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SECTION I
1E Linear Algebra

Let Matn(C) be the vector space of n by n complex matrices.

Given A ∈ Matn(C), define the linear map ϕA : Matn(C)→ Matn(C),

X 7→ AX −XA.

(i) Compute a basis of eigenvectors, and their associated eigenvalues, when A is the
diagonal matrix

A =




1
2

. . .

n


 .

What is the rank of ϕA?

(ii) Now let A =

(
0 1
0 0

)
. Write down the matrix of the linear transformation ϕA

with respect to the standard basis of Mat2(C).

What is its Jordan normal form?

2F Analysis and Topology
Let X be a topological space with an equivalence relation, X̃ the set of equivalence

classes, π : X → X̃, the quotient map taking a point in X to its equivalence class.

(a) Define the quotient topology on X̃ and check it is a topology.

(b) Prove that if Y is a topological space, a map f : X̃ → Y is continuous if and
only if f ◦ π is continuous.

(c) If X is Hausdorff, is it true that X̃ is also Hausdorff? Justify your answer.

3G Complex Analysis
Let f be a holomorphic function on a neighbourhood of a ∈ C. Assume that f has

a zero of order k at a with k > 1. Show that there exist ε > 0 and δ > 0 such that for any
b with 0 < |b| < ε there are exactly k distinct values of z ∈ D(a, δ) with f(z) = b.

Part IB, Paper 4



3

4C Quantum Mechanics
Let Ψ(x, t) be the wavefunction for a particle of mass m moving in one dimension

in a potential U(x). Show that, with suitable boundary conditions as x→ ±∞,

d

dt

∫ ∞

−∞
|Ψ(x, t)|2 dx = 0 .

Why is this important for the interpretation of quantum mechanics?

Verify the result above by first calculating |Ψ(x, t)|2 for the free particle solution

Ψ(x, t) = Cf(t)1/2 exp
(
− 1

2
f(t)x2

)
with f(t) =

(
α +

i~
m
t
)−1

,

where C and α > 0 are real constants, and then considering the resulting integral.

5D Electromagnetism
Write down Maxwell’s equations in a vacuum. Show that they admit wave solutions

with
B(x, t) = Re

[
B0 e

i(k·x−ωt)
]
,

where B0, k and ω must obey certain conditions that you should determine. Find the
corresponding electric field E(x, t).

A light wave, travelling in the x-direction and linearly polarised so that the magnetic
field points in the z-direction, is incident upon a conductor that occupies the half-space
x > 0. The electric and magnetic fields obey the boundary conditions E × n = 0 and
B · n = 0 on the surface of the conductor, where n is the unit normal vector. Determine
the contributions to the magnetic field from the incident and reflected waves in the region
x 6 0. Compute the magnetic field tangential to the surface of the conductor.

6B Numerical Analysis
(a) Given the data f(0) = 0, f(1) = 4, f(2) = 2, f(3) = 8, find the interpolating

cubic polynomial p3 ∈ P3[x] in the Newton form.

(b) We add to the data one more value, f(−2) = 10. Find the interpolating quartic
polynomial p4 ∈ P4[x] for the extended data in the Newton form.

7H Markov Chains
Show that the simple symmetric random walk on Z is recurrent.

Three particles perform independent simple symmetric random walks on Z. What is
the probability that they are all simultaneously at 0 infinitely often? Justify your answer.

[You may assume without proof that there exist constants A,B > 0 such that
A
√
n(n/e)n 6 n! 6 B

√
n(n/e)n for all positive integers n.]
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SECTION II
8E Linear Algebra

(a) Let V be a complex vector space of dimension n.

What is a Hermitian form on V ?

Given a Hermitian form, define the matrix A of the form with respect to the basis
v1, . . . , vn of V , and describe in terms of A the value of the Hermitian form on two elements
of V .

Now let w1, . . . , wn be another basis of V . Suppose wi =
∑

j pijvj , and let P = (pij).
Write down the matrix of the form with respect to this new basis in terms of A and P .

Let N = V ⊥. Describe the dimension of N in terms of the matrix A.

(b) Write down the matrix of the real quadratic form

x2 + y2 + 2z2 + 2xy + 2xz − 2yz.

Using the Gram–Schmidt algorithm, find a basis which diagonalises the form. What
are its rank and signature?

(c) Let V be a real vector space, and 〈, 〉 a symmetric bilinear form on it. Let A be
the matrix of this form in some basis.

Prove that the signature of 〈, 〉 is the number of positive eigenvalues of A minus the
number of negative eigenvalues.

Explain, using an example, why the eigenvalues themselves depend on the choice of
a basis.

9G Groups, Rings and Modules
Let H and P be subgroups of a finite group G. Show that the sets HxP , x ∈ G,

partition G. By considering the action of H on the set of left cosets of P in G by left
multiplication, or otherwise, show that

|HxP |
|P | =

|H|
|H ∩ xPx−1|

for any x ∈ G. Deduce that if G has a Sylow p-subgroup, then so does H.

Let p, n ∈ N with p a prime. Write down the order of the group GLn(Z/pZ).
Identify in GLn(Z/pZ) a Sylow p-subgroup and a subgroup isomorphic to the symmetric
group Sn. Deduce that every finite group has a Sylow p-subgroup.

State Sylow’s theorem on the number of Sylow p-subgroups of a finite group.

Let G be a group of order pq, where p > q are prime numbers. Show that if G is
non-abelian, then q | p− 1.
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10F Analysis and Topology
(a) Let g : [0, 1] × Rn → R be a continuous function such that for each t ∈ [0, 1],

the partial derivatives Dig(t, x) (i = 1, . . . , n) of x 7→ g(t, x) exist and are continuous on
[0, 1]× Rn. Define G : Rn → R by

G(x) =

∫ 1

0
g(t, x) dt.

Show that G has continuous partial derivatives DiG given by

DiG(x) =

∫ 1

0
Dig(t, x) dt

for i = 1, . . . , n.

(b) Let f : R2 → R be an infinitely differentiable function, that is, partial derivatives
Di1Di2 · · ·Dikf exist and are continuous for all k ∈ N and i1, . . . , ik ∈ {1, 2} . Show that
for any (x1, x2) ∈ R2,

f(x1, x2) = f(x1, 0) + x2D2f(x1, 0) + x22 h(x1, x2),

where h : R2 → R is an infinitely differentiable function.

[Hint: You may use the fact that if u : R→ R is infinitely differentiable, then

u(1) = u(0) + u′(0) +

∫ 1

0
(1− t)u′′(t) dt.]

11F Geometry
Define an abstract smooth surface and explain what it means for the surface to be

orientable. Given two smooth surfaces S1 and S2 and a map f : S1 → S2, explain what it
means for f to be smooth.

For the cylinder
C = {(x, y, z) ∈ R3 : x2 + y2 = 1},

let a : C → C be the orientation reversing diffeomorphism a(x, y, z) = (−x,−y,−z). Let
S be the quotient of C by the equivalence relation p ∼ a(p) and let π : C → S be the
canonical projection map. Show that S can be made into an abstract smooth surface so
that π is smooth. Is S orientable? Justify your answer.
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12B Complex Methods
Let f(t) be defined for t > 0. Define the Laplace transform f̂(s) of f . Find an

expression for the Laplace transform of df
dt in terms of f̂ .

Three radioactive nuclei decay sequentially, so that the numbers Ni(t) of the three
types obey the equations

dN1

dt
= −λ1N1 ,

dN2

dt
= λ1N1 − λ2N2 ,

dN3

dt
= λ2N2 − λ3N3 ,

where λ3 > λ2 > λ1 > 0 are constants. Initially, at t = 0, N1 = N , N2 = 0 and N3 = n.
Using Laplace transforms, find N3(t).

By taking an appropriate limit, find N3(t) when λ2 = λ1 = λ > 0 and λ3 > λ.

13D Variational Principles
(a) Consider the functional

I[y] =

∫ b

a
L(y, y′;x) dx ,

where 0 < a < b, and y(x) is subject to the requirement that y(a) and y(b) are some fixed
constants. Derive the equation satisfied by y(x) when δI = 0 for all variations δy that
respect the boundary conditions.

(b) Consider the function

L(y, y′;x) =

√
1 + y′ 2

x
.

Verify that, if y(x) describes an arc of a circle, with centre on the y-axis, then δI = 0.

(c) Consider the function

L(y, y′;x) =

√
1 + y′ 2

y
.

Find y(x) such that δI = 0 subject to the requirement that y(a) = a and y(b) =
√

2ab− b2,
with b < 2a. Sketch the curve y(x).
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14C Methods
The function θ(x, t) obeys the diffusion equation

∂θ

∂t
= D

∂2θ

∂x2
. (∗)

Verify that

θ(x, t) =
1√
t
e−x

2/4Dt

is a solution of (∗), and by considering
∫∞
−∞ θ(x, t) dx, find the solution having the initial

form θ(x, 0) = δ(x) at t = 0.

Find, in terms of the error function, the solution of (∗) having the initial form

θ(x, 0) =

{
1 , |x| 6 1 ,

0 , |x| > 1 .

Sketch a graph of this solution at various times t > 0 .

[The error function is

Erf(x) =
2√
π

∫ x

0
e−y

2
dy .]
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15C Quantum Mechanics
(a) Consider the angular momentum operators L̂x, L̂y, L̂z and L̂2 = L̂2

x + L̂2
y + L̂2

z

where
L̂z = x̂p̂y − ŷp̂x, L̂x = ŷp̂z − ẑp̂y and L̂y = ẑp̂x − x̂p̂z.

Use the standard commutation relations for these operators to show that

L̂± = L̂x ± iL̂y obeys [L̂z, L̂±] = ±~L̂± and [L̂2, L̂±] = 0 .

Deduce that if ϕ is a joint eigenstate of L̂z and L̂2 with angular momentum quantum
numbers m and ` respectively, then L̂±ϕ are also joint eigenstates, provided they are
non-zero, with quantum numbers m± 1 and `.

(b) A harmonic oscillator of mass M in three dimensions has Hamiltonian

Ĥ =
1

2M
( p̂2x + p̂2y + p̂2z ) +

1

2
Mω2( x̂2 + ŷ2 + ẑ2 ) .

Find eigenstates of Ĥ in terms of eigenstates ψn for an oscillator in one dimension with
n = 0, 1, 2, . . . and eigenvalues ~ω(n+ 1

2); hence determine the eigenvalues E of Ĥ.

Verify that the ground state for Ĥ is a joint eigenstate of L̂z and L̂2 with ` = m = 0.
At the first excited energy level, find an eigenstate of L̂z with m = 0 and construct from
this two eigenstates of L̂z with m = ±1.

Why should you expect to find joint eigenstates of L̂z, L̂
2 and Ĥ?

[ The first two eigenstates for an oscillator in one dimension are ψ0(x) =
C0 exp(−Mωx2/2~) and ψ1(x) = C1x exp(−Mωx2/2~), where C0 and C1 are normal-
isation constants. ]
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16A Fluid Dynamics
Consider the spherically symmetric motion induced by the collapse of a spherical

cavity of radius a(t), centred on the origin. For r < a, there is a vacuum, while for r > a,
there is an inviscid incompressible fluid with constant density ρ. At time t = 0, a = a0,
and the fluid is at rest and at constant pressure p0.

(a) Consider the radial volume transport in the fluid Q(R, t), defined as

Q(R, t) =

∫

r=R
udS,

where u is the radial velocity, and dS is an infinitesimal element of the surface of a sphere
of radius R > a. Use the incompressibility condition to establish that Q is a function of
time alone.

(b) Using the expression for pressure in potential flow or otherwise, establish that

1

4πa

dQ

dt
− (ȧ)2

2
= −p0

ρ
,

where ȧ(t) is the radial velocity of the cavity boundary.

(c) By expressing Q(t) in terms of a and ȧ, show that

ȧ = −
√

2p0
3ρ

(
a30
a3
− 1

)
.

[Hint: You may find it useful to assume ȧ(t) is an explicit function of a from the outset.]

(d) Hence write down an integral expression for the implosion time τ , i.e. the time
for the radius of the cavity a→ 0. [Do not attempt to evaluate the integral.]
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17H Statistics
Suppose we wish to estimate the probability θ ∈ (0, 1) that a potentially biased coin

lands heads up when tossed. After n independent tosses, we observe X heads.

(a) Write down the maximum likelihood estimator θ̂ of θ.

(b) Find the mean squared error f(θ) of θ̂ as a function of θ. Compute supθ∈(0,1) f(θ).

(c) Suppose a uniform prior is placed on θ. Find the Bayes estimator of θ under
squared error loss L(θ, a) = (θ − a)2.

(d) Now find the Bayes estimator θ̃ under the loss L(θ, a) = θα−1(1− θ)β−1(θ− a)2,
where α, β > 1. Show that

θ̃ = wθ̂ + (1− w)θ0, (*)

where w and θ0 depend on n, α and β.

(e) Determine the mean squared error gw,θ0(θ) of θ̃ as defined by (*).

(f) For what range of values of w do we have supθ∈(0,1) gw,1/2(θ) 6 supθ∈(0,1) f(θ)?

[Hint: The mean of a Beta(a, b) distribution is a/(a+ b) and its density p(u) at u ∈ [0, 1]
is ca,bu

a−1(1− u)b−1, where ca,b is a normalising constant.]
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18H Optimisation

(a) Consider the linear program

P : maximise over x > 0, cTx

subject to Ax = b,

where A ∈ Rm×n, c ∈ Rn and b ∈ Rm. What is meant by a basic feasible solution?

(b) Prove that if P has a finite maximum, then there exists a solution that is a basic
feasible solution.

(c) Now consider the optimisation problem

Q : maximise over x > 0,
cTx

dTx
subject to Ax = b,

dTx > 0,

where matrix A and vectors c, b are as in the problem P , and d ∈ Rn. Suppose
there exists a solution x∗ to Q. Further consider the linear program

R : maximise over y > 0, t > 0, cT y

subject to Ay = bt,

dT y = 1.

(i) Suppose di > 0 for all i = 1, . . . , n. Show that the maximum of R is finite
and at least as large as that of Q.

(ii) Suppose, in addition to the condition in part (i), that the entries of A are
strictly positive. Show that the maximum of R is equal to that of Q.

(iii) Let B be the set of basic feasible solutions of the linear program P . Assuming
the conditions in parts (i) and (ii) above, show that

cTx∗

dTx∗
= max

x∈B
cTx

dTx
.

[Hint: Argue that if (y, t) is in the set A of basic feasible solutions to R, then
y/t ∈ B.]

END OF PAPER
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