
MATHEMATICAL TRIPOS Part IA

Wednesday, 9 June, 2021 10:00am to 1:00pm

PAPER 3

Before you begin read these instructions carefully

The examination paper is divided into two sections. Each question in Section II
carries twice the number of marks of each question in Section I. Section II questions
also carry an alpha or beta quality mark and Section I questions carry a beta quality
mark.

Candidates may obtain credit from attempts on all four questions from Section I
and at most five questions from Section II. Of the Section II questions, no more
than three may be on the same course.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise you place yourself at a grave disadvantage.

At the end of the examination:

Separate your answers to each question.

Complete a gold cover sheet for each question that you have attempted, and place
it at the front of your answer to that question.

Complete a green master cover sheet listing all the questions that you have
attempted.

Every cover sheet must also show your Blind Grade Number and desk
number.

Tie up your answers and cover sheets into a single bundle, with the master cover
sheet on the top, and then the cover sheet and answer for each question, in the
numerical order of the questions.

STATIONERY REQUIREMENTS
Gold cover sheets
Green master cover sheet

You may not start to read the questions
printed on the subsequent pages until
instructed to do so by the Invigilator.



2

SECTION I
1D Groups

Let G be a finite group and denote the centre of G by Z(G). Prove that if the
quotient group G/Z(G) is cyclic then G is abelian. Does there exist a group H such that

(i) |H/Z(H)| = 7 ?

(ii) |H/Z(H)| = 6 ?

Justify your answers.

2D Groups
Let g and h be elements of a group G. What does it mean to say g and h are

conjugate in G? Prove that if two elements in a group are conjugate then they have the
same order.

Define the Möbius group M. Prove that if g, h ∈ M are conjugate they have the
same number of fixed points. Quoting clearly any results you use, show that any nontrivial
element of M of finite order has precisely 2 fixed points.

3B Vector Calculus
(a) Prove that

∇× (ψA) = ψ∇×A +∇ψ ×A ,

∇ · (A×B) = B · ∇×A−A · ∇×B ,

where A and B are differentiable vector fields and ψ is a differentiable scalar field.

(b) Find the solution of ∇2u = 16r2 on the two-dimensional domain D when

(i) D is the unit disc 0 6 r 6 1, and u = 1 on r = 1;

(ii) D is the annulus 1 6 r 6 2, and u = 1 on both r = 1 and r = 2.

[Hint: the Laplacian in plane polar coordinates is:

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
. ]
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4B Vector Calculus
(a) What is meant by an antisymmetric tensor of second rank? Show that if a second

rank tensor is antisymmetric in one Cartesian coordinate system, it is antisymmetric in
every Cartesian coordinate system.

(b) Consider the vector field F = (y, z, x) and the second rank tensor defined by
Tij = ∂Fi/∂xj . Calculate the components of the antisymmetric part of Tij and verify that
it equals −(1/2)εijkBk, where εijk is the alternating tensor and B = ∇× F.
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SECTION II
5D Groups

(a) Let x be an element of a finite group G. Define the order of x and the order of
G. State and prove Lagrange’s theorem. Deduce that the order of x divides the order of G.

(b) If G is a group of order n, and d is a divisor of n where d < n, is it always true
that G must contain an element of order d? Justify your answer.

(c) Denote the cyclic group of order m by Cm.

(i) Prove that if m and n are coprime then the direct product Cm×Cn is cyclic.

(ii) Show that if a finite group G has all non-identity elements of order 2, then
G is isomorphic to C2×· · ·×C2. [The direct product theorem may be used
without proof.]

(d) Let G be a finite group and H a subgroup of G.

(i) Let x be an element of order d in G. If r is the least positive integer such
that xr ∈ H, show that r divides d.

(ii) Suppose further that H has index n. If x ∈ G, show that xk ∈ H for some
k such that 0 < k 6 n. Is it always the case that the least positive such k
is a factor of n? Justify your answer.

6D Groups
(a) Let G be a finite group acting on a set X. For x ∈ X, define the orbit Orb(x)

and the stabiliser Stab(x) of x. Show that Stab(x) is a subgroup of G. State and prove
the orbit-stabiliser theorem.

(b) Let n > k > 1 be integers. Let G = Sn, the symmetric group of degree n,
and X be the set of all ordered k-tuples (x1, . . . , xk) with xi ∈ {1, 2, . . . , n}. Then G acts
on X, where the action is defined by σ(x1, . . . , xk) = (σ(x1), . . . , σ(xk)) for σ ∈ Sn and
(x1, . . . , xk) ∈ X. For x = (1, 2, . . . , k) ∈ X, determine Orb(x) and Stab(x) and verify
that the orbit-stabiliser theorem holds in this case.

(c) We say that G acts doubly transitively on X if, whenever (x1, x2) and (y1, y2) are
elements of X ×X with x1 6= x2 and y1 6= y2, there exists some g ∈ G such that gx1 = y1
and gx2 = y2.

Assume that G is a finite group that acts doubly transitively on X, and let x ∈ X.
Show that if H is a subgroup of G that properly contains Stab(x) (that is, Stab(x) ⊆ H
but Stab(x) 6= H) then the action of H on X is transitive. Deduce that H = G.
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7D Groups
Let G be a finite group of order n. Show that G is isomorphic to a subgroup H

of Sn, the symmetric group of degree n. Furthermore show that this isomorphism can be
chosen so that any nontrivial element of H has no fixed points.

Suppose n is even. Prove that G contains an element of order 2.

What does it mean for an element of Sm to be odd? Suppose H is a subgroup of
Sm for some m, and H contains an odd element. Prove that precisely half of the elements
of H are odd.

Now suppose n = 4k + 2 for some positive integer k. Prove that G is not simple.
[Hint: Consider the sign of an element of order 2.]

Can a nonabelian group of even order be simple?

8D Groups
(a) Let A be an abelian group (not necessarily finite). We define the generalised

dihedral group to be the set of pairs

D(A) = {(a, ε) : a ∈ A, ε = ±1} ,

with multiplication given by

(a, ε)(b, η) = (abε, εη) .

The identity is (e, 1) and the inverse of (a, ε) is (a−ε, ε). You may assume that this
multiplication defines a group operation on D(A).

(i) Identify A with the set of all pairs in which ε = +1. Show that A is a
subgroup of D(A). By considering the index of A in D(A), or otherwise,
show that A is a normal subgroup of D(A).

(ii) Show that every element of D(A) not in A has order 2. Show that D(A) is
abelian if and only if a2 = e for all a ∈ A. If D(A) is non-abelian, what is
the centre of D(A)? Justify your answer.

(b) Let O(2) denote the group of 2× 2 orthogonal matrices. Show that all elements
of O(2) have determinant 1 or −1. Show that every element of SO(2) is a rotation. Let

J =

(
1 0
0 −1

)
. Show that O(2) decomposes as a union SO(2) ∪ SO(2)J .

[You may assume standard properties of determinants.]

(c) Let B be the (abelian) group {z ∈ C : |z| = 1}, with multiplication of
complex numbers as the group operation. Write down, without proof, isomorphisms
SO(2)∼= B ∼= R/Z where R denotes the additive group of real numbers and Z the subgroup
of integers. Deduce that O(2)∼= D(B), the generalised dihedral group defined in part (a).
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9B Vector Calculus
(a) Given a space curve r(t) = (x(t), y(t), z(t) ), with t a parameter (not necessarily

arc-length), give mathematical expressions for the unit tangent, unit normal, and unit
binormal vectors.

(b) Consider the closed curve given by

x = 2 cos3 t, y = sin3 t, z =
√
3 sin3 t, (∗)

where t ∈ [0, 2π).

Show that the unit tangent vector T may be written as

T = ±1

2

(
−2 cos t, sin t,

√
3 sin t

)
,

with each sign associated with a certain range of t, which you should specify.

Calculate the unit normal and the unit binormal vectors, and hence deduce that
the curve lies in a plane.

(c) A closed space curve C lies in a plane with unit normal n = (a, b, c). Use
Stokes’ theorem to prove that the planar area enclosed by C is the absolute value of the
line integral

1

2

∫

C
(bz − cy)dx+ (cx− az)dy + (ay − bx)dz.

Hence show that the planar area enclosed by the curve given by (∗) is (3/2)π.

10B Vector Calculus
(a) By considering an appropriate double integral, show that

∫ ∞

0
e−ax

2
dx =

√
π

4a
,

where a > 0.

(b) Calculate
∫ 1
0 x

ydy, treating x as a constant, and hence show that

∫ ∞

0

(e−u − e−2u)
u

du = log 2 .

(c) Consider the region D in the x-y plane enclosed by x2 + y2 = 4, y = 1, and
y =
√
3x with 1 < y <

√
3x.

Sketch D, indicating any relevant polar angles.

A surface S is given by z = xy/(x2 + y2). Calculate the volume below this surface
and above D.
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11B Vector Calculus
(a) By a suitable change of variables, calculate the volume enclosed by the ellipsoid

x2/a2 + y2/b2 + z2/c2 = 1, where a, b, and c are constants.

(b) Suppose Tij is a second rank tensor. Use the divergence theorem to show that

∫

S
Tijnj dS =

∫

V

∂Tij
∂xj

dV , (∗)

where S is a closed surface, with unit normal nj , and V is the volume it encloses.

[Hint: Consider eiTij for a constant vector ei.]

(c) A half-ellipsoidal membrane S is described by the open surface 4x2+4y2+z2 = 4,
with z > 0. At a given instant, air flows beneath the membrane with velocity u =
(−y, x, α), where α is a constant. The flow exerts a force on the membrane given by

Fi =

∫

S
β2uiujnj dS ,

where β is a constant parameter.

Show the vector ai = ∂(uiuj)/∂xj can be rewritten as a = −(x, y, 0).

Hence use (∗) to calculate the force Fi on the membrane.

12B Vector Calculus
For a given charge distribution ρ(x, t) and current distribution J(x, t) in R3, the

electric and magnetic fields, E(x, t) and B(x, t), satisfy Maxwell’s equations, which in
suitable units, read

∇ ·E = ρ , ∇×E = −∂B
∂t

,

∇ ·B = 0 , ∇×B = J +
∂E

∂t
.

The Poynting vector P is defined as P = E×B.

(a) For a closed surface S around a volume V, show that

∫

S
P · dS = −

∫

V
E · J dV − ∂

∂t

∫

V

|E|2 + |B|2
2

dV . (∗)

(b) Suppose J = 0 and consider an electromagnetic wave

E = E0 ŷ cos(kx− ωt) and B = B0 ẑ cos(kx− ωt) ,

where E0, B0, k and ω are positive constants. Show that these fields satisfy Maxwell’s
equations for appropriate E0, ω, and ρ.

Confirm the wave satisfies the integral identity (∗) by considering its propagation through
a box V, defined by 0 6 x 6 π/(2k), 0 6 y 6 L, and 0 6 z 6 L.
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END OF PAPER
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