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SECTION I
1I Number Theory

Define the continued fraction expansion of θ ∈ R, and show that this expansion
terminates if and only if θ ∈ Q.

Define the convergents (pn/qn)n>−1 of the continued fraction expansion of θ, and
show that for all n > 0,

pnqn−1 − pn−1qn = (−1)n−1.

Deduce that if θ ∈ R \Q, then for all n > 0, at least one of

∣∣∣∣θ −
pn
qn

∣∣∣∣ <
1

2q2n
and

∣∣∣∣θ −
pn+1

qn+1

∣∣∣∣ <
1

2q2n+1

must hold.

[You may assume that θ lies strictly between pn/qn and pn+1/qn+1 for all n > 0.]

2H Topics in Analysis
State Runge’s theorem on the approximation of analytic functions by polynomials.

Let Ω = {z ∈ C, Re z > 0, Im z > 0}. Establish whether the following statements
are true or false by giving a proof or a counterexample in each case.

(i) If f : Ω → C is the uniform limit of a sequence of polynomials Pn, then f is
a polynomial.

(ii) If f : Ω → C is analytic, then there exists a sequence of polynomials Pn such

that for each integer r > 0 and each z ∈ Ω we have P
(r)
n (z) → f (r)(z).

3K Coding and Cryptography
Let d > 2. Define the Hamming code C of length 2d − 1. Explain what it means to

be a perfect code and show that C is a perfect code.

Suppose you are using the Hamming code of length 2d − 1 and you receive the
message 111 . . . 10 of length 2d − 1. How would you decode this message using minimum
distance decoding? Explain why this leads to correct decoding if at most one channel error
has occurred.
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4F Automata and Formal Languages
Define a regular expression R and explain how this gives rise to a language L(R).

Define a deterministic finite-state automaton D and the language L(D) that it
accepts.

State the relationship between languages obtained from regular expressions and
languages accepted by deterministic finite-state automata.

Let L and M be regular languages. Is L ∪M always regular? What about L ∩M?

Now suppose that L1, L2, . . . are regular languages. Is the countable union
⋃
Li

always regular? What about the countable intersection
⋂
Li?

5J Statistical Modelling
Consider the normal linear model Y | X ∼ N(Xβ, σ2I), where X is a n× p design

matrix, Y is a vector of responses, I is the n× n identity matrix, and β, σ2 are unknown
parameters.

Derive the maximum likelihood estimator of the pair β and σ2. What is the
distribution of the estimator of σ2? Use it to construct a (1− α)-level confidence interval
of σ2. [You may use without proof the fact that the “hat matrix” H = X(XTX)−1XT is
a projection matrix.]

6E Mathematical Biology
The population density n(a, t) of individuals of age a at time t satisfies the partial

differential equation
∂n

∂t
+
∂n

∂a
= −d(a)n(a, t) (1)

with the boundary condition

n(0, t) =

∫ ∞

0
b(a)n(a, t) da , (2)

where b(a) and d(a) are, respectively, the per capita age-dependent birth and death rates.

(a) What is the biological interpretation of the boundary condition?

(b) Solve equation (1) assuming a separable form of solution, n(a, t) = A(a)T (t).

(c) Use equation (2) to obtain a necessary condition for the existence of a separable
solution to the full problem.

(d) For a birth rate b(a) = βe−λa with λ > 0 and an age-independent death rate d,
show that a separable solution to the full problem exists and find the critical value of β
above which the population density grows with time.
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7E Further Complex Methods
The Beta function is defined by

B(p, q) =

∫ 1

0
tp−1(1− t)q−1 dt

for Re p > 0 and Re q > 0 .

(a) Prove that B(p, q) = B(q, p) and find B(1, q) .

(b) Show that (p+ z)B(p, z + 1) = zB(p, z) .

(c) For each fixed p with Re p > 0, use part (b) to obtain the analytic continuation
of B(p, z) as an analytic function of z ∈ C, with the exception of the points z =
0,−1,−2,−3, ... .

(d) Use part (c) to determine the type of singularity that the function B(p, z) has
at z = 0,−1,−2,−3, ... , for fixed p with Re p > 0 .

8D Classical Dynamics
The Lagrangian of a particle of mass m and charge q in an electromagnetic field

takes the form

L =
1

2
m|ṙ|2 + q (−φ+ ṙ ·A) .

Explain the meaning of φ and A, and how they are related to the electric and magnetic
fields.

Obtain the canonical momentum p and the Hamiltonian H(r,p, t).

Suppose that the electric and magnetic fields have Cartesian components (E, 0, 0)
and (0, 0, B), respectively, where E and B are positive constants. Explain why the
Hamiltonian of the particle can be taken to be

H =
p2x
2m

+
(py − qBx)2

2m
+

p2z
2m
− qEx .

State three independent integrals of motion in this case.
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9B Cosmology
The expansion of the universe during inflation is governed by the Friedmann

equation (
ȧ

a

)2

=
8πG

3

[
1

2
φ̇2 + V (φ)

]
,

and the equation of motion for the inflaton field φ,

φ̈+ 3
ȧ

a
φ̇+

dV

dφ
= 0 .

Consider the potential
V = V0 e

−λφ

with V0 > 0 and λ > 0.

(a) Show that the inflationary equations have the exact solution

a(t) =

(
t

t0

)γ
and φ = φ0 + α log t,

for arbitrary t0 and appropriate choices of α, γ and φ0. Determine the range of λ for
which the solution exists. For what values of λ does inflation occur?

(b) Using the inflaton equation of motion and

ρ =
1

2
φ̇2 + V ,

together with the continuity equation

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 ,

determine P .

(c) What is the range of the pressure–energy density ratio ω ≡ P/ρ for which
inflation occurs?

10D Quantum Information and Computation
Let |ψ〉AB be the joint state of a bipartite system AB with subsystems A and B

separated in space. Suppose that Alice and Bob have access only to subsystems A and B
respectively, on which they can perform local quantum operations.

Alice performs a unitary operation U on A and then a (generally incomplete)
measurement on A, with projectors {Πa} labelled by her possible measurement outcomes
a. Then Bob performs a complete measurement on B relative to the orthonormal basis
{|b〉} labelled by his possible outcomes b.

Show that the probability distribution of Bob’s measurement outcomes is unaffected
by whether or not Alice actually performs the local operations on A described above.
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SECTION II
11I Number Theory

State what it means for two binary quadratic forms to be equivalent, and define the
class number h(d).

Let m be a positive integer, and let f be a binary quadratic form. Show that f
properly represents m if and only if f is equivalent to a binary quadratic form

mx2 + bxy + cy2

for some integers b and c.

Let d < 0 be an integer such that d ≡ 0 or 1 mod 4. Show that m is properly
represented by some binary quadratic form of discriminant d if and only if d is a square
modulo 4m.

Fix a positive integer A > 2. Show that n2 + n+A is composite for some integer n
such that 0 6 n 6 A− 2 if and only if d = 1 − 4A is a square modulo 4p for some prime
p < A.

Deduce that h(1−4A) = 1 if and only if n2+n+A is prime for all n = 0, 1, . . . , A−2.

12F Automata and Formal Languages
Suppose that G is a context-free grammar without ε-productions. Given a derivation

of some word w in the language L of G, describe a parse tree for this derivation.

State and prove the pumping lemma for L. How would your proof differ if you did
not assume that G was in Chomsky normal form, but merely that G has no ε- or unit
productions?

For the alphabet Σ = {a, b} of terminal symbols, state whether the following
languages over Σ are context free, giving reasons for your answer.

(i) {aibiai | i > 0},

(ii) {aibj | i > j > 0},

(iii)
{
wabw |w ∈ {a, b}∗

}
.
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13E Mathematical Biology
Consider an epidemic spreading in a population that has been aggregated by age

into groups numbered i = 1, . . . ,M . The ith age group has size Ni and the numbers of
susceptible, infective and recovered individuals in this group are, respectively, Si, Ii and
Ri. The spread of the infection is governed by the equations

dSi
dt

= −λi(t)Si ,
dIi
dt

= λi(t)Si − γIi , (1)

dRi
dt

= γIi ,

where

λi(t) = β

M∑

j=1

Cij
Ij
Nj

, (2)

and Cij is a matrix satisfying NiCij = NjCji , for i, j = 1, . . . ,M .

(a) Describe the biological meaning of the terms in equations (1) and (2), of the
matrix Cij and the condition it satisfies, and of the lack of dependence of β and γ on i.

State the condition on the matrix Cij that would ensure the absence of any
transmission of infection between age groups.

(b) In the early stages of an epidemic, Si ≈ Ni and Ii � Ni. Use this information
to linearise the dynamics appropriately, and show that the linearised system predicts

I(t) = exp [γ(L− 1)t] I(0) ,

where I(t) = [I1(t), . . . , IM (t)] is the vector of infectives at time t, 1 is the M ×M identity
matrix and L is a matrix that should be determined.

(c) Deduce a condition on the eigenvalues of the matrix C that allows the epidemic
to grow.
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14B Cosmology
(a) Consider a closed universe endowed with cosmological constant Λ > 0 and filled

with radiation with pressure P and energy density ρ. Using the equation of state P = 1
3ρ

and the continuity equation

ρ̇+
3 ȧ

a
(ρ+ P ) = 0 ,

determine how ρ depends on a. Give the physical interpretation of the scaling of ρ with
a.

(b) For such a universe the Friedmann equation reads

(
ȧ

a

)2

=
8πG

3c2
ρ− c2

R2a2
+

Λ

3
.

What is the physical meaning of R?

(c) Making the substitution a(t) = α ã(t), determine α and Γ > 0 such that the
Friedmann equation takes the form

( ˙̃a

ã

)2

=
Γ

ã4
− 1

ã2
+

Λ

3
.

Using the substitution y(t) = ã(t)2 and the boundary condition y(0) = 0, deduce the
boundary condition for ẏ(0).

Show that

ÿ =
4Λ

3
y − 2 ,

and hence that

ã2(t) =
3

2Λ

[
1 − cosh

(√
4Λ

3
t

)
+ λ sinh

(√
4Λ

3
t

)]
.

Express the constant λ in terms of Λ and Γ.

Sketch the graphs of ã(t) for the cases λ > 1, λ < 1 and λ = 1.
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15D Quantum Information and Computation
Let Bn denote the set of all n-bit strings and let Hn denote the space of n qubits.

(a) Suppose f : B2 → B1 has the property that f(x0) = 1 for a unique x0 ∈ B2 and
suppose we have a quantum oracle Uf .

(i) Let |ψ0〉 = 1
2

∑
x∈B2

|x〉 and introduce the operators

Ix0 = I2 − 2 |x0〉〈x0| and J = I2 − 2 |ψ0〉〈ψ0|

on H2, where I2 is the identity operator. Give a geometrical description of the
actions of −J , Ix0 and Q = −JIx0 on the 2-dimensional subspace of H2 given
by the real span of |x0〉 and |ψ0〉. [You may assume without proof that the
product of two reflections in R2 is a rotation through twice the angle between
the mirror lines.]

(ii) Using the results of part (i), or otherwise, show how we may determine x0
with certainty, starting with a supply of qubits each in state |0〉 and using Uf
only once, together with other quantum operations that are independent of
f .

(b) Suppose Hn = A ⊕ A⊥, where A is a fixed linear subspace with orthogonal
complement A⊥. Let ΠA denote the projection operator onto A and let IA = I − 2 ΠA,
where I is the identity operator on Hn.

(i) Show that any |ξ〉 ∈ Hn can be written as |ξ〉 = sin θ |α〉 + cos θ |β〉, where
θ ∈ [0, π/2], and |α〉 ∈ A and |β〉 ∈ A⊥ are normalised.

(ii) Let Iξ = I−2 |ξ〉〈ξ| andQ = −IξIA. Show thatQ|α〉 = − sin 2θ |β〉+cos 2θ |α〉.

(iii) Now assume, in addition, that Q|β〉 = cos 2θ |β〉 + sin 2θ |α〉 and that |ξ〉 =
U |0 . . . 0〉 for some unitary operation U . Suppose we can implement the
operators U , U †, IA as well as the operation I − 2|0 . . . 0〉〈0 . . . 0|. In the
case θ = π/10, show how the n-qubit state |α〉 may be made exactly from
|0 . . . 0〉 by a process that succeeds with certainty.
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16G Logic and Set Theory
(a) Let κ and λ be cardinals. What does it mean to say that κ < λ? Explain briefly

why, assuming the Axiom of Choice, every infinite cardinal is of the form ℵα for some
ordinal α, and that for every ordinal α we have ℵα+1 < 22

ℵα
.

(b) Henceforth, you should not assume the Axiom of Choice.

Show that, for any set x, there is an injection from x to its power set Px, but there
is no bijection from x to Px. Deduce that if κ is a cardinal then κ < 2κ.

Let x and y be sets, and suppose that there exists a surjection f : x→ y. Show that
there exists an injection g : Py → Px.

Let α be an ordinal. Prove that ℵαℵα = ℵα.

By considering P(ωα × ωα) as the set of relations on ωα, or otherwise, show that

there exists a surjection f : P(ωα × ωα)→ ωα+1. Deduce that ℵα+1 < 22
ℵα

.

17G Graph Theory
(a) Define the Ramsey number R(k) and show that R(k) 6 4k.

Show that every 2-coloured complete graph Kn with n > 2 contains a monochro-
matic spanning tree. Is the same true if Kn is coloured with 3 colours? Give a proof or
counterexample.

(b) Let G = (V,E) be a graph. Show that the number of paths of length 2 in G is

∑

x∈V
d(x)

(
d(x) − 1

)
.

Now consider a 2-coloured complete graph Kn with n > 3. Show that the number
of monochromatic triangles in Kn is

1

2

∑

x

{(
dr(x)

2

)
+

(
db(x)

2

)}
− 1

2

(
n

3

)
,

where dr(x) denotes the number of red edges incident with a vertex x and db(x) =
(n − 1) − dr(x) denotes the number of blue edges incident with x. [Hint: Count paths
of length 2 in two different ways.]
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18I Galois Theory
Define the elementary symmetric functions in the variables x1, . . . , xn. State the

fundamental theorem of symmetric functions.

Let f(x) = xn + an−1x
n−1 + · · · + a0 ∈ K[x], where K is a field. Define the

discriminant of f , and explain why it is a polynomial in a0, . . . , an−1.

Compute the discriminant of x5 + q.

Let f(x) = x5 + px2 + q. When does the discriminant of f(x) equal zero? Compute
the discriminant of f(x).

19I Representation Theory
In this question we work over C.

(a) (i) Let H be a subgroup of a finite group G. Given an H-space W , define the
complex vector space V = IndGH(W ). Define, with justification, the G-action on V .

(ii) Write C(g) for the conjugacy class of g ∈ G. Suppose that H ∩ C(g) breaks
up into s conjugacy classes of H with representatives x1, . . . , xs. If ψ is a character of H,
write down, without proof, a formula for the induced character IndGH(ψ) as a certain sum
of character values ψ(xi).

(b) Define permutations a, b ∈ S7 by a = (1 2 3 4 5 6 7), b = (2 3 5)(4 7 6) and let
G be the subgroup 〈a, b〉 of S7. It is given that the elements of G are all of the form aibj

for 0 6 i 6 6, 0 6 j 6 2 and that G has order 21.

(i) Find the orders of the centralisers CG(a) and CG(b). Hence show that there
are five conjugacy classes of G.

(ii) Find all characters of degree 1 of G by lifting from a suitable quotient group.

(iii) Let H = 〈a〉. By first inducing linear characters of H using the formula
stated in part (a)(ii), find the remaining irreducible characters of G.
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20F Algebraic Topology
Let X be a space. We define the cone of X to be

CX := (X × I)/ ∼

where (x1, t1) ∼ (x2, t2) if and only if either t1 = t2 = 1 or (x1, t1) = (x2, t2).

(a) Show that if X is triangulable, so is CX. Calculate Hi(CX). [You may use any
results proved in the course.]

(b) Let K be a simplicial complex and L ⊆ K a subcomplex. Let X = |K|, A = |L|,
and let X ′ be the space obtained by identifying |L| ⊆ |K| with |L| × {0} ⊆ C|L|. Show
that there is a long exact sequence

· · · → Hi+1(X
′)→ Hi(A)→ Hi(X)→ Hi(X

′)→ Hi−1(A)→ · · ·

· · · → H1(X
′)→ H0(A)→ Z⊕H0(X)→ H0(X

′)→ 0.

(c) In part (b), suppose that X = S1× S1 and A = S1×{x} ⊆ X for some x ∈ S1.
Calculate Hi(X

′) for all i.

21H Linear Analysis
(a) State the Arzela–Ascoli theorem, including the definition of equicontinuity.

(b) Consider a sequence (fn) of continuous real-valued functions on R such that for
all x ∈ R,

(
fn(x)

)
is bounded and the sequence is equicontinuous at x. Prove that there

exists f ∈ C(R) and a subsequence (fϕ(n)) such that fϕ(n) → f uniformly on any closed
bounded interval.

(c) Let K be a Hausdorff compact topological space, and C(K) the real-valued
continuous functions on K. Let K ⊂ C(K) be a compact subset of C(K). Prove that the
collection of functions K is equicontinuous.

(d) We say that a Hausdorff topological space X is locally compact if every point
has a compact neighbourhood. Let X be such a space, K ⊂ X compact and U ⊂ X
open such that K ⊂ U . Prove that there exists f : X → R continuous with compact
support contained in U and equal to 1 on K. [Hint: Construct an open set V such that
K ⊂ V ⊂ V ⊂ U and V is compact, and use Urysohn’s lemma to construct a function in
V and then extend it by zero.]
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22H Analysis of Functions
(a) State the Riemann–Lebesgue lemma. Show that the Fourier transform maps

S (Rn) to itself continuously.

(b) For some s > 0, let f ∈ L1(R3) ∩ Hs(R3). Consider the following system of
equations for B : R3 → R3

∇ ·B = f, ∇×B = 0.

Show that there exists a unique B = (B1, B2, B3) solving the equations with Bj ∈
Hs+1(R3) for j = 1, 2, 3. You need not find B explicitly, but should give an expression for
the Fourier transform of Bj . Show that there exists a constant C > 0 such that

‖Bj‖Hs+1 6 C
(
‖f‖L1 + ‖f‖Hs

)
, j = 1, 2, 3.

For what values of s can we conclude that Bj ∈ C1(Rn)?

23F Riemann Surfaces
(a) Let f : C → C be a polynomial of degree d > 0, and let m1, . . . ,mk be the

multiplicities of the ramification points of f . Prove that

k∑

i=1

(mi − 1) = d− 1 . (∗)

Show that, for any list of integers m1, . . . ,mk > 2 satisfying (∗), there is a polynomial f
of degree d such that the mi are the multiplicities of the ramification points of f .

(b) Let f : C∞ → C∞ be an analytic map, and let B be the set of branch points.
Prove that the restriction f : C∞ \ f−1(B) → C∞ \ B is a regular covering map. Given
z0 /∈ B, explain how a closed loop γ in C∞ \B gives rise to a permutation σγ of f−1(z0).
Show that the group of all such permutations is transitive, and that the permutation σγ
only depends on γ up to homotopy.

(c) Prove that there is no meromorphic function f : C∞ → C∞ of degree 4 with
branch points B = {0, 1,∞} such that every preimage of 0 and 1 has ramification index 2,
while some preimage of ∞ has ramification index equal to 3. [Hint: You may use the fact
that every non-trivial product of (2, 2)-cycles in the symmetric group S4 is a (2, 2)-cycle.]
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24I Algebraic Geometry
In this question, all varieties are over an algebraically closed field k of characteristic

zero.

What does it mean for a projective variety to be smooth? Give an example of a
smooth affine variety X ⊂ Ank whose projective closure X ⊂ Pnk is not smooth.

What is the genus of a smooth projective curve? Let X ⊂ P4
k be the hypersurface

V (X3
0 +X3

1 +X3
2 +X3

3 +X3
4 ). Prove that X contains a smooth curve of genus 1.

Let C ⊂ P2
k be an irreducible curve of degree 2. Prove that C is isomorphic to P1

k.

We define a generalized conic in P2
k to be the vanishing locus of a non-zero

homogeneous quadratic polynomial in 3 variables. Show that there is a bijection between
the set of generalized conics in P2

k and the projective space P5
k, which maps the conic V (f)

to the point whose coordinates are the coefficients of f .

(i) Let R◦ ⊂ P5
k be the subset of conics that consist of unions of two distinct

lines. Prove that R◦ is not Zariski closed, and calculate its dimension.

(ii) Let I be the homogeneous ideal of polynomials vanishing on R◦. Determine
generators for the ideal I.

25F Differential Geometry
Let X and Y be smooth boundaryless manifolds. Suppose f : X → Y is a smooth

map. What does it mean for y ∈ Y to be a regular value of f? State Sard’s theorem and
the stack-of-records theorem.

Suppose g : X → Y is another smooth map. What does it mean for f and g to be
smoothly homotopic? Assume now that X is compact, and has the same dimension as Y .
Suppose that y ∈ Y is a regular value for both f and g. Prove that

#f−1(y) = #g−1(y) (mod 2).

Let U ⊂ Sn be a non-empty open subset of the sphere. Suppose that h : Sn → Sn

is a smooth map such that #h−1(y) = 1 (mod 2) for all y ∈ U . Show that there must exist
a pair of antipodal points on Sn which is mapped to another pair of antipodal points by
h.

[You may assume results about compact 1-manifolds provided they are accurately
stated.]
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26H Probability and Measure
Show that random variables X1, . . . , XN defined on some probability space (Ω,F ,P)

are independent if and only if

E
( N∏

n=1

fn(Xn)
)

=

N∏

n=1

E
(
fn(Xn)

)

for all bounded measurable functions fn : R → R, n = 1, . . . , N .

Now let (Xn : n ∈ N) be an infinite sequence of independent Gaussian random
variables with zero means, EXn = 0, and finite variances, EX2

n = σ2n > 0. Show that the
series

∑∞
n=1Xn converges in L2(P) if and only if

∑∞
n=1 σ

2
n <∞.

[You may use without proof that E[eiuXn ] = e−u
2σ2

n/2 for u ∈ R.]

27K Applied Probability
(a) Customers arrive at a queue at the event times of a Poisson process of rate

λ. The queue is served by two independent servers with exponential service times with
parameter µ each. If the queue has length n, an arriving customer joins with probability
rn and leaves otherwise (where r ∈ (0, 1] ). For which λ > 0, µ > 0 and r ∈ (0, 1] is there
a stationary distribution?

(b) A supermarket allows a maximum of N customers to shop at the same time.
Customers arrive at the event times of a Poisson process of rate 1, they enter the
supermarket when possible, and they leave forever for another supermarket otherwise.
Customers already in the supermarket pay and leave at the event times of an independent
Poisson process of rate µ. When is there a unique stationary distribution for the number
of customers in the supermarket? If it exists, find it.

(c) In the situation of part (b), started from equilibrium, show that the departure
process is Poissonian.
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28J Principles of Statistics
Let X1, . . . , Xn ∼iid Gamma(α, β) for some known α > 0 and some unknown β > 0.

[The gamma distribution has probability density function

f(x) =
βα

Γ(α)
xα−1e−βx, x > 0,

and its mean and variance are α/β and α/β2, respectively.]

(a) Find the maximum likelihood estimator β̂ for β and derive the distributional
limit of

√
n(β̂−β). [You may not use the asymptotic normality of the maximum likelihood

estimator proved in the course.]

(b) Construct an asymptotic (1 − γ)-level confidence interval for β and show that
it has the correct (asymptotic) coverage.

(c) Write down all the steps needed to construct a candidate to an asymptotic
(1− γ)-level confidence interval for β using the nonparametric bootstrap.

29K Stochastic Financial Models
(a) Let M = (Mn)n>0 be a martingale and M̂ = (M̂n)n>0 a supermartingale. If

M0 = M̂0, show that E(MT ) > E(M̂T ) for any bounded stopping time T . [If you use a
general result about supermartingales, you must prove it.]

(b) Consider a market with one stock with time-n price Sn and constant interest
rate r. Explain why a self-financing investor’s wealth process (Xn)n>0 satisfies

Xn = (1 + r)Xn−1 + θn
[
Sn − (1 + r)Sn−1

]
,

where θn is the number of shares of the stock held during the nth period.

(c) Given an initial wealth X0, an investor seeks to maximize E[U(XN )], where U is
a given utility function. Suppose the stock price is such that Sn = Sn−1ξn, where (ξn)n>1

is a sequence of independent copies of a random variable ξ. Let V be defined inductively
by

V (n− 1, x) = sup
t∈R

E
[
V
(
n, (1+r)x+ t(1+r−ξ)

) ]
,

with terminal condition V (N, x) = U(x) for all x ∈ R.

Show that the process
(
V (n,Xn)

)
06n6N is a supermartingale for any trading

strategy (θn)16n6N . Suppose that the trading strategy (θ∗n)16n6N with corresponding
wealth process (X∗n)06n6N are such that the process

(
V (n,X∗n)

)
06n6N is a martingale.

Show that (θ∗n)16n6N is optimal.
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30A Asymptotic Methods
(a) Carefully state Watson’s lemma.

(b) Use the method of steepest descent and Watson’s lemma to obtain an infinite
asymptotic expansion of the function

I(x) =

∫ ∞

−∞

e−x(z
2−2iz)

1− iz dz as x→∞ .

31A Dynamical Systems
Consider the system

ẋ = µy + βxy + y2,

ẏ = x− y − x2,

where µ and β are constants with β > 0.

(a) Find the fixed points, and classify those on y = 0. State how the number of
fixed points depends on µ and β. Hence, or otherwise, deduce the values of µ at which
stationary bifurcations occur for fixed β > 0.

(b) Sketch bifurcation diagrams in the (µ, x)-plane for the cases 0 < β < 1, β = 1
and β > 1, indicating the stability of the fixed points and the type of the bifurcations in
each case. [You are not required to prove that the stabilities or bifurcation types are as
you indicate.]

(c) For the case β = 1, analyse the bifurcation at µ = −1 using extended centre
manifold theory and verify that the evolution equation on the centre manifold matches
the behaviour you deduced from the bifurcation diagram in part (b).

(d) For 0 < µ + 1 � 1, sketch the phase plane in the immediate neighbourhood of
where the bifurcation of part (c) occurs.
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32D Integrable Systems
(a) Consider the group of transformations of R2 given by gs1 : (t, x) 7→ (t̃, x̃) =

(t, x+ st), where s ∈ R. Show that this acts as a group of Lie symmetries for the equation
d2x/dt2 = 0.

(b) Let (ψ1, ψ2) ∈ R2 and define ψ = ψ1 + iψ2. Show that the vector field
ψ1∂ψ2 − ψ2∂ψ1 generates the group of phase rotations gs2 : ψ → eisψ .

(c) Show that the transformations of R2 × C defined by

gs : (t, x, ψ) 7→ (t̃, x̃, ψ̃) = (t, x+ st, ψ eisx+is
2t/2)

form a one-parameter group generated by the vector field

V = t∂x + x(ψ1∂ψ2 − ψ2∂ψ1) = t∂x + ix(ψ∂ψ − ψ∗∂ψ∗) ,

and find the second prolongation Pr(2)gs of the action of {gs}. Hence find the coefficients
η0 and η11 in the second prolongation of V ,

pr(2)V = t∂x+
(
ixψ∂ψ+η0∂ψt +η1∂ψx +η00∂ψtt +η01∂ψxt +η11∂ψxx +complex conjugate

)
.

(d) Show that the group {gs} of transformations in part (c) acts as a group of Lie
symmetries for the nonlinear Schrödinger equation i∂tψ + 1

2∂
2
xψ + |ψ|2ψ = 0. Given that

aeia
2t/2 sech(ax) solves the nonlinear Schrödinger equation for any a ∈ R, find a solution

which describes a solitary wave travelling at arbitrary speed s ∈ R.

33B Principles of Quantum Mechanics
(a) A quantum system with total angular momentum j1 is combined with another of

total angular momentum j2. What are the possible values of the total angular momentum
j of the combined system? For given j, what are the possible values of the angular
momentum along any axis?

(b) Consider the case j1 = j2. Explain why all the states with j = 2j1 − 1 are
antisymmetric under exchange of the angular momenta of the two subsystems, while all
the states with j = 2j1 − 2 are symmetric.

(c) An exotic particle X of spin 0 and negative intrinsic parity decays into a pair
of indistinguishable particles Y . Assume each Y particle has spin 1 and that the decay
process conserves parity. Find the probability that the direction of travel of the Y particles
is observed to lie at an angle θ ∈ (π/4, 3π/4) from some axis along which their total spin
is observed to be +~?
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34B Applications of Quantum Mechanics
(a) In three dimensions, define a Bravais lattice Λ and its reciprocal lattice Λ∗.

A particle is subject to a potential V (x) with V (x) = V (x + r) for x ∈ R3 and
r ∈ Λ. State and prove Bloch’s theorem and specify how the Brillouin zone is related to
the reciprocal lattice.

(b) A body-centred cubic lattice ΛBCC consists of the union of the points of a cubic
lattice Λ1 and all the points Λ2 at the centre of each cube:

ΛBCC ≡ Λ1 ∪ Λ2 ,

Λ1 ≡
{
r ∈ R3 : r = n1î + n2ĵ + n3k̂ , with n1,2,3 ∈ Z

}
,

Λ2 ≡
{
r ∈ R3 : r = 1

2

(
î + ĵ + k̂

)
+ r′, with r′ ∈ Λ1

}
,

where î, ĵ and k̂ are unit vectors parallel to the Cartesian coordinates in R3. Show that
ΛBCC is a Bravais lattice and determine the primitive vectors a1, a2 and a3.

Find the reciprocal lattice Λ∗BCC . Briefly explain what sort of lattice it is.

[
Hint: The matrix M = 1

2



−1 1 1
1 −1 1
1 1 −1


 has inverse M−1 =




0 1 1
1 0 1
1 1 0


.
]

35C Statistical Physics
(a) A gas of non-interacting particles with spin degeneracy gs has the energy–

momentum relationship E = A(~k)α, for constants A,α > 0. Show that the density
of states, g(E) dE, in a d-dimensional volume V with d > 2 is given by

g(E) dE = BV E(d−α)/αdE ,

where B is a constant that you should determine. [You may denote the surface area of a
unit (d−1)-dimensional sphere by Sd−1.]

(b) Write down the Bose–Einstein distribution for the average number of identical
bosons in a state with energy Er > 0 in terms of β = 1/kBT and the chemical potential
µ. Explain why µ < 0.

(c) Show that an ideal quantum Bose gas in a d-dimensional volume V , with
E = A(~k)α, as above, has

p V = DE ,

where p is the pressure and D is a constant that you should determine.

(d) For such a Bose gas, write down an expression for the number of particles that
do not occupy the ground state. Use this to determine the values of α for which there
exists a Bose–Einstein condensate at sufficiently low temperatures.
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36C Electrodynamics
(a) Derive the Larmor formula for the total power P emitted through a large sphere

of radius R by a non-relativistic particle of mass m and charge q with trajectory x(t).
You may assume that the electric and magnetic fields describing radiation due to a source
localised near the origin with electric dipole moment p(t) can be approximated as

BRad(x, t) = − µ0
4πrc

x̂× p̈(t− r/c) ,
ERad(x, t) = − c x̂×BRad(x, t) .

Here, the radial distance r = |x| is assumed to be much larger than the wavelength of
emitted radiation which, in turn, is large compared to the spatial extent of the source.

(b) A non-relativistic particle of mass m, moving at speed v along the x-axis in the
positive direction, encounters a step potential of width L and height V0 > 0 described by

V (x) =





0 , x < 0 ,

f(x) , 0 6 x 6 L ,

V0 , x > L ,

where f(x) is a monotonically increasing function with f(0) = 0 and f(L) = V0. The
particle carries charge q and loses energy by emitting electromagnetic radiation. Assume
that the total energy loss through emission ∆ERad is negligible compared with the
particle’s initial kinetic energy E = mv2/2. For E > V0, show that the total energy
lost is

∆ERad =
q2µ0

6πm2c

√
m

2

∫ L

0
dx

1√
E − f(x)

(
df

dx

)2

.

Find the total energy lost also for the case E < V0.

(c) Take f(x) = V0x/L and explicitly evaluate the particle energy loss ∆ERad in
each of the cases E > V0 and E < V0. What is the maximum value attained by ∆ERad as
E is varied?
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37C General Relativity
(a) Determine the signature of the metric tensor gµν given by

gµν =




0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1


 .

Is it Riemannian, Lorentzian, or neither?

(b) Consider a stationary black hole with the Schwarzschild metric:

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dΩ2.

These coordinates break down at the horizon r = 2M . By making a change of coordinates,
show that this metric can be converted to infalling Eddington–Finkelstein coordinates.

(c) A spherically symmetric, narrow pulse of radiation with total energy E falls
radially inwards at the speed of light from infinity, towards the origin of a spherically
symmetric spacetime that is otherwise empty. Assume that the radial width λ of the
pulse is very small compared to the energy (λ � E), and the pulse can therefore be
treated as instantaneous.

(i) Write down a metric for the region outside the pulse, which is free from
coordinate singularities. Briefly justify your answer. For what range of
coordinates is this metric valid?

(ii) Write down a metric for the region inside the pulse. Briefly justify your
answer. For what range of coordinates is this metric valid?

(iii) What is the final state of the system?
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38A Fluid Dynamics II
Viscous fluid occupying z > 0 is bounded by a rigid plane at z = 0 and is extracted

through a small hole at the origin at a constant flow rate Q = 2πA. Assume that for
sufficiently small values of R = |x| the velocity u(x) is well-approximated by

u = −Ax

R3
, (∗)

except within a thin axisymmetric boundary layer near z = 0.

(a) Estimate the Reynolds number of the flow as a function of R, and thus give an
estimate for how small R needs to be for such a solution to be applicable. Show that the
radial pressure gradient is proportional to R−5.

(b) In cylindrical polar coordinates (r, θ, z), the steady axisymmetric boundary-layer
equations for the velocity components (u, 0, w) can be written as

u
∂u

∂r
+ w

∂u

∂z
= −1

ρ

dP

dr
+ ν

∂2u

∂z2
, where u = −1

r

∂Ψ

∂z
, w =

1

r

∂Ψ

∂r

and Ψ(r, z) is the Stokes streamfunction. Verify that the condition of incompressibility is
satisfied by the use of Ψ.

Use scaling arguments to estimate the thickness δ(r) of the boundary layer near
z = 0 and then to motivate seeking a similarity solution of the form

Ψ = (Aνr)1/2F (η) , where η = z/δ(r) .

(c) Obtain the differential equation satisfied by F , and state the conditions that
would determine its solution. [You are not required to find this solution.]

By considering the flux in the boundary layer, explain why there should be a
correction to the approximation (∗) of relative magnitude (νR/A)1/2 � 1.
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39A Waves
Consider a two-dimensional stratified fluid of sufficiently slowly varying background

density ρb(z) that small-amplitude vertical-velocity perturbations w(x, z, t) can be as-
sumed to satisfy the linear equation

∇2

(
∂2w

∂t2

)
+N2(z)

∂2w

∂x2
= 0, where N2 =

−g
ρ0

dρb
dz

and ρ0 is a constant. The background density profile is such that N2 is piecewise constant
with N2 = N2

0 > 0 for |z| > L and with N2 = 0 in a layer |z| < L of uniform density ρ0.

A monochromatic internal wave of amplitude AI is incident on the intermediate
layer from z = −∞, and produces velocity perturbations of the form

w(x, z, t) = ŵ(z)ei(kx−ωt),

where k > 0 and 0 < ω < N0.

(a) Show that the vertical variations have the form

ŵ(z) =





AI exp
[
− im (z + L)

]
+AR exp

[
im
(
z + L

)]
for z < −L ,

BC cosh kz +BS sinh kz for |z| < L ,

AT exp
[
− im (z − L)

]
for z > L ,

where AR, BC , BS and AT are (in general) complex amplitudes and

m = k

√
N2

0

ω2
− 1 .

In particular, you should justify the choice of signs for the coefficients involving m.

(b) What are the appropriate boundary conditions to impose on ŵ at z = ±L to
determine the unknown amplitudes?

(c) Apply these boundary conditions to show that

AT
AI

=
2imk

2imk cosh 2α+ (k2 −m2) sinh 2α
,

where α = kL.

(d) Hence show that

∣∣∣∣
AT
AI

∣∣∣∣
2

=

[
1 +

(
sinh 2α

sin 2ψ

)2
]−1

,

where ψ is the angle between the incident wavevector and the downward vertical.
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40E Numerical Analysis
Consider discretisation of the diffusion equation

∂u

∂t
=
∂2u

∂x2
, 0 6 t 6 1 , (∗)

by the Crank–Nicholson method:

un+1
m − 1

2µ(un+1
m−1−2un+1

m +un+1
m+1) = unm+ 1

2µ(unm−1−2unm+unm+1) , n = 0 , . . . , N , (†)

where µ= k
h2

is the Courant number, h is the step size in the space discretisation, k = 1
N+1

is the step size in the time discretisation, and unm ≈ u(mh, nk), where u(x, t) is the solution
of (∗). The initial condition u(x, 0) = u0(x) is given.

(a) Consider the Cauchy problem for (∗) on the whole line, x ∈ R (thus m ∈ Z),
and derive the formula for the amplification factor of the Crank–Nicholson method (†).
Use the amplification factor to show that the Crank–Nicholson method is stable for the
Cauchy problem for all µ > 0.

[You may quote basic properties of the Fourier transform mentioned in lectures, but
not the theorem on sufficient and necessary conditions on the amplification factor to have
stability.]

(b) Consider (∗) on the interval 0 6 x 6 1 (thus m = 1, . . . ,M and h = 1
M+1) with

Dirichlet boundary conditions u(0, t) = φ0(t) and u(1, t) = φ1(t), for some sufficiently
smooth functions φ0 and φ1. Show directly (without using the Lax equivalence theorem)
that, given sufficient smoothness of u, the Crank–Nicholson method is convergent, for any
µ > 0, in the norm defined by ‖η‖2,h =

(
h
∑M

m=1 |ηm|2
)
1/2 for η ∈ RM .

[You may assume that the Trapezoidal method has local order 3, and that the
standard three-point centred discretisation of the second derivative (as used in the Crank–
Nicholson method) has local order 2.]

END OF PAPER
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