotic distribution as

√
n(Tn−µ2).

[Hint: Define g(t) = t2 and define X̄n−1,i to be the sample mean of the observations with
Xi excluded. Note that

T̃JACK = Tn −
n− 1

n

n∑

i=1

(
g(X̄n−1,i)− g(X̄n)

)

and use the identities

n∑

i=1

(X̄n−1,i − X̄n) = 0 and X̄n−1,i − X̄n =
1

n− 1
(X̄n −Xi). ]
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Paper 4, Section II
28K Principles of Statistics

(a) Suppose it is possible to generate samples from a Uniform[0, 1] distribution.
Describe a method for generating samples from an exponential distribution with rate
parameter 1, and prove that the method is valid.

(b) Recall that the accept/reject algorithm, which operates on two pdfs f and h
satisfying f 6Mh, proceeds as follows:

1. Generate X ∼ h and U ∼ Uniform[0, 1].

2. If U 6 f(X)
Mh(X) , take Y = X. Otherwise, return to Step 1.

Prove that the output Y has pdf f .

(c) Suppose the pdf f is given by

f(x) =
2√
2π
e−x

2/2, for all x > 0.

Let h be the pdf of an exponential distribution with rate parameter 1. Explain how to
apply the accept/reject algorithm in this special case. Identify an appropriate value for
M .

(d) Compute the expected number of steps required to generate one sample from
the pdf f in part (c) using the accept/reject algorithm.

(e) Let Y be a random variable generated according to the algorithm in (c). Now
suppose we generate a random variable X using the following additional steps:

1. Generate V ∼ Uniform[0, 1].

2. If V 6 1
2 , take Z = Y . Otherwise, take Z = −Y .

What is the distribution of Z?

(f) Suppose the final goal is to generate samples from the distribution of Z in part
(e). Following the steps outlined in parts (a)–(e), could the efficiency of the algorithm be
improved by choosing X to be an exponential random variable with rate parameter λ 6= 1?
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Paper 1, Section II
27G Probability and Measure

(a) State and prove Kolmogorov’s zero-one law.

(b) Consider the product space E = RN equipped with the σ-algebra σ(C) generated
by the cylinder sets

C =
{
A = ×∞

n=1An |An ⊆ R, An Borel for n 6 N,An = R for n > N, some N ∈ N
}
.

For m a probability measure on R, show that there exists a unique product measure µ on
(E, σ(C)) for which µ(A) =

∏∞
n=1m(An) for all A ∈ C. Show further that the shift map θ

defined on E by θ((x1, x2, . . . )) = (x2, x3, . . . ) is measure-preserving and ergodic for µ.

[You may use without proof the existence of an infinite sequence of i.i.d. real random
variables defined on any probability space.]

Paper 2, Section II
27G Probability and Measure

(a) State and prove the monotone convergence theorem.

(b) Let f1 be a µ-integrable function and let f be a measurable function defined on
some measure space (E, E , µ). Suppose the sequence (fn : n ∈ N) of measurable functions
on E is such that fn ↑ f pointwise on E as n → ∞. Show that µ(fn) ↑ µ(f) as n → ∞.
Show that the conclusion may fail if f1 is not integrable.

Paper 3, Section II
26G Probability and Measure

Suppose that as n → ∞, a sequence of real random variables Xn →d X, i.e. Xn

converges in distribution to some limiting random variable X. Suppose further that as
n → ∞ a sequence of real random variables Yn →P c, i.e. Yn converges in probability to
some constant (non-random) limit c > 0. Show that XnYn →d cX as n→ ∞.

Now let (Zn : n ∈ N) be i.i.d. real random variables with EZi = 0 and finite variance
Var(Zi) = 1 for all i. Show that

√
n
∑n

i=1 Zi∑n
i=1 Z

2
i

→d N(0, 1)

as n→ ∞, where N(0, 1) denotes the standard normal distribution.

[You may use the strong law of large numbers and the central limit theorem without
proof, provided they are clearly stated. You may further use without proof the equivalence
of weak convergence of laws of probability measures and convergence in distribution for
real random variables.]
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Paper 4, Section II
26G Probability and Measure

Denote by L1 the space of real-valued functions on R that are integrable with respect
to Lebesgue measure. For f ∈ L1 and gt the probability density function of a normal
N(0, t) random variable with variance t > 0, show that their convolution

f ∗ gt(x) =

∫

R
f(x− y)gt(y)dy , x ∈ R,

defines another element of L1. Show carefully that the Fourier inversion theorem holds
for f ∗ gt.

Now suppose that the Fourier transform of f is also in L1. Show that f∗gt(x)→ f(x)
for almost every x ∈ R as t→ 0.

[You may use Fubini’s theorem and the translation invariance of Lebesgue measure
without proof.]
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Paper 1, Section I
10D Quantum Information and Computation

Alice and Bob are separated in space and possess local quantum systems A and B
respectively.

(a) State the no-signalling theorem for quantum states of the composite system AB.

(b) State and prove the no-cloning theorem (for unitary processes) for a set S of
quantum states.

(c) Now let S = {| 0〉 , | 1〉 , |+〉 , | −〉} where | ±〉 = 1√
2
(| 0〉 ± | 1〉). Starting with a

suitable state for a 2-qubit composite system AB, show how the no-cloning theorem for
the set S can be seen as a consequence of the no-signalling theorem for AB.

Paper 2, Section I
10D Quantum Information and Computation

(a) Suppose that Alice and Bob are distantly separated in space and they can
communicate classically publicly. They also have available a noiseless quantum channel
on which there is no eavesdropping. Describe the steps of the BB84 protocol that results
in Alice and Bob sharing a secret key of expected length n/2. [Note that the steps of
information reconciliation and privacy amplification will not be needed in this idealised
situation.]

(b) Suppose now that an eavesdropper Eve taps into the quantum channel. Eve
also possesses a supply of ancilla qubits each in state | 0〉E . For each passing qubit |ψ〉A
sent by Alice, Eve intercepts it and applies a CX operation to it and one of her ancilla
qubits | 0〉E with Alice’s qubit being the control i.e. Eve applies CXAE . After this action
Eve sends Alice’s qubit on to Bob while retaining her ancilla qubit.

(i) Show that for two choices of Alice’s sent qubits, the qubit received by Bob will be
entangled with Eve’s corresponding ancilla qubit.

(ii) Calculate the bit error rate for Alice and Bob’s final key in part (a) that results
from Eve’s action.
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Paper 3, Section I
10D Quantum Information and Computation

Let x = x0x1 . . . xN−1 be an N -bit string with N = 2K being even. LetHM denote a
state space of dimension M with orthonormal basis {| k〉 : k ∈ ZM}. A quantum oracle Ox

for x is a unitary operation onHN⊗H2 whose action is defined by Ox | i〉 | y〉 = | i〉 | y ⊕ xi〉,
where y ∈ {0, 1} and ⊕ denotes addition modulo 2.

Consider the following oracle problem, called Problem A:
Input: an oracle Ox for some N -bit string x.
Promise: x is either a constant string, or a balanced string (the latter meaning that x
contains exactly K 0’s and K 1’s).
Problem: decide if x is balanced.

(a) Suppose we have a universal set of quantum gates available and any desired
unitary operation that is independent of x may be exactly implemented. Also, we may
perform measurements in the basis {| i〉 : i ∈ ZN} of an N -dimensional register.

Show that Problem A can be solved with certainty by a quantum algorithm that
makes only one query to the oracle Ox. The algorithm should begin with each register
initially in the state | 0〉 (in the appropriate state space).

(b) Suppose now that in addition to Ox and measurements in the basis {| i〉 : i ∈
ZN}, we can implement only the Pauli Z gate on a qubit register and gates F and F−1

on an N -dimensional register, where F has the property that F | 0〉 = 1√
N

∑
i∈ZN

| i〉.

By considering the action of Z on a qubit register | y〉, or otherwise, show that with
the restricted set of operations, Problem A can be solved with certainty by a quantum
algorithm that makes two queries to the oracle Ox, and as before, with each register
starting in the state | 0〉 (in the appropriate state space).
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Paper 4, Section I
10D Quantum Information and Computation

(a) Let Bn denote the set of all n-bit strings and write N = 2n. The Grover iteration
operator on n qubits is given by

Q = −HnI0HnIx0 .

Give a definition of the constituent operators Hn, I0 and Ix0 and state a geometrical
interpretation of the action of Q on the space of n qubits.

(b) The quantum oracle for the identity function I : Bn → Bn, I(x) = x is the
unitary operation UI on 2n qubits defined by UI(|x〉 | y〉) = |x〉 | y ⊕ I(x)〉 for all x, y ∈ Bn.
Here ⊕ denotes the sum of n-bit strings bitwise mod 2 separately at each of the n positions
in the string, i.e. the group operation in (Z2)

n.

Show how the action of UI can be represented by a circuit of CX gates.

(c) Suppose we are given a quantum oracle for I but it is known to be faulty on
one of its inputs. Instead of the full identity function it implements instead the function
f : Bn → Bn given by

f(x) =

{
x for all x 6= x0

x⊕ a for x = x0

where a ∈ Bn is the n-bit string 00 . . . 01 and where x0 ∈ Bn is unknown, i.e. the
given quantum oracle actually implements Uf . By providing a suitable input state for a
circuit involving Uf and further gates independent of f , show how Ix0 on n qubits may be
implemented in terms of Uf .

(d) Hence or otherwise show that for sufficiently large N , x0 may be determined
with some constant probability greater than 1

2 using O(
√
N) queries to the oracle Uf .
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Paper 2, Section II
15D Quantum Information and Computation

(a) (i) Define the Bell measurement on two qubits.

(ii) In terms of the Bell measurement and the Bell state |φ+〉 give the steps of
the quantum teleportation protocol. You need not give a derivation of the steps but you
should clearly state all inputs and outputs of the protocol.

(iii) Suppose now that the |φ+〉 state used in the protocol is replaced by | ξ〉 =
I ⊗U |φ+〉, where U is any 1-qubit unitary and all steps of the protocol remain otherwise
the same as in part (ii) above. State the outputs of this modified protocol and give a
justification of your answer. [You may quote any statements from part (ii) above.]

(b) A programmable 1-qubit gate G is defined to be a device acting on two registers
A and B, where A is a 1-qubit register called the input register and B is a K-qubit register
(for some fixed K ∈ N) called the program register. For any given state of AB the action
of G is a fixed unitary operation G on the K + 1 qubits, which is required to satisfy the
following condition called (PROG):

For any 1-qubit unitary U there is a K-qubit state |PU 〉 such that for any 1-qubit
state |α〉 we have

|α〉 ⊗ |PU 〉 7−→ G( |α〉 ⊗ |PU 〉 ) = (U |α〉)⊗
∣∣∣ P̃U

〉
.

Here
∣∣∣ P̃U

〉
is some K-qubit state (which could generally depend on |α〉 too). Thus |PU 〉

serves as a “program” for the application of U to any 1-qubit state |α〉 via the fixed
unitary action G.

(i) By considering suitable inner products or otherwise, show that if (PROG) holds

then
∣∣∣ P̃U

〉
must be independent of the state |α〉.

(ii) Suppose that |PU 〉 and |PV 〉 implement 1-qubit unitaries U and V that have
physically different actions i.e. U 6= V eiθ for any phase θ. Show that |PU 〉 and
|PV 〉 must then be orthogonal if (PROG) holds. [Hint: It may be helpful to show
that for any unitary W , if 〈α|W |α〉 is independent of |α〉 then W must be the
identity gate (up to an overall phase).]

(iii) Show that a programmable 1-qubit gate G satisfying (PROG) cannot exist.

(iv) Suppose now that (PROG) is extended to allow the action of G to involve quantum
measurements as well as unitary operations and we require of the “program” |PU 〉
only that it succeeds in applying U to |α〉 with at least some constant probability
0 < p < 1 independent of U and |α〉, i.e. the action of G on |α〉 ⊗ |PU 〉 results in
U |α〉 in the first register with probability at least p for each U and |α〉. Can such
a probabilistic programmable 1-qubit gate exist? Give a reason for your answer.
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Paper 3, Section II
15D Quantum Information and Computation

For any positive integerN , let QFTN denote the quantum Fourier transform modN .

(a) Consider an N -dimensional state space equipped with an orthonormal basis
B = {| k〉 : k ∈ ZN}. You may assume that QFTN , measurements in the basis B, and the
basic arithmetic operations of addition and multiplication modulo N may all be performed
in time O(poly(logN)).

Consider the function f : ZN → ZN defined by f(x) = ax mod N , where we have
fixed a choice of a ∈ ZN with a 6= 0. It is promised that f is periodic with period r which
divides N exactly, and f is one-to-one within each period.

Describe a quantum algorithm which runs in time O(poly(logN)) that will identify
r with success probability at least 1/2. The algorithm should start with each quantum
register (of suitable dimension) being in state | 0〉 and it should have the property that in
any run, we also learn whether it has succeeded or not. For any step of your algorithm that
is not one of the operations listed above, give a brief justification that it can be performed
in time O(poly(logN)). [You may use without proof any results from classical number
theory or classical probability theory but they must be stated clearly.]

(b) Consider an N -dimensional state space with orthonormal basis {| i〉 : i ∈ ZN}.
Let S be the operation defined by S | i〉 = | i+ 1〉 for all i ∈ ZN (and + being addition
modulo N). Show that the states QFTN | k〉 for k ∈ ZN are eigenvectors of S.
Now let N = 4 and represent each basis state | j〉 with two qubits as |x〉 | y〉 where the
2-bit string xy is j written in binary. Suppose we can implement only the gates QFT4, its

inverse and any 1-qubit phase gate P (θ) =

(
1 0
0 eiθ

)
. Show how S may be implemented

on any input 2-qubit state and sketch the circuit for S.
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Paper 1, Section II
19H Representation Theory

Let G be a finite group.

State Maschke’s theorem for complex representations of G. Deduce that every
representation of G is isomorphic to a direct sum of irreducible representations.

Define the character χV of a complex representation V of G. Suppose that G acts
on a finite set X. What is the permutation representation CX? Describe its character
χCX .

Show that if V1, . . . , Vr are all the irreducible representations of G up to isomorphism
then the regular representation decomposes as

CG ∼=
r⊕

i=1

(dimVi)Vi.

If V is a complex representation of G, let HomG(V, V ) be the space of G-linear maps
from V to V . If

V ∼=
r⊕

i=1

niVi,

what is the dimension of HomG(V, V )? What is the dimension when V = CG?

Now suppose V is a complex representation of G with character χ such that χ(g) = 0
for all non-identity elements g ∈ G. Show that V is a direct sum of copies of the regular
representation CG.

Deduce that if W is any complex representation of G then

W ⊗ CG ∼=
dimW⊕

i=1

CG.

[You may assume that the irreducible complex characters of a finite group form an
orthonormal basis of the space of class functions.]

Paper 2, Section II
19H Representation Theory

Suppose that G is a group of order 16. Let d1 6 d2 6 · · · 6 dr be the degrees of the
irreducible characters of G. What are the possible values of r and d1, . . . , dr? For each such
collection d1, . . . , dr find a group of order 16 with these character degrees and construct
the character table of the group. [You may assume any general results from the course
provided that you state them clearly. You may restrict yourself to brief justifications of
the values in each character table.]
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Paper 3, Section II
19H Representation Theory

Let G = SU(2) and let Vn be the complex vector space of homogeneous polynomials
of degree n in two variables x, y. Construct a continuous homomorphism ρn : G→ GL(Vn)
so that (ρn, Vn) is an irreducible representation of G. Prove that (ρn, Vn) is indeed
irreducible.

What is the character of Vn? Show that every irreducible representation of SU(2)
is isomorphic to (ρn, Vn) for some n > 0.

Suppose that χ is the character of a representation V of G. State a formula for the
character of Λ2V in terms of χ. Use it to decompose Λ2V4 as a direct sum of irreducible
representations up to isomorphism.

Express the character of Λ3V in terms of χ. Justify your answer. Decompose Λ3V4
as a direct sum of irreducible representations up to isomorphism.

Paper 4, Section II
19H Representation Theory

Suppose that H is a subgroup of a group G and χ is a complex character of H.

State Mackey’s restriction formula and Frobenius reciprocity for characters. Use
them to deduce Mackey’s irreducibility criterion for an induced representation.

Suppose that k is a finite field of order q > 4, G = SL2(k) and

B =

{(
a b
0 a−1

) ∣∣∣∣ a, b ∈ k, a 6= 0

}
.

Describe the degree 1 complex characters χ of B and explain, with justification, for which
of them IndGBχ is irreducible.
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Paper 1, Section II
24F Riemann Surfaces

(a) State the Uniformisation theorem, and deduce the Riemann mapping theorem.

(b) Let
E = {x+ iy | x, y ∈ R , −π < x < π}

be an infinite vertical strip in C, and let U ⊆ C consist of C with the negative real axis
(and zero) removed. A Mercator projection is a conformal equivalence f : U → E such
that Im f(z)→ −∞ as z → 0 and Im f(z)→ +∞ as z →∞. Exhibit an explicit Mercator
projection.

(c) Consider a conformal equivalence φ : E → E such that Imφ(z) → +∞ as
Im z → +∞ and Imφ(z) → −∞ as Im z → −∞. Prove that φ is translation by an
imaginary number, stating carefully any results that you use.

(d) Characterise all Mercator projections.

Paper 2, Section II
24F Riemann Surfaces

(a) Let D = {p1, . . . , pn} be a finite (possibly empty) subset of a Riemann surface
R, and let m1, . . . ,mn be strictly positive integers. Let V be the set of meromorphic
functions f on R such that each pole of f is at some pi, and the order of a pole at pi is at
most mi. Prove that V is a vector space over C.

(b) For any compact Riemann surface R, prove that

dimC V 6 1 +

n∑

i=1

mi

by considering Laurent expansions about the pi, or otherwise.

(c) Let R = C/Λ be a complex torus. For any meromorphic function f on R with
poles p1, . . . , pn, prove that

n∑

i=1

resf (pi) = 0 .

Assuming that n > 1, deduce that dimC V =
∑

imi.
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Paper 3, Section II
23F Riemann Surfaces

(a) Consider a finite group H of conformal equivalences of the Riemann sphere C∞
such that H fixes a point p ∈ C∞. Prove that H is cyclic and that there is a neighbourhood
U of p, invariant under H, so that the quotient V = H\U has the structure of a Riemann
surface. Show furthermore that there are charts on U and V so that the quotient map
takes the form z 7→ zn for some n ∈ N.

[You may use without proof the fact that every Möbius transformation is conjugate
to either a dilation z 7→ λz or a translation z 7→ z + c.]

(b) Let G be a finite group of conformal automorphisms of C∞. Prove that the
quotient R = G\C∞ has a conformal structure such that the quotient map C∞ → R is
holomorphic.

(c) For each positive integer n > 2, construct a faithful action of the dihedral group
D2n on C∞. Furthermore, exhibit a rational function f such that z1 and z2 are in the
same D2n-orbit if and only if f(z1) = f(z2).
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Paper 1, Section I
5J Statistical Modelling

Let Yµ be the Poisson distribution with mean µ. Show that the transformation
g(y) = 2

√
y is “variance stabilising” for Yµ in the sense that the variance of g(Yµ) is

approximately 1 when µ is large.

Suppose we fit a linear model to the transformed response
√
Y . How does this differ

from using the square root link in the Poisson regression?

Paper 2, Section I
5J Statistical Modelling

(a) Give the definition of an exponential family of probability distributions. [You
may assume the natural parameter is one-dimensional.]

(b) Suppose Y1, . . . , Yn
i.i.d.∼ f(y; θ) where f(y; θ) is the density function of an

exponential family with natural parameter θ and sufficient statistic Y . Show that
Ȳ =

∑n
i=1 Yi/n is a sufficient statistic for θ.

(c) In the setting above, show that the maximum likelihood estimator of θ is given
by setting the theoretical mean µ(θ) = Eθ(Y1) to the empirical mean Ȳ .

Paper 3, Section I
5J Statistical Modelling

The density function of the Laplace distribution Laplace(µ, σ) with mean µ and
scale parameter σ is given by

f(y;µ, σ) = (2σ)−1 exp

{
−|y − µ|

σ

}
.

Briefly comment on why the Laplace distribution cannot be written in exponential
dispersion family form.

Consider the linear model where (Xi, Yi), i = 1, . . . , n are assumed independent and

Yi | Xi ∼ Laplace(XT
i β, σ) .

Show that the maximum likelihood estimator β̂ of β is obtained by minimising

S(β) =

n∑

i=1

|Yi −XT
i β| .

Obtain the maximum likelihood estimator of σ in terms of S(β̂).
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Paper 4, Section I
5J Statistical Modelling

The Boston dataset records medv (median house value), age (average age of houses),
lstat (percent of households with low socioeconomic status), and other covariates for 506
census tracts in Boston.

> head(Boston[, c("medv", "age", "lstat")])

medv age lstat

1 24.0 65.2 4.98

2 21.6 78.9 9.14

3 34.7 61.1 4.03

4 33.4 45.8 2.94

5 36.2 54.2 5.33

6 28.7 58.7 5.21

Describe the mathematical model fitted in the R code below and give three
observations from the output of the code that you think are the most noteworthy.

> summary(fit <- lm(medv ~ lstat * age , data = Boston))

Residuals:

Min 1Q Median 3Q Max

-15.806 -4.045 -1.333 2.085 27.552

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.0885359 1.4698355 24.553 < 2e-16 ***

lstat -1.3921168 0.1674555 -8.313 8.78e-16 ***

age -0.0007209 0.0198792 -0.036 0.9711

lstat:age 0.0041560 0.0018518 2.244 0.0252 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.149 on 502 degrees of freedom

Multiple R-squared: 0.5557, Adjusted R-squared: 0.5531

F-statistic: 209.3 on 3 and 502 DF, p-value: < 2.2e-16

>

> par(mfrow = c(2, 2))

> plot(fit)

[QUESTION CONTINUES ON THE NEXT PAGE]
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Paper 1, Section II
13J Statistical Modelling

The following dataset contains information about some of the passengers on RMS
Titanic when it sank on 15th April, 1912.

> head(titanic)

Survived Pclass Sex Age SibSp Parch Fare Cabin Embarked

1 0 3 male 22 1 0 7.2500 <NA> S

2 1 1 female 38 1 0 71.2833 C85 C

3 1 3 female 26 0 0 7.9250 <NA> S

4 1 1 female 35 1 0 53.1000 C123 S

5 0 3 male 35 0 0 8.0500 <NA> S

6 0 3 male NA 0 0 8.4583 <NA> Q

> nrow(titanic)

[1] 889

We would like to predict which passengers were more likely to survive (Survived,
0 = No, 1 = Yes) using the other covariates, including ticket class (Pclass, 1 = 1st, 2 =
2nd, 3 = 3rd), sex (Sex), age (Age), number of siblings/spouses aboard (SibSp), number
of parents/children aboard (Parch), passenger fare (Fare), cabin number (Cabin), port of
embarkation (Embarked, C = Cherbourg, Q = Queenstown, S = Southampton).

(a) Describe what the following chunk of R code does.

> apply(titanic, 2, function(x) sum(is.na(x)))

Survived Pclass Sex Age SibSp Parch Fare Cabin

0 0 0 177 0 0 0 687

Embarked

0

> titanic$Cabin <- NULL

> titanic$Age[is.na(titanic$Age)] <- mean(titanic$Age, na.rm = TRUE)

(b) Write down the generalised linear model fitted (including the likelihood function
maximised) by the code below. Define Akaike’s information criterion (AIC) and explain,
in words, how you can use the backward stepwise algorithm and AIC to select a model.

> summary(fit <- glm(Survived ~ ., family = binomial, data = titanic))

Deviance Residuals:

Min 1Q Median 3Q Max

-2.6445 -0.5907 -0.4227 0.6214 2.4432

[QUESTION CONTINUES ON THE NEXT PAGE]
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.284055 0.564696 9.357 < 2e-16 ***

Pclass -1.100033 0.143530 -7.664 1.80e-14 ***

Sexmale -2.718736 0.200779 -13.541 < 2e-16 ***

Age -0.039885 0.007855 -5.078 3.82e-07 ***

SibSp -0.325732 0.109368 -2.978 0.0029 **

Parch -0.092470 0.118702 -0.779 0.4360

Fare 0.001919 0.002376 0.808 0.4192

EmbarkedQ -0.035043 0.381920 -0.092 0.9269

EmbarkedS -0.418564 0.236788 -1.768 0.0771 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1182.82 on 888 degrees of freedom

Residual deviance: 784.21 on 880 degrees of freedom

AIC: 802.21

Number of Fisher Scoring iterations: 5

(c) The model summary above says “Dispersion parameter for binomial family taken
to be 1”. Do you think that is reasonable based on the model summary? Justify your
answer. You might find the following information useful.

> qnorm(0.25) # 25th-percentile of the standard normal distribution

[1] -0.6744898

(d) Give an estimator of the dispersion parameter in this model when it is not fixed
at 1.
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Paper 4, Section II
13J Statistical Modelling

Consider the following R code:

> n <- 1000000

> sigma_z <- 1; sigma_x1 <- 0.5; sigma_x2 <- 1; sigma_y <- 2; beta <- 2

> Z <- sigma_z * rnorm(n)

> X1 <- Z + sigma_x1 * rnorm(n)

> X2 <- Z + sigma_x2 * rnorm(n)

> Y <- beta * Z + sigma_y * rnorm(n)

> lm(Y ~ Z)

Call:

lm(formula = Y ~ Z)

Coefficients:

(Intercept) Z

-0.003089 1.999780

> lm(Y ~ X1)

Call:

lm(formula = Y ~ X1)

Coefficients:

(Intercept) X1

-0.002904 1.600521

> lm(Y ~ X2)

Call:

lm(formula = Y ~ X2)

Coefficients:

(Intercept) X2

-0.002672 0.997499

Describe the phenomenon you see in the output above, then give a mathematical
explanation for this phenomenon. Do you expect the slope coefficient in the second model
to be generally smaller than that in the first model? Do you think modifying (for example,
doubling) the value of sigma y will substantially alter the slope coefficient in the second
model? Justify your answer.
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Paper 1, Section II
36A Statistical Physics

(a) What systems are described by a grand canonical ensemble? If there are Nn

particles in microstate n each with energy En, write down an expression for the grand
canonical partition function Z in terms of the temperature T , the chemical potential µ
and the Boltzmann constant kB.

(b) Define the grand canonical potential Φ in terms of the average energy E, T , the
entropy S, µ, and the average number of particles 〈N〉. Write down the relation between
Φ and Z.

(c) Using scaling arguments, express Φ(T, V, µ) in terms of the pressure p and the
volume V .

(d) Consider the grand canonical ensemble for a classical ideal gas of non-relativistic
particles of mass m in a fixed 3-dimensional volume V .

(i) Compute Z and Φ.

(ii) Calculate 〈N〉 and ∆N/〈N〉, where (∆N)2 = 〈N2〉 − 〈N〉2. Comment on
the latter result.

(iii) Derive the equation of state for the gas.

[You may assume that

∫ ∞

−∞
e−a x

2
dx =

√
π/a for a > 0. ]

(e) Using the grand canonical ensemble and your results from part (d), derive
the equation of state for a classical ideal gas of relativistic particles with energies√
|p|2 c2 +m2c4. Compute ∆N/〈N〉.
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Paper 2, Section II
37A Statistical Physics

(a) What systems are described by a microcanonical ensemble and which by a
canonical ensemble?

(b) Starting from the Gibbs formula for entropy, S = −kB
∑

n p(n) ln p(n), where
p(n) is the probability of being in microstate n and kB is the Boltzmann constant, show
how maximising entropy subject to appropriate constraints leads to the correct forms of
the probability distributions for (i) the microcanonical ensemble and (ii) the canonical
ensemble.

(c) Derive an expression for the entropy in the canonical ensemble in terms of the
partition function Z and temperature T .

(d) A system consists of N non-interacting particles fixed at points in a lattice in
thermal contact with a reservoir at temperature T . Each particle has three possible states
with energies −ε, 0, ε, where ε > 0 is a constant. Compute the average energy E and the
entropy S. Evaluate E and S in the limits T →∞ and T → 0.

(e) For the system in part (d), describe a configuration that would have negative
temperature. Justify your answer.
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Paper 3, Section II
35A Statistical Physics

(a) What distinguishes bosons from fermions? What are the implications for the
occupation number of states and for the ground state at low temperatures?

(b) Consider a gas of N non-interacting ultra-relativistic electrons in a large fixed
3-dimensional cubic volume V .

(i) Using the grand partition function, show that pV = AE, where p is the
pressure, E is the average energy and A is a constant that you should
determine.

(ii) Show that the Fermi energy, EF = D (N/V )1/3, where D is a constant that
you should determine.

(iii) Show that at zero temperature pV a = K, where a and K are constants
that you should determine. How does this compare to an ultra-relativistic
classical ideal gas?

(c) Now consider the same system as in part (b) with a magnetic field B, so the
energy of an electron is ±µBB depending on whether the spin is parallel or anti-parallel
to the magnetic field, and µB is a constant. Assuming that µBB � EF , show that at zero
temperature the total magnetic moment

M ≈ αµγBB
δg(EF ) ,

where g(EF ) is the density of states at energy EF and α, γ and δ are numerical constants
that you should find. Then find the magnetic susceptibility χ of the gas at zero
temperature. Comment on the result.
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Paper 4, Section II
35A Statistical Physics

(a) State Carnot’s theorem. Show how it can be used to define a thermodynamic
temperature.

(b) Consider a solid body with heat capacity at constant volume CV . Assume that
the solid’s volume remains constant throughout the following three scenarios:

(i) If the temperature changes from Ti to Tf , show that the entropy change is
∆S = Sf − Si = CV ln (Tf/Ti).

(ii) Two identical such bodies (both with heat capacity CV ) with initial
temperatures T1 and T2 are brought into equilibrium in a reversible process.
What are the final temperatures of the bodies?

(iii) Now suppose that the two bodies are instead brought directly into thermal
contact (irreversibly). What are the final temperatures of the bodies?
Compute the entropy change and show that it is positive.

(c) The Gibbs free energy is given by G = E + pV − TS, where E is energy, p
is pressure, V is volume and S is entropy. Explain why G = µ(T, p)N , where µ is the
chemical potential and N is the number of particles.

(d) What is a first-order phase transition?

(e) Consider a system at constant pressure where phase I is stable for T > T0, phase
II is stable for T < T0, and there is a first-order phase transition at T = T0. Show that
in a transition from phase II to phase I, SI − SII > 0, where SI is the entropy in phase I
and SII is the entropy in phase II. [Hint: Consider S = −

(
∂G
∂T

)
p,N

for each phase.]
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Paper 1, Section II
30K Stochastic Financial Models

Fix a positive integer N and consider the problem of minimising

E

(
X2
N +

N∑

n=1

u2n

)
,

where X0 is given and
Xn = Xn−1 + un + ξn

for 1 6 n 6 N . Here (ξn)16n6N is an IID sequence of random variables with E(ξ1) = 0 and
Var(ξ1) = σ2, and the controls (un)16n6N are previsible with respect to the filtration generated by
(ξn)16n6N .

(a) Write down the Bellman equation for this problem.

(b) Show that the value function can be expressed as

V (n, x) = An +Bnx+ Cnx
2

for constants (An, Bn, Cn)06n6N to be found.

(c) Show that the optimal control is

u∗n = − X0

N + 1
− ξ1
N

− ξ2
N − 1

− · · · − ξn−1

N − n+ 2

for 1 6 n 6 N .
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Paper 2, Section II
30K Stochastic Financial Models

Consider a one-period market model with constant interest rate r and d risky assets. For
n ∈ {0, 1} let Sn denote the vector of time-n prices of the risky assets and let Xn be the time-n
wealth of an investor. Let µ = E(S1) and V = Cov(S1). Assume µ 6= (1 + r)S0.

(a) Suppose V is non-singular. Find, with proof, the minimum of Var(X1) subject to the
constraints that X0 = x and E(X1) = m for given constants x and m. Show that the optimal
portfolio of risky assets is of the form θ∗ = λV −1[µ− (1 + r)S0] for a constant λ to be found. Now
find the minimum of Var(X1) subject to X0 = x and E(X1) > m.

(b) Again suppose V is non-singular. Find, with proof, the maximum of the quantity

E(X1)− (1 + r)X0√
Var(X1)

,

subject to X0 = x. Show that all optimal portfolios are mean-variance efficient.

(c) Now suppose V is singular and that there exists no vector θ ∈ Rd such that V θ =
µ− (1 + r)S0. Show that for any m and x,

min{Var(X1) : E(X1) = m and X0 = x} = 0 .

Show that there exists an arbitrage in this market.

Paper 3, Section II
29K Stochastic Financial Models

(a) Let W be a Brownian motion and c a constant. Let Mt = ecWt−c2t/2 for t > 0. Show
that M is a martingale in the filtration generated by W .

For the rest of the question, consider the Black–Scholes model with constant interest rate r
and time-t stock price St = S0e

µt+σWt for 0 6 t 6 T , where µ, σ, T are constants with σ > 0.

(b) Show that there exists a risk-neutral measure for the Black–Scholes model. [You may use
the Cameron–Martin theorem without proof if it is clearly stated.]

(c) Find the time-0 Black–Scholes price of a European claim with time-T payout Y0 = SpT
where the exponent p is a constant.

(d) Consider two European claims with time-T payouts

Y1 = max
06t6T

St and Y2 =
S2−p
0 SpT

min06t6T St
.

Find, with proof, the exponent p such that these two claims have the same time-0 Black–Scholes
price.
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Paper 4, Section II
29K Stochastic Financial Models

Consider a discrete-time market with constant interest rate r and a stock with time-n price
Sn for 0 6 n 6 N .

(a) Suppose a self-financing investor holds θn shares of the stock between times n− 1 and n
for 1 6 n 6 N . Explain why the investor’s wealth process (Xn)06n6N evolves as

Xn = (1 + r)Xn−1 + θn[Sn − (1 + r)Sn−1] for 1 6 n 6 N.

For the rest of the question, suppose Sn = Sn−1ξn where

P(ξn = 1 + b) = p

P(ξn = 1 + a) = 1− p

for all n > 1, for given constants 0 < p < 1 and a < r < b.

(b) Show that

Q
(
SN = S0(1 + b)i(1 + a)N−i

)
=

(
N

i

)
qi(1− q)N−i

for all 0 6 i 6 N , where Q is the unique risk-neutral measure and q is a constant which you should
find.

(c) Now introduce a European contingent claim into this market with time-N payout g(SN )
for a given function g. Find, with proof, the constant x and the previsible process θ = (θn)16n6N
such that if an investor has time-0 wealth X0 = x and employs the trading strategy θ then the
time-N wealth is XN = g(SN ) almost surely. Express your answer in terms of the function V
defined by

V (n, s) = (1 + r)−(N−n)EQ[g(SN )|Sn = s] for 0 6 n 6 N, s > 0.

(d) Suppose the claim in part (c) is a European call option with strike K. Show that the
corresponding initial cost x of the claim is of the form

S0Q̂(SN > K)−K(1 + r)−NQ(SN > K) ,

where Q̂ is a probability measure such that

Q̂
(
SN = S0(1 + b)i(1 + a)N−i

)
=

(
N

i

)
q̂i(1− q̂)N−i

for 0 6 i 6 N and a constant q̂ which you should find.
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Paper 1, Section I
2G Topics in Analysis

Show that if a, A, B, C, D are non-negative integers and AD −BC = 1, then

a+
At+B

Ct+D
=
αt+ β

γt+ δ

for some α, β, γ, δ non-negative integers with αδ − βγ = 1.

If N, a1, a2, . . . are strictly positive integers with aN+k = ak for all k and

x =
1

a1 +
1

a2 +
1

a3 +
1

a4 + . . .

show that x is a root of a quadratic (or linear) equation with integer coefficients.

Give the quadratic equation explicitly in the case when N = 2, a1 = a, a2 = b.
Explain how you know which root gives the continued fraction.
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2G Topics in Analysis

In this question you should work in Rn with the usual Euclidean distance.

Define a set of first Baire category.

For each of the following statements, say whether it is true or false and give an
appropriate proof or counterexample.

(i) The countable union of sets of first category is of first category.

(ii) If A is of first category in R2 and y ∈ R, then

Cy = {x : (x, y) ∈ A}

is of first category in R.

(iii) If C is of first category in R, then

A = {(x, y) : x ∈ C, y ∈ R}

is of first category in R2.

(iv) If A and B are sets of first category in R2, then

A+B = {a + b : a ∈ A, b ∈ B}

is of first category.

[You may use results about complete metric spaces provided you state them pre-
cisely.]

Paper 3, Section I
2G Topics in Analysis

Let Ω be a non-empty bounded open subset of R2 with closure Cl Ω and boundary
∂Ω. We take φ : Cl Ω → R to be a continuous function which is twice differentiable on Ω.

If ∇2φ > 0 on Ω show that φ attains a maximum on ∂Ω.

By giving proofs or counterexamples establish which of the following are true and
which are false.

(i) If ∇2φ = 0 on Ω, then φ attains a maximum on ∂Ω.

(ii) If ∇2φ = 0 on Ω, then φ attains a minimum on ∂Ω.

(iii) If ∇2φ = f on Ω for some continuous function f : Cl Ω → R, then φ attains a
maximum on ∂Ω.
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2G Topics in Analysis

Consider the continuous map f : [0, 1] → C given by f(t) = t − 1/2. Show that
there does not exist a continuous function φ : [0, 1]→ R with f(t) = |f(t)

∣∣ exp(iφ(t)
)
.

Show that, if g : [0, 1] → C \ {0} is continuous, there exists a continuous function
θ : [0, 1]→ R with g(t) = |g(t)

∣∣ exp(iθ(t)
)
. [You may assume that this result holds in the

special case when <g(t) > 0 for all t ∈ [0, 1].]

Show that r(g) = θ(1)− θ(0) is uniquely defined.

If u(t) = g(t2) and v(t) = g(t)2, find r(u) and r(v) in terms of r(g).

Give an example with g1, g2 : [0, 1] → C \ {0} continuous such that g1(0) = g2(0)
and g1(1) = g2(1), but r(g1) 6= r(g2).

Paper 2, Section II
11G Topics in Analysis

Suppose f : [0, 1]2 → R is continuous. Show, quoting carefully any theorems that
you use, that

n∑

j=0

n∑

k=0

(
n

j

)(
n

k

)
f(j/n, k/n)tj(1− t)n−jsk(1− s)n−k → f(t, s)

uniformly on [0, 1]2 as n→∞.

Deduce that

∫ 1

0

(∫ 1

0
f(s, t) ds

)
dt =

∫ 1

0

(∫ 1

0
f(s, t) dt

)
ds

whenever f : [0, 1]2 → R is continuous.

By giving proofs or counterexamples establish which of the following statements are
true and which are false. You may not use the Stone–Weierstrass theorem without proof.

(i) If f : [0, 1]2 → R is continuous and
∫ 1
0

(∫ 1
0 s

ntmf(s, t) ds
)
dt = 0 for all

integers n,m > 0, then f = 0.

(ii) Suppose a < b. If f : [a, b]2 → R is continuous and
∫ b
a

(∫ b
a s

ntmf(s, t) ds
)
dt =

0 for all integers n,m > 0, then f = 0.

(iii) If f : [−1, 1]2 → R is continuous and
∫ 1
−1

(∫ 1
−1 s

2nt2mf(s, t) ds
)
dt = 0 for all

integers n,m > 0, then f = 0.

(iv) If f : [0, 1]2 → R is continuous and
∫ 1
0

(∫ 1
0 s

2nt2mf(s, t) ds
)
dt = 0 for all

integers n,m > 0, then f = 0.
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12G Topics in Analysis

(a) State Brouwer’s fixed point theorem for the closed unit disc D. For which of
the following E ⊂ R2 is it the case that every continuous function f : E → E has a fixed
point? Give a proof or a counterexample.

(i) E is the union of two disjoint closed discs.

(ii) E = {(x, 0) : 0 < x < 1}.

(iii) E = {(x, 0) : 0 6 x 6 1}.

(iv) E = {x ∈ R2 : 1 6 |x| 6 2}.

(b) Show that if f : R2 → R2 is a continuous function with the property that
|f(x)| 6 1 whenever |x| = 1, then f has a fixed point.

[Hint: Consider T ◦ f where for x ∈ R2, Tx is the element of D closest to x.]

(c) Let

E = {(p1, p2, q1, q2) : 0 6 pi, qi 6 1 and p1 + p2 = 1, q1 + q2 = 1}

and suppose A, B : R2 × R2 → R are given by

A(p,q) =
2∑

i=1

2∑

j=1

aijpiqj and B(p,q) =
2∑

i=1

2∑

j=1

bijpiqj

with aij and bij constant. Let

u1(p,q) = max{0, A((1, 0),q)−A(p,q)} , u2(p,q) = max{0, A((0, 1),q)−A(p,q)} .

By considering (p′,q′) with

p′ =
p + u(p,q)

1 + u1(p,q) + u2(p,q)

and q′ defined appropriately, show that we can find a (p∗,q∗) ∈ E with

∀(p,q) ∈ E, A
(
p∗,q∗

)
> A

(
p,q∗

)
and B

(
p∗,q∗

)
> B

(
p∗,q

)
.

Carefully explain the result in terms of a two-person game.
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Paper 1, Section II
40C Waves

(a) Starting from the equations for mass and momentum conservation and a suitable
equation of state, derive the linearised wave equation for perturbation pressure p̃(x, t) for
3-dimensional sound waves in a compressible gas with sound speed c0 and density ρ0.

(b) For a 1-dimensional wave of given frequency ω propagating in the x-direction,
the perturbation pressure p̃(x, t) may be written in the form <(p̂(x)eiωt). What is the form
of p̂ for a harmonic plane wave of frequency ω propagating in the positive x-direction?
Express the perturbation fluid speed ũ(x, t) in terms of p̃(x, t).

(c) The gas occupies the region x < L, with a rigid boundary at x = L. A thin
flexible membrane of mass m per unit area is located within the gas at equilibrium position
x = 0. A plane wave of unit amplitude of the form specified in part (b) is incident
from x = −∞. The combined effects of the membrane and the rigid boundary result in
a reflected wave of complex amplitude R, where R is the ratio between the individual
complex amplitudes at x = 0− of the reflected and incident waves.

(i) Show that

R =
cosβ + (α− i) sinβ

cosβ + (α+ i) sinβ
where α =

ωm

ρ0c0
and β =

ωL

c0
.

Deduce that |R| = 1 in general and briefly discuss this result physically.

(ii) Identify a condition on β so that the membrane is stationary and there is non-
trivial pressure perturbation in 0 < x < L. Briefly discuss this result physically.

(iii) Identify and interpret a limit for α in which the pressure perturbation in 0 < x < L
becomes very small relative to that in x < 0.
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40C Waves

Infinitesimal displacements u(x, t) in a uniform, linear isotropic elastic solid with
density ρ0 and Lamé moduli λ and µ satisfy the linearised Cauchy momentum equation:

ρ0
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∇2u.

(a) Show that the dilatation ∇ · u and the rotation ∇× u satisfy wave equations,
and find the wave-speeds cP and cS .

(b) A plane harmonic P-wave with wavevector k lying in the (x, z) plane is incident
from z < 0 at an oblique angle on the planar horizontal interface z = 0 between two elastic
solids with different densities and elastic moduli. Show in a diagram the directions of all
the reflected and transmitted waves, labelled with their polarisations, assuming that none
of these waves is evanescent. State the boundary conditions on components of u and the
stress tensor σ and explain why these are sufficient to determine the amplitudes. (You do
not need to calculate the directions or amplitudes explicitly.)

(c) Now consider a plane harmonic P-wave of unit amplitude, with k =
k(sin θ, 0, cos θ), incident from z < 0 on the interface z = 0 between two elastic (and
inviscid) liquids with modulus λ, density ρ and wave-speed cP in z < 0 and modulus λ′,
density ρ′ and wave-speed c′P in z > 0, with ρ′ 6= ρ.

(i) Under what conditions is there a propagating transmitted wave in z > 0?

(ii) Assume from here on that these conditions are met. Obtain solutions for the
reflected and transmitted waves.

(iii) Show that the amplitude of the reflected wave is

R =
λ′ sin 2θ − λ sin 2θ′

λ′ sin 2θ + λ sin 2θ′
,

where θ′ is the angle the wave vector of the transmitted wave makes with the
vertical.

(iv) Hence obtain an expression for θ in terms of the wave-speeds and densities of the
two liquids that implies no reflection (i.e. R = 0).
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Paper 3, Section II
39C Waves

Waves propagating in a slowly-varying medium satisfy the local dispersion relation
ω = Ω(k;x, t) in the standard notation.

(a) Derive the ray-tracing equations:

dxi
dt

=
∂Ω

∂ki
,

dki
dt

= − ∂Ω

∂xi
,

dω

dt
=
∂Ω

∂t
,

governing the evolution of a wave packet specified by

φ(x, t) = A(x, t; ε) exp

(
iθ(x, t)

ε

)
,

where 0 < ε� 1. A rigorous derivation is not required, but assumptions should be clearly
stated and the meaning of the d/dt notation should be carefully explained.

(b) The dispersion relation for two-dimensional, small amplitude, internal gravity
waves of wavenumber vector k = (k, 0,m), relative to Cartesian coordinates (x, y, z) with
z vertical, propagating in an inviscid, incompressible, stratified fluid with a slowly-varying
mean flow U is

ω =
Nk√
k2 +m2

+ k ·U ,

where N is the buoyancy frequency. Consider the specific flow U = γ(x, 0,−z). N and γ
are positive constants.

(i) Calculate k(t) and m(t), applying the initial conditions k(0) = k0 > 0, m(0) = m0.

(ii) Consider a wave packet with initial wave vector (k0, 0,m0), released from (x0, 0, z0)
where x0 > 0 and z0 > 0. Show that the wave packet can initially propagate
upwards provided z0 < zm, where zm is a function of k0 and m0.

(iii) Demonstrate that such a wave packet eventually approaches z = 0, but takes an
infinite amount of time to do so. [Hint: It is not essential to solve for an explicit
expression for the position of the wave packet at arbitrary time t.]

Part II, Paper 1 [TURN OVER]



112

Paper 4, Section II
39C Waves

Consider finite amplitude, one-dimensional sound waves in a perfect gas with ratio
of specific heats γ.

(a) Show that the fluid speed u and local sound speed c satisfy

(
∂

∂t
+ (u± c)

∂

∂x

)
R± = 0 ,

where the Riemann invariants R±(x, t) should be defined carefully. Write down parametric
equations for the paths on which these quantities are actually invariant.

(b) At time t = 0 the gas occupies the region x > 0. It is at rest and has uniform
density ρ0, pressure p0 and sound speed c0. A piston initially at x = 0 starts moving
backwards at time t = 0 with displacement x = −εt(1 − t), where ε > 0 is constant.

(i) Show that prior to any shock forming c = c0 + 1
2(γ − 1)u.

(ii) For small ε, derive an expression for the relative pressure fluctuation δp/p0 =
p/p0 − 1 to second order in the relative sound speed fluctuation δc/c0 = c/c0 − 1.

(iii) Calculate the time average over the interval 0 6 t 6 1 of the relative pressure
fluctuation, measured on the piston, and briefly discuss your result physically.
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