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SECTION I
1E Linear Algebra

Let V be a vector space over R, dimV = n, and let 〈, 〉 be a non-degenerate anti-
symmetric bilinear form on V .

Let v ∈ V , v 6= 0. Show that v⊥ is of dimension n − 1 and v ∈ v⊥. Show that
if W ⊆ v⊥ is a subspace with W ⊕ Rv = v⊥, then the restriction of 〈, 〉 to W is non-
degenerate.

Conclude that the dimension of V is even.

2F Geometry
Let f : R3 → R be a smooth function and let Σ = f−1(0) (assumed not empty).

Show that if the differential Dfp 6= 0 for all p ∈ Σ, then Σ is a smooth surface in R3.

Is {(x, y, z) ∈ R3 : x2 + y2 = cosh(z2)} a smooth surface? Is every surface Σ ⊂ R3

of the form f−1(0) for some smooth f : R3 → R? Justify your answers.

3B Complex Analysis or Complex Methods
Let x > 0, x 6= 2, and let Cx denote the positively oriented circle of radius x centred

at the origin. Define

g(x) =

∮

Cx

z2 + ez

z2(z − 2)
dz.

Evaluate g(x) for x ∈ (0,∞) \ {2}.

4D Variational Principles
Let D be a bounded region of R2, with boundary ∂D. Let u(x, y) be a smooth

function defined on D, subject to the boundary condition that u = 0 on ∂D and the
normalization condition that ∫

D
u2 dx dy = 1 .

Let I[u] be the functional

I[u] =

∫

D
|∇u|2 dx dy .

Show that I[u] has a stationary value, subject to the stated boundary and normal-
ization conditions, when u satisfies a partial differential equation of the form

∇2u+ λu = 0

in D, where λ is a constant.

Determine how λ is related to the stationary value of the functional I[u]. [Hint:
Consider ∇ · (u∇u).]
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5B Numerical Analysis
Prove, from first principles, that there is an algorithm that can determine whether

any real symmetric matrix A ∈ Rn×n is positive definite or not, with the computational
cost (number of arithmetic operations) bounded by O(n3).

[Hint: Consider the LDL decomposition.]

6H Statistics
Let X1, . . . , Xn be i.i.d. Bernoulli(p) random variables, where n > 3 and p ∈ (0, 1)

is unknown.

(a) What does it mean for a statistic T to be sufficient for p? Find such a sufficient
statistic T .

(b) State and prove the Rao–Blackwell theorem.

(c) By considering the estimator X1X2 of p2, find an unbiased estimator of p2 that
is a function of the statistic T found in part (a), and has variance strictly smaller than
that of X1X2.

7H Optimisation
(a) Let fi : Rd → R be a convex function for each i = 1, . . . ,m. Show that

x 7→ max
i=1,...,m

fi(x) and x 7→
m∑

i=1

fi(x)

are both convex functions.

(b) Fix c ∈ Rd. Show that if f : R → R is convex, then g : Rd → R given by
g(x) = f(cTx) is convex.

(c) Fix vectors a1, . . . , an ∈ Rd. Let Q : Rd → R be given by

Q(β) =
n∑

i=1

log(1 + ea
T
i β) +

d∑

j=1

|βj |.

Show that Q is convex. [You may use any result from the course provided you state it.]
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SECTION II
8E Linear Algebra

Let d > 1, and let Jd =




0 1 0 . . . 0
0 0 1 . . . 0

. . . . . .
0 0 . . . 0 1
0 0 . . . 0 0



∈ Matd(C).

(a) (i) Compute Jn
d , for all n > 0.

(ii) Hence, or otherwise, compute (λI + Jd)n, for all n > 0.

(b) Let V be a finite-dimensional vector space over C, and let ϕ ∈ End(V ). Suppose
ϕn = 0 for some n > 1.

(i) Determine the possible eigenvalues of ϕ.

(ii) What are the possible Jordan blocks of ϕ?

(iii) Show that if ϕ2 = 0, there exists a decomposition

V = U ⊕W1 ⊕W2,

where ϕ(U) = ϕ(W1) = 0, ϕ(W2) = W1, and dimW2 = dimW1.

9G Groups, Rings and Modules
Show that a ring R is Noetherian if and only if every ideal of R is finitely generated.

Show that if φ : R→ S is a surjective ring homomorphism and R is Noetherian, then S is
Noetherian.

State and prove Hilbert’s Basis Theorem.

Let α ∈ C. Is Z[α] Noetherian? Justify your answer.

Give, with proof, an example of a Unique Factorization Domain that is not
Noetherian.

Let R be the ring of continuous functions R → R. Is R Noetherian? Justify your
answer.
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10F Analysis and Topology
Let f : X → Y be a map between metric spaces. Prove that the following two

statements are equivalent:

(i) f−1(A) ⊂ X is open whenever A ⊂ Y is open.

(ii) f(xn)→ f(a) for any sequence xn → a.

For f : X → Y as above, determine which of the following statements are always
true and which may be false, giving a proof or a counterexample as appropriate.

(a) If X is compact and f is continuous, then f is uniformly continuous.

(b) If X is compact and f is continuous, then Y is compact.

(c) If X is connected, f is continuous and f(X) is dense in Y , then Y is connected.

(d) If the set {(x, y) ∈ X × Y : y = f(x)} is closed in X × Y and Y is compact,
then f is continuous.

11F Geometry
Let S ⊂ R3 be an oriented surface. Define the Gauss map N and show that the

differential DNp of the Gauss map at any point p ∈ S is a self-adjoint linear map. Define
the Gauss curvature κ and compute κ in a given parametrisation.

A point p ∈ S is called umbilic if DNp has a repeated eigenvalue. Let S ⊂ R3 be a
surface such that every point is umbilic and there is a parametrisation φ : R2 → S such
that S = φ(R2). Prove that S is part of a plane or part of a sphere. [Hint: consider
the symmetry of the mixed partial derivatives nuv = nvu, where n(u, v) = N(φ(u, v)) for
(u, v) ∈ R2.]
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12G Complex Analysis or Complex Methods
(a) State a theorem establishing Laurent series of analytic functions on suitable

domains. Give a formula for the nth Laurent coefficient.

Define the notion of isolated singularity. State the classification of an isolated
singularity in terms of Laurent coefficients.

Compute the Laurent series of

f(z) =
1

z(z − 1)

on the annuli A1 = {z : 0 < |z| < 1} and A2 = {z : 1 < |z|}. Using this example,
comment on the statement that Laurent coefficients are unique. Classify the singularity
of f at 0.

(b) Let U be an open subset of the complex plane, let a ∈ U and let U ′ = U \ {a}.
Assume that f is an analytic function on U ′ with |f(z)| → ∞ as z → a. By considering
the Laurent series of g(z) = 1

f(z) at a, classify the singularity of f at a in terms of the

Laurent coefficients. [You may assume that a continuous function on U that is analytic
on U ′ is analytic on U .]

Now let f : C→ C be an entire function with |f(z)| → ∞ as z →∞. By considering
Laurent series at 0 of f(z) and of h(z) = f

(
1
z

)
, show that f is a polynomial.

(c) Classify, giving reasons, the singularity at the origin of each of the following
functions and in each case compute the residue:

g(z) =
exp(z)− 1

z log(z + 1)
and h(z) = sin(z) sin(1/z) .
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13C Methods
(a) By introducing the variables ξ = x+ ct and η = x− ct (where c is a constant),

derive d’Alembert’s solution of the initial value problem for the wave equation:

utt − c2uxx = 0, u(x, 0) = φ(x), ut(x, 0) = ψ(x)

where −∞ < x <∞, t > 0 and φ and ψ are given functions (and subscripts denote partial
derivatives).

(b) Consider the forced wave equation with homogeneous initial conditions:

utt − c2uxx = f(x, t), u(x, 0) = 0, ut(x, 0) = 0

where −∞ < x <∞, t > 0 and f is a given function. You may assume that the solution
is given by

u(x, t) =
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f(y, s) dy ds.

For the forced wave equation utt − c2uxx = f(x, t), now in the half space x > 0 (and
with t > 0 as before), find (in terms of f) the solution for u(x, t) that satisfies the
(inhomogeneous) initial conditions

u(x, 0) = sinx, ut(x, 0) = 0, for x > 0

and the boundary condition u(0, t) = 0 for t > 0.
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14C Quantum Mechanics
Consider a quantum mechanical particle of mass m in a one-dimensional stepped

potential well U(x) given by:

U(x) =




∞ for x < 0 and x > a
0 for 0 6 x 6 a/2
U0 for a/2 < x 6 a

where a > 0 and U0 > 0 are constants.

(i) Show that all energy levels E of the particle are non-negative. Show that any
level E with 0 < E < U0 satisfies

1

k
tan

ka

2
= −1

l
tanh

la

2

where

k =

√
2mE

~2
> 0 and l =

√
2m(U0 − E)

~2
> 0.

(ii) Suppose that initially U0 = 0 and the particle is in the ground state of the
potential well. U0 is then changed to a value U0 > 0 (while the particle’s wavefunction
stays the same) and the energy of the particle is measured. For 0 < E < U0, give an
expression in terms of E for prob(E), the probability that the energy measurement will
find the particle having energy E. The expression may be left in terms of integrals that
you need not evaluate.
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15D Electromagnetism
(a) Show that the magnetic flux passing through a simple, closed curve C can be

written as

Φ =

∮

C
A · dx ,

where A is the magnetic vector potential. Explain why this integral is independent of the
choice of gauge.

(b) Show that the magnetic vector potential due to a static electric current density J,
in the Coulomb gauge, satisfies Poisson’s equation

−∇2A = µ0J .

Hence obtain an expression for the magnetic vector potential due to a static, thin wire, in
the form of a simple, closed curve C, that carries an electric current I. [You may assume
that the electric current density of the wire can be written as

J(x) = I

∫

C
δ(3)(x− x′)dx′ ,

where δ(3) is the three-dimensional Dirac delta function.]

(c) Consider two thin wires, in the form of simple, closed curves C1 and C2, that
carry electric currents I1 and I2, respectively. Let Φij (where i, j ∈ {1, 2}) be the magnetic
flux passing through the curve Ci due to the current Ij flowing around Cj . The inductances
are defined by Lij = Φij/Ij . By combining the results of parts (a) and (b), or otherwise,
derive Neumann’s formula for the mutual inductance,

L12 = L21 =
µ0
4π

∮

C1

∮

C2

dx1 · dx2

|x1 − x2|
.

Suppose that C1 is a circular loop of radius a, centred at (0, 0, 0) and lying in the
plane z = 0, and that C2 is a different circular loop of radius b, centred at (0, 0, c) and
lying in the plane z = c. Show that the mutual inductance of the two loops is

µ0
4

√
a2 + b2 + c2 f(q) ,

where

q =
2ab

a2 + b2 + c2

and the function f(q) is defined, for 0 < q < 1, by the integral

f(q) =

∫ 2π

0

q cos θ dθ√
1− q cos θ

.
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16A Fluid Dynamics
A two-dimensional flow is given by a velocity potential

φ(x, y, t) = εy sin(x− t),

where ε is a constant.

(a) Find the corresponding velocity field u(x, y, t). Determine ∇ · u.

(b) The time-average 〈ψ〉(x, y) of a quantity ψ(x, y, t) is defined as

〈ψ〉(x, y) =
1

2π

∫ 2π

0
ψ(x, y, t)dt.

Show that the time-average of this velocity field is zero everywhere. Write down an
expression for the acceleration of fluid particles, and find the time-average of this
expression at a fixed point (x, y).

(c) Now assume that |ε| � 1. The material particle at (0, 0) at t = 0 is marked with
dye. Write down equations for its subsequent motion. Verify that its position (x, y) for
t > 0 is given (correct to terms of order ε2) by

x = ε2
(

1

4
sin 2t+

t

2
− sin t

)
,

y = ε(cos t− 1).

Deduce the time-average velocity of the dyed particle correct to this order.
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17B Numerical Analysis
For the ordinary differential equation

y′ = f(t,y), y(0) = ỹ0, t > 0, (∗)

where y(t) ∈ RN and the function f : R × RN → RN is analytic, consider an explicit
one-step method described as the mapping

yn+1 = yn + hϕ(tn,yn, h). (†)

Here ϕ : R+×RN ×R+ → RN , n = 0, 1, . . . and tn = nh with time step h > 0, producing
numerical approximations yn to the exact solution y(tn) of equation (∗), with y0 being
the initial value of the numerical solution.

(i) Define the local error of a one-step method.

(ii) Let ‖ · ‖ be a norm on RN and suppose that

‖ϕ(t,u, h)−ϕ(t,v, h)‖ 6 L‖u− v‖,

for all h > 0, t ∈ R, u,v ∈ RN , where L is some positive constant. Let t∗ > 0 be
given and e0 = y0 − y(0) denote the initial error (potentially non-zero). Show that
if the local error of the one-step method (†) is O(hp+1), then

max
n=0,...,bt∗/hc

‖yn − y(nh)‖ 6 et
∗L‖e0‖+O(hp), h→ 0. (††)

(iii) Let N = 1 and consider equation (∗) where f is time-independent satisfying
|f(u)− f(v)| 6 K|u− v| for all u, v ∈ R, where K is a positive constant. Consider
the one-step method given by

yn+1 = yn +
1

4
h(k1 + 3k2), k1 = f(yn), k2 = f(yn +

2

3
hk1).

Use part (ii) to show that for this method we have that equation (††) holds (with a
potentially different constant L) for p = 2.
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18H Statistics
(a) Show that if W1, . . . ,Wn are independent random variables with common Exp(1)

distribution, then
∑n

i=1Wi ∼ Γ(n, 1). [Hint: If W ∼ Γ(α, λ) then EetW = {λ/(λ− t)}α if
t < λ and ∞ otherwise.]

(b) Show that if X ∼ U(0, 1) then − logX ∼ Exp(1).

(c) State the Neyman–Pearson lemma.

(d) Let X1, . . . , Xn be independent random variables with common density pro-
portional to xθ1(0,1)(x) for θ > 0. Find a most powerful test of size α of H0 : θ = 0
against H1 : θ = 1, giving the critical region in terms of a quantile of an appropriate
gamma distribution. Find a uniformly most powerful test of size α of H0 : θ = 0 against
H1 : θ > 0.

19H Markov Chains
Let (Xn)n>0 be a Markov chain with transition matrix P . What is a stopping time

of (Xn)n>0? What is the strong Markov property?

The exciting game of ‘Unopoly’ is played by a single player on a board of 4 squares.
The player starts with £m (where m ∈ N). During each turn, the player tosses a fair coin
and moves one or two places in a clockwise direction (1 → 2 → 3 → 4 → 1) according to
whether the coin lands heads or tails respectively. The player collects £2 each time they
pass (or land on) square 1. If the player lands on square 3 however, they immediately
lose £1 and go back to square 2. The game continues indefinitely unless the player is on
square 2 with £0, in which case the player loses the game and the game ends.

 

1

2 3

4

Lose £1

Go back to
 2

(a) By setting up an appropriate Markov chain, show that if the player is at square
2 with £m, where m > 1, the probability that they are ever at square 2 with £(m− 1) is
2/3.

(b) Find the probability of losing the game when the player starts on square 1 with
£m, where m > 1.

[Hint: Take the state space of your Markov chain to be {1, 2, 4} × {0, 1, . . .}.]
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END OF PAPER
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