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SECTION I
1G Groups, Rings and Modules

Let G be a finite group, and let H be a proper subgroup of G of index n.

Show that there is a normal subgroup K of G such that |G/K| divides n! and
|G/K| > n.

Show that if G is non-abelian and simple, then G is isomorphic to a subgroup of An.

2E Geometry
State the local Gauss–Bonnet theorem for geodesic triangles on a surface. Deduce

the Gauss–Bonnet theorem for closed surfaces. [Existence of a geodesic triangulation can
be assumed.]

Let Sr ⊂ R3 denote the sphere with radius r centred at the origin. Show that the
Gauss curvature of Sr is 1/r

2. An octant is any of the eight regions in Sr bounded by arcs
of great circles arising from the planes x = 0, y = 0, z = 0. Verify directly that the local
Gauss–Bonnet theorem holds for an octant. [You may assume that the great circles on Sr
are geodesics.]

3B Complex Methods
Find the value of A for which the function

φ(x, y) = x cosh y sinx+Ay sinh y cosx

satisfies Laplace’s equation. For this value of A, find a complex analytic function of which
φ is the real part.

4D Variational Principles
Find the function y(x) that gives a stationary value of the functional

I[y] =

∫ 1

0

(
y′ 2 + yy′ + y′ + y2 + yx2

)
dx ,

subject to the boundary conditions y(0) = −1 and y(1) = e− e−1 − 3
2 .
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5A Methods
Let f(θ) be a 2π-periodic function with Fourier expansion

f(θ) =
1

2
a0 +

∞∑

n=1

( an cosnθ + bn sinnθ ) .

Find the Fourier coefficients an and bn for

f(θ) =

{
1 , 0 < θ < π

−1 , π < θ < 2π .

Hence, or otherwise, find the Fourier coefficients An and Bn for the 2π-periodic function
F defined by

F (θ) =

{
θ , 0 < θ < π

2π − θ , π < θ < 2π .

Use your answers to evaluate

∞∑

r=0

(−1)r

2r + 1
and

∞∑

r=0

1

(2r + 1)2
.

6C Quantum Mechanics
The electron in a hydrogen-like atom moves in a spherically symmetric potential

V (r) = −K/r where K is a positive constant and r is the radial coordinate of spherical
polar coordinates. The two lowest energy spherically symmetric normalised states of the
electron are given by

χ1(r) =
1√
π a3/2

e−r/a and χ2(r) =
1

4
√
2π a3/2

(
2− r

a

)
e−r/2a

where a = ~2/mK and m is the mass of the electron. For any spherically symmetric

function f(r), the Laplacian is given by ∇2f = d2f
dr2

+ 2
r
df
dr .

(i) Suppose that the electron is in the state χ(r) = 1
2χ1(r)+

√
3
2 χ2(r) and its energy

is measured. Find the expectation value of the result.

(ii) Suppose now that the electron is in state χ(r) (as above) at time t = 0. Let
R(t) be the expectation value of a measurement of the electron’s radial position r at time
t. Show that the value of R(t) oscillates sinusoidally about a constant level and determine
the frequency of the oscillation.
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7A Fluid Dynamics
A two-dimensional flow u = (u, v) has a velocity field given by

u =
x2 − y2

(x2 + y2)2
and v =

2xy

(x2 + y2)2
.

(a) Show explicitly that this flow is incompressible and irrotational away from the
origin.

(b) Find the stream function for this flow.

(c) Find the velocity potential for this flow.

8H Markov Chains
Consider a Markov chain (Xn)n>0 on a state space I.

(a) Define the notion of a communicating class. What does it mean for a commu-
nicating class to be closed?

(b) Taking I = {1, . . . , 6}, find the communicating classes associated with the
transition matrix P given by

P =




0 0 0 0 1
4

3
4

1
4 0 0 0 1

2
1
4

0 1
2 0 1

2 0 0

0 1
2 0 0 1

2 0

1
4

1
2 0 0 0 1

4

1 0 0 0 0 0




and identify which are closed.

(c) Find the expected time for the Markov chain with transition matrix P above to
reach 6 starting from 1.
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SECTION II
9E Linear Algebra

(a)(i) State the rank-nullity theorem.

Let U and W be vector spaces. Write down the definition of their direct sum U⊕W
and the inclusions i : U → U ⊕W , j : W → U ⊕W .

Now let U and W be subspaces of a vector space V . Define l : U ∩W → U ⊕W by
l(x) = ix− jx.

Describe the quotient space (U ⊕W )/Im(l) as a subspace of V .

(ii) Let V = R5, and let U be the subspace of V spanned by the vectors




1
2
−1
1
1



,




1
0
0
1
0



,




−2
2
2
1
−2



,

and W the subspace of V spanned by the vectors




3
2
−3
1
3



,




1
1
0
0
0



,




1
−4
−1
−2
1



.

Determine the dimension of U ∩W .

(b) Let A, B be complex n by n matrices with rank(B) = k.

Show that det(A+ tB) is a polynomial in t of degree at most k.

Show that if k = n the polynomial is of degree precisely n.

Give an example where k > 1 but this polynomial is zero.
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10G Groups, Rings and Modules
Let p be a non-zero element of a Principal Ideal Domain R. Show that the following

are equivalent:

(i) p is prime;

(ii) p is irreducible;

(iii) (p) is a maximal ideal of R;

(iv) R/(p) is a field;

(v) R/(p) is an Integral Domain.

Let R be a Principal Ideal Domain, S an Integral Domain and φ : R→ S a surjective
ring homomorphism. Show that either φ is an isomorphism or S is a field.

Show that if R is a commutative ring and R[X] is a Principal Ideal Domain, then
R is a field.

Let R be an Integral Domain in which every two non-zero elements have a highest
common factor. Show that in R every irreducible element is prime.

11F Analysis and Topology
Define the terms connected and path-connected for a topological space. Prove that

the interval [0, 1] is connected and that if a topological space is path-connected, then it is
connected.

Let X be an open subset of Euclidean space Rn. Show that X is connected if and
only if X is path-connected.

Let X be a topological space with the property that every point has a neighbourhood
homeomorphic to an open set in Rn. Assume X is connected; must X be also path-
connected? Briefly justify your answer.

Consider the following subsets of R2:

A = {(x, 0) : x ∈ (0, 1]}, B = {(0, y) : y ∈ [1/2, 1]}, and

Cn = {(1/n, y) : y ∈ [0, 1]} for n > 1.

Let
X = A ∪B ∪

⋃

n>1

Cn

with the subspace topology. Is X path-connected? Is X connected? Justify your answers.
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12E Geometry
Let S ⊂ R3 be an embedded smooth surface and γ : [0, 1] → S a parameterised

smooth curve on S. What is the energy of γ? By applying the Euler–Lagrange equations
for stationary curves to the energy function, determine the differential equations for
geodesics on S explicitly in terms of a parameterisation of S.

If S contains a straight line `, prove from first principles that each segment [P,Q] ⊂ `
(with some parameterisation) is a geodesic on S.

Let H ⊂ R3 be the hyperboloid defined by the equation x2 + y2 − z2 = 1 and
let P = (x0, y0, z0) ∈ H. By considering appropriate isometries, or otherwise, display
explicitly three distinct (as subsets of H) geodesics γ : R → H through P in the case
when z0 6= 0 and four distinct geodesics through P in the case when z0 = 0. Justify your
answer.

Let γ : R → H be a geodesic, with coordinates γ(t) = (x(t), y(t), z(t)). Clairaut’s
relation asserts ρ(t) sinψ(t) is constant, where ρ(t) =

√
x(t)2 + y(t)2 and ψ(t) is the angle

between γ̇(t) and the plane through the point γ(t) and the z-axis. Deduce from Clairaut’s
relation that there exist infinitely many geodesics γ(t) on H which stay in the half-space
{z > 0} for all t ∈ R.

[You may assume that if γ(t) satisfies the geodesic equations on H then γ is defined
for all t ∈ R and the Euclidean norm ‖γ̇(t)‖ is constant. If you use a version of the
geodesic equations for a surface of revolution, then that should be proved.]

13G Complex Analysis
Let γ be a curve (not necessarily closed) in C and let [γ] denote the image of γ. Let

φ : [γ]→ C be a continuous function and define

f(z) =

∫

γ

φ(λ)

λ− z dλ

for z ∈ C \ [γ]. Show that f has a power series expansion about every a /∈ [γ].

Using Cauchy’s Integral Formula, show that a holomorphic function has complex
derivatives of all orders. [Properties of power series may be assumed without proof.] Let f
be a holomorphic function on an open set U that contains the closed disc D(a, r). Obtain
an integral formula for the derivative of f on the open disc D(a, r) in terms of the values
of f on the boundary of the disc.

Show that if holomorphic functions fn on an open set U converge locally uniformly
to a holomorphic function f on U , then f ′n converges locally uniformly to f ′.

Let D1 and D2 be two overlapping closed discs. Let f be a holomorphic function on
some open neighbourhood of D = D1 ∩D2. Show that there exist open neighbourhoods
Uj of Dj and holomorphic functions fj on Uj , j = 1, 2, such that f(z) = f1(z) + f2(z) on
U1 ∩ U2.
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14A Methods
Let P (x) be a solution of Legendre’s equation with eigenvalue λ,

(1 − x2)
d2P

dx2
− 2x

dP

dx
+ λP = 0 ,

such that P and its derivatives P (k)(x) = dkP/dxk , k = 0, 1, 2, . . . , are regular at all
points x with −1 6 x 6 1.

(a) Show by induction that

(1 − x2)
d2

dx2

[
P (k)

]
− 2(k + 1)x

d

dx

[
P (k)

]
+ λkP

(k) = 0

for some constant λk. Find λk explicitly and show that its value is negative when k is
sufficiently large, for a fixed value of λ.

(b) Write the equation for P (k)(x) in part (a) in self-adjoint form. Hence deduce
that if P (k)(x) is not identically zero, then λk > 0.

[Hint: Establish a relation between integrals of the form
∫ 1
−1[P

(k+1)(x)]2f(x) dx and∫ 1
−1[P

(k)(x)]2g(x) dx for certain functions f(x) and g(x).]

(c) Use the results of parts (a) and (b) to show that if P (x) is a non-zero, regular
solution of Legendre’s equation on −1 6 x 6 1, then P (x) is a polynomial of degree n and
λ = n(n+ 1) for some integer n = 0, 1, 2, . . . .

Part IB, Paper 3
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15D Electromagnetism
(a) The energy density stored in the electric and magnetic fields E and B is given

by

w =
ε0
2
E ·E +

1

2µ0
B ·B .

Show that, in regions where no electric current flows,

∂w

∂t
+∇ · S = 0

for some vector field S that you should determine.

(b) The coordinates x′µ = (ct′,x′) in an inertial frame S ′ are related to the
coordinates xµ = (ct,x) in an inertial frame S by a Lorentz transformation x′µ = Λµν xν ,
where

Λµν =




γ −γv/c 0 0
−γv/c γ 0 0

0 0 1 0
0 0 0 1


 ,

with γ =
(
1− v2/c2

)−1/2
. Here v is the relative velocity of S ′ with respect to S in the

x-direction.

In frame S ′, there is a static electric field E′(x′) with ∂E′/∂t′ = 0, and no magnetic
field. Calculate the electric field E and magnetic field B in frame S. Show that the energy
density in frame S is given in terms of the components of E′ by

w =
ε0
2

[
E′ 2x +

(
c2 + v2

c2 − v2
)(

E′ 2y + E′ 2z
)]
.

Use the fact that ∂w/∂t′ = 0 to show that

∂w

∂t
+∇ · (wv ex) = 0 ,

where ex is the unit vector in the x-direction.
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16A Fluid Dynamics
A two-dimensional layer of viscous fluid lies between two rigid boundaries at

y = ±L0. The boundary at y = L0 oscillates in its own plane with velocity (U0 cosωt, 0),
while the boundary at y = −L0 oscillates in its own plane with velocity (−U0 cosωt, 0).
Assume that there is no pressure gradient and that the fluid flows parallel to the boundary
with velocity (u(y, t), 0), where u(y, t) can be written as u(y, t) = Re[U0f(y) exp(iωt)].

(a) By exploiting the symmetry of the system or otherwise, show that

f(y) =
sinh[(1 + i)∆ŷ]

sinh[(1 + i)∆]
, where ŷ =

y

L0
and ∆ =

(
ωL2

0

2ν

)1/2

.

(b) Hence or otherwise, show that

u(y, t)

U0
=

cosωt [cosh ∆+ cos ∆− − cosh ∆− cos ∆+]

(cosh 2∆− cos 2∆)

+
sinωt [sinh ∆+ sin ∆− − sinh ∆− sin ∆+]

(cosh 2∆− cos 2∆)
,

where ∆± = ∆(1± ŷ).

(c) Show that, for ∆� 1,

u(y, t) ' U0y

L0
cosωt,

and briefly interpret this result physically.
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17B Numerical Analysis
The functions p0, p1, p2, . . . are generated by the formula

pn(x) = (−1)nx−1/2ex
dn

dxn

(
xn+1/2e−x

)
, 0 6 x <∞ .

(a) Show that pn(x) is a monic polynomial of degree n. Write down the explicit
forms of p0(x), p1(x), p2(x).

(b) Demonstrate the orthogonality of these polynomials with respect to the scalar
product

〈f, g〉 =

∫ ∞

0
x1/2e−xf(x)g(x) dx ,

i.e. that 〈pn, pm〉 = 0 for m 6= n, and show that

〈pn, pn〉 = n! Γ

(
n+

3

2

)
,

where Γ(y) =
∫∞
0 xy−1e−x dx.

(c) Assuming that a three-term recurrence relation in the form

pn+1(x) = (x− αn)pn(x)− βnpn−1(x), n = 1, 2, . . . ,

holds, find the explicit expressions for αn and βn as functions of n.

[Hint: you may use the fact that Γ(y + 1) = yΓ(y).]
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18H Statistics
Consider the normal linear model Y = Xβ + ε where X is a known n × p design

matrix with n−2 > p > 1, β ∈ Rp is an unknown vector of parameters, and ε ∼ Nn(0, σ
2I)

is a vector of normal errors with each component having variance σ2 > 0. Suppose X has
full column rank.

(i) Write down the maximum likelihood estimators, β̂ and σ̂2, for β and σ2

respectively. [You need not derive these.]

(ii) Show that β̂ is independent of σ̂2.

(iii) Find the distributions of β̂ and nσ̂2/σ2.

(iv) Consider the following test statistic for testing the null hypothesis H0 : β = 0
against the alternative β 6= 0:

T :=
‖β̂‖2
nσ̂2

.

Let λ1 > λ2 > · · · > λp > 0 be the eigenvalues of XTX. Show that under H0, T has the
same distribution as ∑p

j=1 λ
−1
j Wj

Z

where Z ∼ χ2
n−p and W1, . . . ,Wp are independent χ

2
1 random variables, independent of Z.

[Hint: You may use the fact that X = UDV T where U ∈ Rn×p has orthonormal
columns, V ∈ Rp×p is an orthogonal matrix and D ∈ Rp×p is a diagonal matrix with
Dii =

√
λi.]

(v) Find ET when β 6= 0. [Hint: If R ∼ χ2
ν with ν > 2, then E(1/R) = 1/(ν − 2).]

19H Optimisation
Explain what is meant by a two-person zero-sum game with m×n payoff matrix A,

and define what is meant by an optimal strategy for each player. What are the relationships
between the optimal strategies and the value of the game?

Suppose now that

A =




0 1 1 −4
−1 0 2 2
−1 −2 0 3
4 −2 −3 0


 .

Show that if strategy p = (p1, p2, p3, p4)
T is optimal for player I, it must also be optimal

for player II. What is the value of the game in this case? Justify your answer.

Explain why we must have (Ap)i 6 0 for all i. Hence or otherwise, find the optimal
strategy p and prove that it is unique.

END OF PAPER
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