
MATHEMATICAL TRIPOS Part IA
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PAPER 1

Before you begin read these instructions carefully

The examination paper is divided into two sections. Each question in Section II
carries twice the number of marks of each question in Section I. Section II questions
also carry an alpha or beta quality mark and Section I questions carry a beta quality
mark.

Candidates may obtain credit from attempts on all four questions from Section I
and at most five questions from Section II. Of the Section II questions, no more
than three may be on the same course.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise you place yourself at a grave disadvantage.

At the end of the examination:

Separate your answers to each question.

Complete a gold cover sheet for each question that you have attempted, and place
it at the front of your answer to that question.

Complete a green master cover sheet listing all the questions that you have
attempted.

Every cover sheet must also show your Blind Grade Number and desk
number.

Tie up your answers and cover sheets into a single bundle, with the master cover
sheet on the top, and then the cover sheet and answer for each question, in the
numerical order of the questions.

STATIONERY REQUIREMENTS
Gold cover sheets
Green master cover sheet

You may not start to read the questions
printed on the subsequent pages until
instructed to do so by the Invigilator.
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SECTION I
1C Vectors and Matrices

(a) Find all complex solutions to the equation zi = 1.

(b) Write down an equation for the numbers z which describe, in the complex plane,
a circle with radius 5 centred at c = 5i. Find the points on the circle at which it intersects
the line passing through c and z0 =

15
4 .

2B Vectors and Matrices
The matrix

A =




2 −1
2 0
−1 1




represents a linear map Φ : R2 → R3 with respect to the bases

B =

{(
0
2

)
,

(
−2

0

)}
, C =








1
1
0


 ,




0
1
0


 ,




0
1
1





 .

Find the matrix A′ that represents Φ with respect to the bases

B′ =

{(
1
1

)
,

(
1
−1

)}
, C ′ =








1
0
0


 ,




0
1
0


 ,




0
0
1





 .

3F Analysis I

State and prove the alternating series test. Hence show that the series
∑∞

n=1
(−1)n+1

n
converges. Show also that

7

12
6
∞∑

n=1

(−1)n+1

n
6 47

60
.

4F Analysis I
State and prove the Bolzano–Weierstrass theorem.

Consider a bounded sequence (xn). Prove that if every convergent subsequence of
(xn) converges to the same limit L then (xn) converges to L.

Part IA, Paper 1
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SECTION II
5C Vectors and Matrices

Using the standard formula relating products of the Levi-Civita symbol εijk to
products of the Kronecker δij , prove

a× (b× c) = (a · c)b− (a · b)c .

Define the scalar triple product [a,b, c] of three vectors a, b, and c in R3 in terms
of the dot and cross product. Show that

[a× b,b× c, c× a] = [a,b, c]2 .

Given a basis e1, e2, e3 for R3 which is not necessarily orthonormal, let

e′1 =
e2 × e3

[e1, e2, e3]
, e′2 =

e3 × e1
[e1, e2, e3]

, e′3 =
e1 × e2

[e1, e2, e3]
.

Show that e′1, e
′
2, e

′
3 is also a basis for R3. [You may assume that three linearly independent

vectors in R3 form a basis.]

The vectors e′′1, e′′2, e′′3 are constructed from e′1, e
′
2, e

′
3 in the same way that e′1, e

′
2,

e′3 are constructed from e1, e2, e3. Show that

e′′1 = e1 , e′′2 = e2 , e′′3 = e3 .

An infinite lattice consists of all points with position vectors given by

R = n1e1 + n2e2 + n3e3 with n1, n2, n3 ∈ Z .

Find all points with position vectors K such that K ·R is an integer for all integers n1,
n2, n3.

Part IA, Paper 1 [TURN OVER]
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6A Vectors and Matrices
(a) For an n × n matrix A define the characteristic polynomial χA and the

characteristic equation.

The Cayley–Hamilton theorem states that every n × n matrix satisfies its own
characteristic equation. Verify this in the case n = 2.

(b) Define the adjugate matrix adj(A) of an n× n matrix A in terms of the minors
of A. You may assume that

A adj(A) = adj(A)A = det(A)I ,

where I is the n×n identity matrix. Show that if A and B are non-singular n×n matrices
then

adj(AB) = adj(B) adj(A) . (∗)

(c) Let M be an arbitrary n× n matrix. Explain why

(i) there is an α > 0 such that M − tI is non-singular for 0 < t < α ;

(ii) the entries of adj(M − tI) are polynomials in t.

Using parts (i) and (ii), or otherwise, show that (∗) holds for all matrices A,B.

(d) The characteristic polynomial of the arbitrary n× n matrix A is

χA(z) = (−1)nzn + cn−1z
n−1 + · · · + c1z + c0 .

By considering adj(A− tI), or otherwise, show that

adj(A) = (−1)n−1An−1 − cn−1A
n−2 − · · · − c2A− c1I .

[You may assume the Cayley–Hamilton theorem.]

Part IA, Paper 1
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7A Vectors and Matrices
Let A be a real, symmetric n× n matrix.

We say that A is positive semi-definite if xTAx > 0 for all x ∈ Rn. Prove that A
is positive semi-definite if and only if all the eigenvalues of A are non-negative. [You may
quote results from the course, provided that they are clearly stated.]

We say that A has a principal square root B if A = B2 for some symmetric, positive
semi-definite n × n matrix B. If such a B exists we write B =

√
A. Show that if A is

positive semi-definite then
√
A exists.

Let M be a real, non-singular n × n matrix. Show that MTM is symmetric and
positive semi-definite. Deduce that

√
MTM exists and is non-singular. By considering

the matrix

M
(√

MTM
)−1

,

or otherwise, show M = RP for some orthogonal n×n matrix R and a symmetric, positive
semi-definite n× n matrix P .

Describe the transformation RP geometrically in the case n = 3.
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8B Vectors and Matrices
(a) Consider the matrix

A =




µ 1 1
2 −µ 0
−µ 2 1


 .

Find the kernel of A for each real value of the constant µ. Hence find how many solutions
x ∈ R3 there are to

Ax =




1
1
2


 ,

depending on the value of µ. [There is no need to find expressions for the solution(s).]

(b) Consider the reflection map Φ : R3 → R3 defined as

Φ : x 7→ x− 2(x · n)n

where n is a unit vector normal to the plane of reflection.

(i) Find the matrix H which corresponds to the map Φ in terms of the
components of n.

(ii) Prove that a reflection in a plane with unit normal n followed by a reflection
in a plane with unit normal vector m (both containing the origin) is
equivalent to a rotation along the line of intersection of the planes with
an angle twice that between the planes.

[Hint: Choose your coordinate axes carefully.]

(iii) Briefly explain why a rotation followed by a reflection or vice-versa can
never be equivalent to another rotation.

9F Analysis I
(a) State the intermediate value theorem. Show that if f : R → R is a continuous

bijection and x1 < x2 < x3 then either f(x1) < f(x2) < f(x3) or f(x1) > f(x2) > f(x3).
Deduce that f is either strictly increasing or strictly decreasing.

(b) Let f : R → R and g : R → R be functions. Which of the following statements
are true, and which can be false? Give a proof or counterexample as appropriate.

(i) If f and g are continuous then f ◦ g is continuous.

(ii) If g is strictly increasing and f ◦ g is continuous then f is continuous.

(iii) If f is continuous and a bijection then f−1 is continuous.

(iv) If f is differentiable and a bijection then f−1 is differentiable.

Part IA, Paper 1
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10F Analysis I
Let f : [a, b] → R be a continuous function.

(a) Let m = minx∈[a,b] f(x) and M = maxx∈[a,b] f(x). If g : [a, b] → R is a positive
continuous function, prove that

m

∫ b

a
g(x)dx 6

∫ b

a
f(x)g(x)dx 6 M

∫ b

a
g(x)dx

directly from the definition of the Riemann integral.

(b) Let f : [0, 1] → R be a continuous function. Show that

∫ 1/
√
n

0
nf(x)e−nxdx → f(0)

as n → ∞, and deduce that ∫ 1

0
nf(x)e−nxdx → f(0)

as n → ∞.

11F Analysis I
Let f : R→ R be n-times differentiable, for some n > 0.

(a) State and prove Taylor’s theorem for f , with the Lagrange form of the remainder.
[You may assume Rolle’s theorem.]

(b) Suppose that f : R→ R is an infinitely differentiable function such that f(0) = 1
and f ′(0) = 0, and satisfying the differential equation f ′′(x) = −f(x). Prove carefully that

f(x) =

∞∑

k=0

(−1)k
x2k

(2k)!
.
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12F Analysis I
(a) Let

∑∞
n=0 anz

n be a power series with an ∈ C. Show that there exists R ∈ [0,∞]
(called the radius of convergence) such that the series is absolutely convergent when |z| < R
but is divergent when |z| > R.

Suppose that the radius of convergence of the series
∑∞

n=0 anz
n is R = 2. For a

fixed positive integer k, find the radii of convergence of the following series. [You may
assume that limn→∞ |an|1/n exists.]

(i)
∞∑

n=0

aknz
n .

(ii)
∞∑

n=0

anz
kn .

(iii)
∞∑

n=0

anz
n2

.

(b) Suppose that there exist values of z for which
∑∞

n=0 bne
nz converges and values

for which it diverges. Show that there exists a real number S such that
∑∞

n=0 bne
nz

diverges whenever Re(z) > S and converges whenever Re(z) < S.

Determine the set of values of z for which

∞∑

n=0

2neinz

(n + 1)2

converges.

END OF PAPER
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