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SECTION I
1I Number Theory

Define the Möbius function µ, and explain what it means for it to be multiplicative.

Show that for every positive integer n

∑

d|n

µ(d)2

φ(d)
=

n

φ(n)
,

where φ is the Euler totient function.

Fix an integer k > 1. Use the Chinese remainder theorem to show that there are
infinitely many positive integers n for which

µ(n) = µ(n+ 1) = · · · = µ(n+ k).

2H Topics in Analysis
Let Ω be a non-empty bounded open set in R2 with closure Ω and boundary ∂Ω

and let φ : Ω → R be a continuous function. Give a proof or a counterexample for each of
the following assertions.

(i) If φ is twice differentiable on Ω with ∇2φ(x) > 0 for all x ∈ Ω, then there
exists an x0 ∈ ∂Ω with φ(x0) > φ(x) for all x ∈ Ω.

(ii) If φ is twice differentiable on Ω with ∇2φ(x) < 0 for all x ∈ Ω, then there
exists an x0 ∈ ∂Ω with φ(x0) > φ(x) for all x ∈ Ω.

(iii) If φ is four times differentiable on Ω with

∂4φ

∂x4
(x) +

∂4φ

∂y4
(x) > 0

for all x ∈ Ω, then there exists an x0 ∈ ∂Ω with φ(x0) > φ(x) for all x ∈ Ω.

(iv) If φ is twice differentiable on Ω with ∇2φ(x) = 0 for all x ∈ Ω, then there
exists an x0 ∈ ∂Ω with φ(x0) > φ(x) for all x ∈ Ω.

Part II, Paper 2



3

3K Coding and Cryptography
State Shannon’s noisy coding theorem for a binary symmetric channel, defining the

terms involved.

Suppose a channel matrix, with output alphabet of size n, is such that the entries in
each row are the elements of the set {p1, . . . , pn} in some order. Further suppose that all
columns are permutations of one another. Show that the channel’s information capacity
C is given by

C = log n+
n∑

i=1

pi log pi .

Show that the information capacity of the channel matrix

(
1
3

1
3

1
6

1
6

1
6

1
6

1
3

1
3

)

is given by C = 5
3 − log 3.

4F Automata and Formal Languages
Assuming the definition of a deterministic finite-state automaton (DFA) D =

(Q,Σ, δ, q0, F ), what is the extended transition function δ̂ for D? Also assuming the
definition of a nondeterministic finite-state automaton (NFA) N , what is δ̂ in this case?

Define the languages accepted by D and N , respectively, in terms of δ̂.

Given an NFA N as above, describe the subset construction and show that the
resulting DFA N accepts the same language as N . If N has one accept state then how
many does N have?

5J Statistical Modelling
Define a generalised linear model for a sample Y1, . . . , Yn of independent random

variables. Define further the concept of the link function. Define the binomial regression
model (without the dispersion parameter) with logistic and probit link functions. Which
of these is the canonical link function?
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6E Mathematical Biology
Consider a stochastic birth–death process in a population of size n(t), where deaths

occur in pairs for n > 2. The probability per unit time of a birth, n→ n+ 1 for n > 0, is
b, that of a pair of deaths, n → n − 2 for n > 2, is dn, and that of the death of a lonely
singleton, 1→ 0, is D.

(a) Write down the master equation for pn(t), the probability of a population of size
n at time t, distinguishing between the cases n > 2, n = 0 and n = 1.

(b) For a function f(n), n > 0, show carefully that

d

dt
〈f(n)〉 = b

∞∑

n=0

(fn+1 − fn)pn − d
∞∑

n=2

(fn − fn−2)npn −D(f1 − f0)p1 ,

where fn = f(n).

(c) Deduce the evolution equation for the mean µ(t) = 〈n〉, and simplify it for the
case D = 2d .

(d) For the same value of D, show that

d

dt
〈n2〉 = b(2µ+ 1)− 4d

(
〈n2〉 − µ

)
− 2dp1

Deduce that the variance σ2 in the stationary state for b, d > 0 satisfies

3b

4d
− 1

2
< σ2 <

3b

4d
.
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7E Further Complex Methods
The function w(z) satisfies the differential equation

d2w

dz2
+ p(z)

dw

dz
+ q(z)w = 0 , (†)

where p(z) and q(z) are complex analytic functions except, possibly, for isolated singular-
ities in C = C ∪ {∞} (the extended complex plane).

(a) Given equation (†), state the conditions for a point z0 ∈ C to be

(i) an ordinary point,

(ii) a regular singular point,

(iii) an irregular singular point.

(b) Now consider z0 = ∞ and use a suitable change of variables z → t, with
y(t) = w(z), to rewrite (†) as a differential equation that is satisfied by y(t). Hence,
deduce the conditions for z0 = ∞ to be

(i) an ordinary point,

(ii) a regular singular point,

(iii) an irregular singular point.

[In each case, you should express your answer in terms of the functions p and q.]

(c) Use the results above to prove that any equation of the form (†) must have at
least one singular point in C.

8D Classical Dynamics
Show that, in a uniform gravitational field, the net gravitational torque on a system

of particles, about its centre of mass, is zero.

Let S be an inertial frame of reference, and let S′ be the frame of reference with the
same origin and rotating with angular velocity ω(t) with respect to S. You may assume
that the rates of change of a vector v observed in the two frames are related by

(
dv

dt

)

S

=

(
dv

dt

)

S′
+ ω × v .

Derive Euler’s equations for the torque-free motion of a rigid body.

Show that the general torque-free motion of a symmetric top involves precession
of the angular-velocity vector about the symmetry axis of the body. Determine how the
direction and rate of precession depend on the moments of inertia of the body and its
angular velocity.
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9B Cosmology
(a) The generalised Boltzmann distribution P (p) is given by

P (p) =
e−β(Ep np−µnp)

Zp
,

where β = (kBT )−1, µ is the chemical potential,

Zp =
∑

np

e−β(Ep np−µnp), Ep =
√
m2c4 + p2c2 and p = |p| .

Find the average particle number 〈N(p)〉 with momentum p, assuming that all particles
have rest mass m and are either

(i) bosons, or

(ii) fermions .

(b) The photon total number density nγ is given by

nγ =
2ζ(3)

π2~3c3
(kB T )3 ,

where ζ(3) ≈ 1.2. Consider now the fractional ionisation of hydrogen

Xe =
ne

ne + nH
.

In our universe ne + nH = np + nH ≈ η nγ , where η ∼ 10−9 is the baryon-to-photon
number density. Find an expression for the ratio

1−Xe

X2
e

in terms of η, (kB T ), the electron mass me, the speed of light c and the ionisation energy
of hydrogen I ≈ 13.6 eV.

One might expect neutral hydrogen to form at a temperature kB T ∼ I, but instead
in our universe it happens at the much lower temperature kB T ≈ 0.3 eV. Briefly explain
why this happens.

[
You may use without proof the Saha equation

nH
n2e

=

(
2π~2

me kB T

)3/2

eβI ,

for chemical equilibrium in the reaction e− + p+ ↔ H + γ .
]

Part II, Paper 2



7

10D Quantum Information and Computation
Let Bn denote the set of all n-bit strings and let f : Bn → B1 be a Boolean function

which obeys either

(I) f(x) = 0 for all x ∈ Bn, or
(II) f(x) = 0 for exactly half of all x ∈ Bn.

Suppose we are given the n-qubit state

| ξ〉 = 1√
2n

∑

x∈Bn

(−1)f(x) |x〉 .

Show how we may determine with certainty whether f is of case (I) or case (II).

Suppose now that Alice and Bob are separated in space. Alice possesses a quantum
oracle for a Boolean function fA : Bn → B1 and Bob similarly possess a quantum oracle
for a Boolean function fB : Bn → B1. These functions are arbitrary, except that either

(1) fA(x) = fB(x) for all x ∈ Bn, or
(2) fA(x) = fB(x) for exactly half of all x ∈ Bn.

Alice and Bob each have available a supply of qubits in state |0〉 and each can apply local
quantum operations (including their own function oracle) to any qubits in their possession.
Additionally, they can send qubits to each other.

Show how Bob may decide with certainty which case applies, after he has received
n qubits from Alice. [Hint: You may find it helpful to consider the function h(x) =
fA(x)⊕ fB(x), where ⊕ denotes addition mod 2.]
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SECTION II
11H Topics in Analysis

Let r : [−1, 1]→ R be a continuous function with r(x) > 0 for all but finitely many
values of x.

(a) Show that

〈u, v〉 =

∫ 1

−1
u(x)v(x)r(x) dx (∗)

defines an inner product on C([−1, 1]).

(b) Show that for each n there exists a polynomial Pn of degree exactly n which is
orthogonal, with respect to the inner product (∗), to all polynomials of lower degree.

(c) Show that Pn has n simple zeros ω1(n), ω2(n), . . . , ωn(n) on [−1, 1].

(d) Show that for each n there exist unique real numbers Aj(n), 1 6 j 6 n, such
that whenever Q is a polynomial of degree at most 2n− 1,

∫ 1

−1
Q(x)r(x) dx =

n∑

j=1

Aj(n)Q
(
ωj(n)

)
.

(e) Show that
n∑

j=1

Aj(n)f
(
ωj(n)

)
→
∫ 1

−1
f(x)r(x) dx

as n→∞ for all f ∈ C([−1, 1]).

(f) If R > 1, K > 0, am is real with |am| 6 KR−m and f(x) =

∞∑

m=1

amx
m, show

that ∣∣∣∣∣∣

∫ 1

−1
f(x)r(x) dx−

n∑

j=1

Aj(n)f
(
ωj(n)

)
∣∣∣∣∣∣
6 2KR−2n+1

R− 1

∫ 1

−1
r(x) dx.

(g) If r(x) = (1 − x2)1/2 and Pn(0) = 1, identify Pn (giving brief reasons) and the
ωj(n). [Hint: A change of variable may be useful.]
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12K Coding and Cryptography
(a) Define what it means to say that C is a binary cyclic code. Explain the bijection

between the set of binary cyclic codes of length n and the factors of Xn − 1 in F2[X].

(b) What is a linear feedback shift register?

Suppose that M : Fd
2 → Fd

2 is a linear feedback shift register. Further suppose
0 6= x ∈ Fd

2 and k is a positive integer such that Mkx = x. Let H be the d × k matrix
(x,Mx, . . . ,Mk−1x). Considering H as a parity check matrix of a code C, show that C
is a binary cyclic code.

(c) Suppose that C is a binary cyclic code. Prove that, if C does not contain the
codeword 11 . . . 1, then all codewords in C have even weight.

13E Further Complex Methods
The temperature T (x, t) in a semi-infinite bar (0 6 x < ∞) satisfies the heat

equation
∂T

∂t
= κ

∂2T

∂x2
, for x > 0 and t > 0 ,

where κ is a positive constant.

For t < 0, the bar is at zero temperature. For t > 0, the temperature is subject to
the boundary conditions

T (0, t) = a(1− e−bt),
where a and b are positive constants, and T (x, t)→ 0 as x→∞.

(a) Show that the Laplace transform of T (x, t) with respect to t takes the form

T̂ (x, p) = f̂(p)e−x
√
p/κ ,

and find f̂(p). Hence write T̂ (x, p) in terms of a, b, κ, p and x.

(b) By performing the inverse Laplace transform using contour integration, show
that for t > 0

T (x, t) = a

[
1− e−bt cos

(√ b

κ
x
)]

+
2ab

π
P
∫ ∞

0

e−v
2t sin(xv/

√
κ)

v(v2 − b) dv .
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14D Classical Dynamics
(a) Show that the Hamiltonian

H =
1

2
p2 +

1

2
ω2q2 ,

where ω is a positive constant, describes a simple harmonic oscillator with angular
frequency ω. Show that the energy E and the action I of the oscillator are related by
E = ωI.

(b) Let 0 < ε < 2 be a constant. Verify that the differential equation

ẍ+
x

(εt)2
= 0 subject to x(1) = 0 , ẋ(1) = 1

is solved by

x(t) =

√
t

k
sin(k log t)

when t > 1, where k is a constant you should determine in terms of ε.

(c) Show that the solution in part (b) obeys

1

2
ẋ2 +

1

2

x2

(εt)2
=

1− cos(2k log t) + 2k sin(2k log t) + 4k2

8k2t
.

Hence show that the fractional variation of the action in the limit ε� 1 is O(ε), but that
these variations do not accumulate. Comment on this behaviour in relation to the theory
of adiabatic invariance.
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15D Quantum Information and Computation
Alice and Bob are separated in space and can communicate only over a noiseless

public classical channel, i.e. they can exchange bit string messages perfectly, but the
messages can be read by anyone. An eavesdropper Eve constantly monitors the channel,
but cannot alter any passing messages. Alice wishes to communicate an m-bit string
message to Bob whilst keeping it secret from Eve.

(a) Explain how Alice can do this by the one-time pad method, specifying clearly
any additional resource that Alice and Bob need. Explain why in this method, Alice’s
message does, in fact, remain secure against eavesdropping.

(b) Suppose now that Alice and Bob do not possess the additional resource needed
in part (a) for the one-time pad, but that they instead possess n pairs of qubits, where
n� 1, with each pair being in the state

|ψ〉AB = t |00〉AB + s |11〉AB ,

where the real parameters (t, s) are known to Alice and Bob and obey t > s > 0 and
t2+ s2 = 1. For each qubit pair in state |ψ〉AB, Alice possesses qubit A and Bob possesses
qubit B. They each also have available a supply of ancilla qubits, each in state |0〉, and
they can each perform local quantum operations on qubits in their possession.

Show how Alice, using only local quantum operations, can convert each |ψ〉AB state
into |φ+〉AB = 1√

2
(|00〉AB + |11〉AB) by a process that succeeds with non-zero probability.

[Hint: It may be useful for Alice to start by adjoining an ancilla qubit |0〉A′ and work
locally on her two qubits in |0〉A′ |ψ〉AB.]

Hence, or otherwise, show how Alice can communicate a bit string of expected
length (2s2)n to Bob in a way that keeps it secure against eavesdropping by Eve.
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16G Logic and Set Theory
Write down the inductive definition of ordinal exponentiation. Show that ωα > α

for every ordinal α. Deduce that, for every ordinal α, there is a least ordinal α∗ with
ωα
∗
> α. Show that, if α 6= 0, then α∗ must be a successor ordinal.

Now let α be a non-zero ordinal. Show that there exist ordinals β and γ, where
γ < α, and a positive integer n such that α = ωβn+ γ. Hence, or otherwise, show that α
can be written in the form

α = ωβ1n1 + ωβ2n2 + · · ·+ ωβknk ,

where k, n1, n2, . . . , nk are positive integers and β1 > β2 > · · · > βk are ordinals. [We
call this the Cantor normal form of α, and you may henceforth assume that it is unique.]

Given ordinals δ1, δ2 and positive integers m1, m2 find the Cantor normal form of
ωδ1m1 + ωδ2m2. Hence, or otherwise, given non-zero ordinals α and α′, find the Cantor
normal form of α+ α′ in terms of the Cantor normal forms

α = ωβ1n1 + ωβ2n2 + · · ·+ ωβknk

and
α′ = ωβ

′
1n′1 + ωβ

′
2n′2 + · · ·+ ωβ

′
k′n′k′

of α and α′.

17G Graph Theory
(a) Define a tree and what it means for a graph to be acyclic. Show that if G is an

acyclic graph on n vertices then e(G) 6 n− 1. [You may use the fact that a spanning tree
on n vertices has n− 1 edges.]

(b) Show that any 3-regular graph on n vertices contains a cycle of length 6
100 log n. Hence show that there exists n0 such that every 3-regular graph on more than
n0 vertices must contain two cycles C1, C2 with disjoint vertex sets.

(c) An unfriendly partition of a graph G = (V,E) is a partition V = A ∪ B, where
A,B 6= ∅, such that every vertex v ∈ A has |N(v) ∩ B| > |N(v) ∩ A| and every v ∈ B
has |N(v) ∩ A| > |N(v) ∩ B|. Show that every graph G with |G| > 2 has an unfriendly
partition.

(d) A friendly partition of a graph G = (V,E) is a partition V = S ∪ T , where
S, T 6= ∅, such that every vertex v ∈ S has |N(v) ∩ S| > |N(v) ∩ T | and every v ∈ T has
|N(v)∩ T | > |N(v)∩ S|. Give an example of a 3-regular graph (on at least 1 vertex) that
does not have a friendly partition. Using part (b), show that for large enough n0 every
3-regular graph G with |G| > n0 has a friendly partition.
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18I Galois Theory
(a) Let f(x) ∈ Fq[x] be a polynomial of degree n, and let L be its splitting field.

(i) Suppose that f is irreducible. Compute Gal(f), carefully stating any
theorems you use.

(ii) Now suppose that f(x) factors as f = h1 · · ·hr in Fq[x], with each hi
irreducible, and hi 6= hj if i 6= j. Compute Gal(f), carefully stating any
theorems you use.

(iii) Explain why L/Fq is a cyclotomic extension. Define the corresponding
homomorphism Gal(L/Fq) ↪→ (Z/mZ)∗ for this extension (for a suitable
integer m), and compute its image.

(b) Compute Gal(f) for the polynomial f = x4 + 8x+ 12 ∈ Q[x]. [You may assume
that f is irreducible and that its discriminant is 5762.]

19I Representation Theory
Let G be a finite group and work over C.

(a) Let χ be a faithful character of G, and suppose that χ(g) takes precisely r
different values as g varies over all the elements of G. Show that every irreducible character
of G is a constituent of one of the powers χ0, χ1, . . . , χr−1. [Standard properties of the
Vandermonde matrix may be assumed if stated correctly.]

(b) Assuming that the number of irreducible characters of G is equal to the number
of conjugacy classes of G, show that the irreducible characters of G form a basis of the
complex vector space of all class functions on G. Deduce that g, h ∈ G are conjugate if
and only if χ(g) = χ(h) for all characters χ of G.

(c) Let χ be a character of G which is not faithful. Show that there is some
irreducible character ψ of G such that 〈χn, ψ〉 = 0 for all integers n > 0.
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20G Number Fields
Let K be a field containing Q. What does it mean to say that an element of K is

algebraic? Show that if α ∈ K is algebraic and non-zero, then there exists β ∈ Z[α] such
that αβ is a non-zero (rational) integer.

Now let K be a number field, with ring of integers OK . Let R be a subring of OK

whose field of fractions equals K. Show that every element of K can be written as r/m,
where r ∈ R and m is a positive integer.

Prove that R is a free abelian group of rank [K : Q], and that R has finite index in
OK . Show also that for every nonzero ideal I of R, the index (R : I) of I in R is finite,
and that for some positive integer m, mOK is an ideal of R.

Suppose that for every pair of non-zero ideals I, J ⊂ R, we have

(R : IJ) = (R : I)(R : J) .

Show that R = OK .

[You may assume without proof that OK is a free abelian group of rank [K : Q]. ]

21F Algebraic Topology
(a) State a suitable version of the Seifert–van Kampen theorem and use it to

calculate the fundamental groups of the torus T 2 := S1 × S1 and of the real projective
plane RP2.

(b) Show that there are no covering maps T 2 → RP2 or RP2 → T 2.

(c) Consider the following covering space of S1 ∨ S1:

aa

aa

bb

bb

Here the line segments labelled a and b are mapped to the two different copies of S1

contained in S1 ∨ S1, with orientations as indicated.

Using the Galois correspondence with basepoints, identify a subgroup of

π1(S
1 ∨ S1, x0) = F2

(where x0 is the wedge point) that corresponds to this covering space.
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22H Linear Analysis
(a) Let V be a real normed vector space. Show that any proper subspace of V has

empty interior.

Assuming V to be infinite-dimensional and complete, prove that any algebraic basis
of V is uncountable. [The Baire category theorem can be used if stated properly.] Deduce
that the vector space of polynomials with real coefficients cannot be equipped with a
complete norm, i.e. a norm that makes it complete.

(b) Suppose that ‖ · ‖1 and ‖ · ‖2 are norms on a vector space V such that (V, ‖ · ‖1)
and (V, ‖·‖2) are both complete. Prove that if there exists C1 > 0 such that ‖x‖2 6 C1‖x‖1
for all x ∈ V , then there exists C2 > 0 such that ‖x‖1 6 C2‖x‖2 for all x ∈ V . Is this still
true without the assumption that (V, ‖ · ‖1) and (V, ‖ · ‖2) are both complete? Justify your
answer.

(c) Let V be a real normed vector space (not necessarily complete) and V ∗ be the
set of linear continuous forms f : V → R. Let (xn)n>1 be a sequence in V such that∑

n>1 |f(xn)| <∞ for all f ∈ V ∗. Prove that

sup
‖f‖V ∗61

∑

n>1

|f(xn)| <∞ .

23H Analysis of Functions
Define the Schwartz space, S (Rn), and the space of tempered distributions, S ′(Rn),

stating what it means for a sequence to converge in each space.

For a Ck function f : Rn → C, and non-negative integers N, k, we say f ∈ XN,k if

‖f‖N,k := sup
x∈Rn;|α|6k

∣∣∣
(
1 + |x|2

)N
2 Dαf(x)

∣∣∣ <∞.

You may assume that XN,k equipped with ‖ · ‖N,k is a Banach space in which S (Rn) is
dense.

(a) Show that if u ∈ S ′(Rn) there exist N, k ∈ Z>0 and C > 0 such that

|u[φ]| 6 C‖φ‖N,k for all φ ∈ S (Rn) .

Deduce that there exists a unique ũ ∈ X ′N,k such that ũ[φ] = u[φ] for all φ ∈ S (Rn).

(b) Recall that v ∈ S ′(Rn) is positive if v[φ] > 0 for all φ ∈ S (Rn) satisfying
φ > 0. Show that if v ∈ S ′(Rn) is positive, then there exist M ∈ Z>0 and K > 0 such
that

|v[φ]| 6 K‖φ‖M,0, for all φ ∈ S (Rn).
[
Hint: Note that |φ(x)| 6 ‖φ‖M,0

(
1 + |x|2

)−M
2 .
]
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24F Riemann Surfaces
Let D ⊆ C be a domain, let (f, U) be a function element in D, and let α : [0, 1]→ D

be a path with α(0) ∈ U . Define what it means for a function element (g, V ) to be an
analytic continuation of (f, U) along α.

Suppose that β : [0, 1]→ D is a path homotopic to α and that (h, V ) is an analytic
continuation of (f, U) along β. Suppose, furthermore, that (f, U) can be analytically
continued along any path in D. Stating carefully any theorems that you use, prove that
g
(
α(1)

)
= h

(
β(1)

)
.

Give an example of a function element (f, U) that can be analytically continued to
every point of C∗ and a pair of homotopic paths α, β in C∗ starting in U such that the
analytic continuations of (f, U) along α and β take different values at α(1) = β(1).

25I Algebraic Geometry
Let k be an algebraically closed field and n > 1. Exhibit GL(n, k) as an open subset

of affine space An2

k . Deduce that GL(n, k) is smooth. Prove that it is also irreducible.

Prove that GL(n, k) is isomorphic to a closed subvariety in an affine space.

Show that the matrix multiplication map

GL(n, k)×GL(n, k)→ GL(n, k)

that sends a pair of matrices to their product is a morphism.

Prove that any morphism from An
k to A1

k r {0} is constant.

Prove that for n > 2 any morphism from Pn
k to P1

k is constant.

26F Differential Geometry
Let U be a domain in R2, and let φ : U → R3 be a smooth map. Define what it

means for φ to be an immersion. What does it mean for an immersion to be isothermal?

Write down a formula for the mean curvature of an immersion in terms of the first
and second fundamental forms. What does it mean for an immersed surface to be minimal?
Assume that φ(u, v) =

(
x(u, v), y(u, v), z(u, v)

)
is an isothermal immersion. Prove that it

is minimal if and only if x, y, z are harmonic functions of u, v.

For u ∈ R, v ∈ [0, 2π], and smooth functions f, g : R → R, assume that

φ(u, v) =
(
f(u) cos v, f(u) sin v, g(u)

)

is an isothermal immersion. Find all possible pairs (f, g) such that this immersion is
minimal.
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27H Probability and Measure
Let (E, E , µ) be a measure space. A function f is simple if it is of the form

f =
∑N

i=1 ai1Ai , where ai ∈ R, N ∈ N and Ai ∈ E .
Now let f : (E, E , µ) → [0,∞] be a Borel-measurable map. Show that there exists

a sequence fn of simple functions such that fn(x)→ f(x) for all x ∈ E as n→∞.

Next suppose f is also µ-integrable. Construct a sequence fn of simple µ-integrable
functions such that

∫
E |fn − f |dµ→ 0 as n→∞.

Finally, suppose f is also bounded. Show that there exists a sequence fn of simple
functions such that fn → f uniformly on E as n→∞.

28K Applied Probability
Let X be an irreducible, non-explosive, continuous-time Markov process on the state

space Z with generator Q = (qx,y)x,y∈Z.

(a) Define its jump chain Y and prove that it is a discrete-time Markov chain.

(b) Define what it means for X to be recurrent and prove that X is recurrent if
and only if its jump chain Y is recurrent. Prove also that this is the case if the transition
semigroup (px,y(t)) satisfies ∫ ∞

0
p0,0(t) dt =∞.

(c) Show that X is recurrent for at least one of the following generators:

qx,y = (1 + |x|)−2e−|x−y|2 (x 6= y),

qx,y = (1 + |x− y|)−2e−|x|2 (x 6= y).

[Hint: You may use that the semigroup associated with a Q-matrix on Z such that qx,y
depends only on x− y (and has sufficient decay) can be written as

px,y(t) =
1

2π

∫ π

−π
e−tλ(k)eik(x−y) dk,

where λ(k) =
∑

y q0,y(1− eiky). You may also find the bound 1− cosx 6 x2/2 useful.]
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29J Principles of Statistics
Let X1, . . . , Xn be i.i.d. random observations taking values in [0, 1] with a continuous

distribution function F . Let F̂n(x) = n−1
∑n

i=1 1{Xi6x} for each x ∈ [0, 1].

(a) State the Kolmogorov–Smirnov theorem. Explain how this theorem may be used
in a goodness-of-fit test for the null hypothesis H0 : F = F0, with F0 continuous.

(b) Suppose you do not have access to the quantiles of the sampling distribution of
the Kolmogorov–Smirnov test statistic. However, you are given i.i.d. samples Z1, . . . , Znm

with distribution function F0. Describe a test of H0 : F = F0 with size exactly 1/(m+ 1).

(c) Now suppose that X1, . . . , Xn are i.i.d. taking values in [0,∞) with probability
density function f , with supx>0

(
|f(x)|+ |f ′(x)|

)
< 1. Define the density estimator

f̂n(x) = n−2/3
n∑

i=1

1{
Xi − 1

2n1/3 6 x 6 Xi + 1
2n1/3

}, x > 0.

Show that for all x > 0 and all n > 1,

E
[(
f̂n(x)− f(x)

)
2
]
6 2

n2/3
.

30K Stochastic Financial Models
Consider a one-period market model with d risky assets and one risk-free asset. Let

St denote the vector of prices of the risky assets at time t ∈ {0, 1} and let r be the interest
rate.

(a) What does it mean to say a portfolio ϕ ∈ Rd is an arbitrage for this market?

(b) An investor wishes to maximise their expected utility of time-1 wealth X1

attainable by investing in the market with their time-0 wealth X0 = x. The investor’s
utility function U is increasing and concave. Show that, if there exists an optimal solution
X∗

1 to the investor’s expected utility maximisation problem, then the market has no
arbitrage. [Assume that U(X1) is integrable for any attainable time-1 wealth X1.]

(c) Now introduce a contingent claim with time-1 bounded payout Y . How does
the investor in part (b) calculate an indifference bid price π(Y ) for the claim? Assuming
each such claim has a unique indifference price, show that the map Y 7→ π(Y ) is concave.
[Assume that any relevant utility maximisation problem that you consider has an optimal
solution.]

(d) Consider a contingent claim with time-1 bounded payout Y . Let I ⊆ R be the
set of initial no-arbitrage prices for the claim; that is, the set I consists of all p such that the
market augmented with the contingent claim with time-0 price p has no arbitrage. Show
that π(Y ) 6 sup{p ∈ I}. [Assume that any relevant utility maximisation problem that
you consider has an optimal solution. You may use results from lectures without proof,
such as the fundamental theorem of asset pricing or the existence of marginal utility prices,
as long as they are clearly stated.]
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31J Mathematics of Machine Learning
(a) What is meant by the subdifferential ∂f(x) of a convex function f : Rd → R

at x ∈ Rd? Write down the subdifferential ∂f(x) of the function f : R → R given by
f(x) = γ|x|, where γ > 0.

Show that x minimises f if and only if 0 ∈ ∂f(x).

What does it mean for a function f : Rd → R to be strictly convex? Show that any
minimiser of a strictly convex function must be unique.

(b) Suppose we have input–output pairs (x1, y1), . . . , (xn, yn) ∈ {−1, 1}p × {−1, 1}
with p > 2. Consider the objective function

f(β) =
1

n

n∑

i=1

exp(−yixTi β) + γ‖β‖1,

where β = (β1, . . . , βp)
T and γ > 0. Assume that (yi)

n
i=1 6= (xi1)

n
i=1. Fix β2, . . . , βp and

define

κ1 =
∑

16i6n :
xi1 6=yi

exp(−yiηi) and κ2 =
n∑

i=1

exp(−yiηi),

where ηi =
∑p

j=2 xijβj for i = 1, . . . , n. Show that if |2κ1 − κ2| 6 γ , then

argminβ1∈Rf(β1, β2, . . . , βp) = 0.

[You may use any results from the course without proof, other than those whose proof is
asked for directly.]

Part II, Paper 2 [TURN OVER]



20

32A Asymptotic Methods
(a) Let x(t) and φn(t), for n = 0, 1, 2, . . . , be real-valued functions on R.

(i) Define what it means for the sequence
{
φn(t)

}∞
n=0

to be an asymptotic
sequence as t→∞ .

(ii) Define what it means for x(t) to have the asymptotic expansion

x(t) ∼
∞∑

n=0

anφn(t) as t→∞ .

(b) Use the method of stationary phase to calculate the leading-order asymptotic
approximation as x→∞ of

I(x) =

∫ 1

0
sin
(
x(2t4 − t2)

)
dt .

[You may assume that

∫ ∞

−∞
eiu

2
du =

√
π eiπ/4.]

(c) Use Laplace’s method to calculate the leading-order asymptotic approximation
as x→∞ of

J(x) =

∫ 1

0
sinh

(
x(2t4 − t2)

)
dt .

[In parts (b) and (c) you should include brief qualitative reasons for the origin of
the leading-order contributions, but you do not need to give a formal justification.]
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33A Dynamical Systems
Consider a modified van der Pol system defined by

ẋ = y − µ(13x
3 − x),

ẏ = −x+ F,

where µ > 0 and F are constants.

(a) A parallelogram PQRS of width 2L is defined by

P =
(
L, µf(L)

)
, Q =

(
L, 2L− µf(L)

)
,

R =
(
−L, −µf(L)

)
, S =

(
−L, µf(L) − 2L

)
,

where f(L) = 1
3L

3−L. Show that if L is sufficiently large then trajectories never leave the
region inside the parallelogram.

Hence show that if F 2 < 1 there must be a periodic orbit. Explain your reasoning
carefully.

(b) Use the energy-balance method to analyse the behaviour of the system for µ� 1,
identifying the difference in behaviours between F 2 < 1 and F 2 > 1.

(c) Describe the behaviour of the system for µ � 1, using sketches of the phase
plane to illustrate your arguments for the cases 0 < F < 1 and F > 1.
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34D Integrable Systems
(a) Explain briefly how the linear operators L = −∂2x+u(x, t) and A = 4∂3x−3u∂x−

3∂xu can be used to give a Lax-pair formulation of the KdV equation ut+uxxx−6uux = 0 .

(b) Give a brief definition of the scattering data

Su(t) =
{
{R(k, t)}k∈R , {−κn(t)2, cn(t)}Nn=1

}

attached to a smooth solution u = u(x, t) of the KdV equation at time t. [You may assume
u(x, t) to be rapidly decreasing in x.] State the time dependence of κn(t) and cn(t), and
derive the time dependence of R(k, t) from the Lax-pair formulation.

(c) Show that

F (x, t) =
N∑

n=1

cn(t)2 e−κn(t)x +
1

2π

∫ ∞

−∞
R(k, t) eikx dk

satisfies ∂tF + 8∂3xF = 0. Now let K(x, y, t) be the solution of the equation

K(x, y, t) + F (x+ y, t) +

∫ ∞

x
K(x, z, t)F (z + y, t) dz = 0

and let u(x, t) = −2∂xφ(x, t), where φ(x, t) = K(x, x, t). Defining G(x, y, t) by G =(
∂2x − ∂2y − u(x, t)

)
K(x, y, t), show that

G(x, y, t) +

∫ ∞

x
G(x, z, t)F (z + y, t) dz = 0 .

(d) Given that K(x, y, t) obeys the equations

(∂2x − ∂2y)K − uK = 0 ,

(∂t + 4∂3x + 4∂3y)K − 3(∂xu)K − 6u ∂xK = 0 ,

where u = u(x, t), deduce that

∂tK + (∂x + ∂y)
3K − 3u (∂x + ∂y)K = 0 ,

and hence that u solves the KdV equation.
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35B Principles of Quantum Mechanics
(a) Let {|n〉} be a basis of eigenstates of a non-degenerate Hamiltonian H, with

corresponding eigenvalues {En}. Write down an expression for the energy levels of the
perturbed Hamiltonian H + λ∆H, correct to second order in the dimensionless constant
λ� 1.

(b) A particle travels in one dimension under the influence of the potential

V (X) =
1

2
mω2X2 + λ ~ω

X3

L3
,

where m is the mass, ω a frequency and L =
√
~/2mω a length scale. Show that, to first

order in λ, all energy levels coincide with those of the harmonic oscillator. Calculate the
energy of the ground state to second order in λ.

Does perturbation theory in λ converge for this potential? Briefly explain your
answer.

36B Applications of Quantum Mechanics
(a) The s-wave solution ψ0 for the scattering problem of a particle of mass m and

momentum ~k has the asymptotic form

ψ0(r) ∼
A

r

[
sin(kr) + g(k) cos(kr)

]
.

Define the phase shift δ0 and verify that tan δ0 = g(k).

(b) Define the scattering amplitude f . For a spherically symmetric potential of finite
range, starting from σT =

∫
|f |2dΩ , derive the expression

σT =
4π

k2

∞∑

l=0

(2l + 1) sin2 δl

giving the cross-section σT in terms of the phase shifts δl of the partial waves.

(c) For g(k) = −k/K with K > 0, show that a bound state exists and compute its
energy. Neglecting the contributions from partial waves with l > 0, show that

σT ≈
4π

K2 + k2
.

(d) For g(k) = γ/(K0 − k) with K0 > 0, γ > 0 compute the s-wave contribution to
σT . Working to leading order in γ � K0, show that σT has a local maximum at k = K0.
Interpret this fact in terms of a resonance and compute its energy and decay width.
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37C Statistical Physics
(a) What systems are described by microcanonical, canonical and grand canonical

ensembles? Under what conditions is the choice of ensemble irrelevant?

(b) In a simple model a meson consists of two quarks bound in a linear potential,
U(r) = α|r|, where r is the relative displacement of the two quarks and α is a positive
constant. You are given that the classical (non-relativistic) Hamiltonian for the meson is

H(P,R,p, r) =
|P|2
2M

+
|p|2
2µ

+ α|r| ,

where M = 2m is the total mass, µ = m/2 is the reduced mass, P is the total momentum,
p = µdr/dt is the internal momentum, and R is the centre of mass position.

(i) Show that the partition function for a single meson in thermal equilibrium at
temperature T in a three-dimensional volume V can be written as Z1 = ZtransZint, where

Ztrans =
V

(2π~)3

∫
d3P e−β|P|

2/(2M) , Zint =
1

(2π~)3

∫
d3r d3p e−β|p|

2/(2µ)e−βα|r|

and β = 1/(kBT ).

Evaluate Ztrans and evaluate Zint in the large-volume limit (βαV 1/3 � 1).

What is the average separation of the quarks within the meson at temperature T?
[
You may assume that

∫ ∞

−∞
e−c x

2
dx =

√
π/c for c > 0.

]

(ii) Now consider an ideal gas of N such mesons in a three-dimensional volume V .
Calculate the total partition function of the gas.

What is the heat capacity CV ?
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38C General Relativity
Consider the following metric for a 3-dimensional, static and rotationally symmetric

Lorentzian manifold:
ds2 = r−2(−dt2 + dr2) + r2dθ2 .

(a) Write down a Lagrangian L for arbitrary geodesics in this metric, if the geodesic
is affinely parameterized with respect to λ. What condition may be imposed to distinguish
spacelike, timelike, and null geodesics?

(b) Find the three constants of motion for any geodesic.

(c) Two observation stations are sitting at radii r = R and r = 2R respectively,
and at the same angular coordinate. Each is accelerating so as to remain stationary with
respect to time translations. At t = 0 a photon is emitted from the naked singularity at
r = 0.

(i) At what time t1 does the photon reach the inner station?

(ii) Express the frequency ν2 of the photon at the outer station in terms of the
frequency ν1 at the inner station. Explain whether the photon is redshifted
or blueshifted as it travels.

(d) Consider a complete (i.e. infinite in both directions) spacelike geodesic on a
constant-t slice with impact parameter b = rmin > 0. What is the angle ∆θ between the
two asymptotes of the geodesic at r = ∞? [You need not be concerned with the sign of
∆θ or the periodicity of the θ coordinate.]

[Hint: You may find integration by substitution useful.]
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39A Fluid Dynamics II
(a) Incompressible fluid of viscosity µ fills the thin, slowly varying gap between rigid

boundaries at z = 0 and z = h(x, y) > 0. The boundary at z = 0 translates in its own
plane with a constant velocity U = (U, 0, 0), while the other boundary is stationary. If h
has typical magnitude H and varies on a lengthscale L, state conditions for the lubrication
approximation to be appropriate.

Write down the lubrication equations for this problem and show that the horizontal
volume flux q = (qx, qy, 0) is given by

q =
Uh

2
− h3

12µ
∇p,

where p(x, y) is the pressure.

Explain why q = ∇ ∧ (0, 0, ψ) for some function ψ(x, y). Deduce that ψ satisfies
the equation

∇ ·
(

1

h3
∇ψ

)
= − U

h3
∂h

∂y
.

(b) Now consider the case U = 0, h = h0 for r > a and h = h1 for r < a, where
h0, h1 and a are constants, and (r, θ) are polar coordinates. A uniform pressure gradient
∇p = −Gex is applied at infinity. Show that ψ ∼ Ar sin θ as r →∞, where the constant
A is to be determined.

Given that a � h0, h1, you may assume that the equations of part (a) apply for
r < a and r > a, and are subject to conditions that the radial component qr of the volume
flux and the pressure p are both continuous across r = a. Show that these continuity
conditions imply that [∂ψ

∂θ

]+
−

= 0 and
[ 1

h3
∂ψ

∂r

]+
−

= 0 ,

respectively, where [ ]+− denotes the jump across r = a.

Hence determine ψ(r, θ) and deduce that the total flux through r = a is given by

4Aah31
h30 + h31

.
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40A Waves
A semi-infinite elastic medium with shear modulus µ and shear-wave speed cs lies

in z 6 0. Above it, there is a layer 0 6 z 6 h of a second elastic medium with shear
modulus µ and shear-wave speed cs < cs. The top boundary is stress-free. Consider
a monochromatic SH-wave propagating in the x-direction at speed c with wavenumber
k > 0.

(a) Derive the dispersion relation

tan
[
kh
√
c2/c2s − 1

]
=
µ

µ

√
1− c2/c2s√
c2/c2s − 1

for trapped modes with no disturbance as z → −∞.

(b) Show graphically that there is always a zeroth mode, and show that the other
modes have cut-off frequencies

ω(n)
c =

nπcscs

h
√
c2s − c2s

,

where n is a positive integer. Sketch a graph of frequency ω against k for the n = 1 mode
showing the behaviour near cut-off and for large k.
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41E Numerical Analysis
(a) Let x ∈ RN and define y ∈ R2N by

yn =

{
xn, 0 6 n 6 N − 1

x2N−n−1, N 6 n 6 2N − 1.

Let Y ∈ C2N be defined as the discrete Fourier transform (DFT) of y, i.e.

Yk =
2N−1∑

n=0

ynω
nk
2N , ω2N = exp (−πi/N) , 0 6 k 6 2N − 1.

Show that

Yk = 2ω
−k/2
2N

N−1∑

n=0

xn cos

[
π

N

(
n+

1

2

)
k

]
, 0 6 k 6 2N − 1.

(b) Define the discrete cosine transform (DCT) CN : RN → RN by

z = CNx, where zk =
N−1∑

n=0

xn cos

[
π

N

(
n+

1

2

)
k

]
, k = 0, . . . , N − 1 .

For N = 2p with p ∈ N, show that, similar to the Fast Fourier Transform (FFT), there
exists an algorithm that computes the DCT of a vector of length N , where the number of
multiplications required is bounded by CN logN , where C is some constant independent
of N .

[You may not assume that the FFT algorithm requires O(N logN) multiplications
to compute the DFT of a vector of length N . If you use this, you must prove it. ]
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