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Paper 1, Section II
25I Algebraic Geometry

Let k be an algebraically closed field and let V ⊂ Ank be a non-empty affine variety.
Show that V is a finite union of irreducible subvarieties.

Let V1 and V2 be subvarieties of Ank given by the vanishing loci of ideals I1 and I2
respectively. Prove the following assertions.

(i) The variety V1 ∩ V2 is equal to the vanishing locus of the ideal I1 + I2.

(ii) The variety V1 ∪ V2 is equal to the vanishing locus of the ideal I1 ∩ I2.

Decompose the vanishing locus

V(X2 + Y 2 − 1, X2 − Z2 − 1) ⊂ A3
C.

into irreducible components.

Let V ⊂ A3
k be the union of the three coordinate axes. Let W be the union of three

distinct lines through the point (0, 0) in A2
k. Prove that W is not isomorphic to V .

Paper 2, Section II
25I Algebraic Geometry

Let k be an algebraically closed field and n > 1. Exhibit GL(n, k) as an open subset
of affine space An2

k . Deduce that GL(n, k) is smooth. Prove that it is also irreducible.

Prove that GL(n, k) is isomorphic to a closed subvariety in an affine space.

Show that the matrix multiplication map

GL(n, k)×GL(n, k)→ GL(n, k)

that sends a pair of matrices to their product is a morphism.

Prove that any morphism from Ank to A1
k r {0} is constant.

Prove that for n > 2 any morphism from Pnk to P1
k is constant.
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Paper 3, Section II
24I Algebraic Geometry

In this question, all varieties are over an algebraically closed field k of characteristic
zero.

What does it mean for a projective variety to be smooth? Give an example of a
smooth affine variety X ⊂ Ank whose projective closure X ⊂ Pnk is not smooth.

What is the genus of a smooth projective curve? Let X ⊂ P4
k be the hypersurface

V (X3
0 +X3

1 +X3
2 +X3

3 +X3
4 ). Prove that X contains a smooth curve of genus 1.

Let C ⊂ P2
k be an irreducible curve of degree 2. Prove that C is isomorphic to P1

k.

We define a generalized conic in P2
k to be the vanishing locus of a non-zero

homogeneous quadratic polynomial in 3 variables. Show that there is a bijection between
the set of generalized conics in P2

k and the projective space P5
k, which maps the conic V (f)

to the point whose coordinates are the coefficients of f .

(i) Let R◦ ⊂ P5
k be the subset of conics that consist of unions of two distinct

lines. Prove that R◦ is not Zariski closed, and calculate its dimension.

(ii) Let I be the homogeneous ideal of polynomials vanishing on R◦. Determine
generators for the ideal I.

Paper 4, Section II
24I Algebraic Geometry

Let C be a smooth irreducible projective algebraic curve over an algebraically closed
field.

Let D be an effective divisor on C. Prove that the vector space L(D) of rational
functions with poles bounded by D is finite dimensional.

Let D and E be linearly equivalent divisors on C. Exhibit an isomorphism between
the vector spaces L(D) and L(E).

What is a canonical divisor on C? State the Riemann–Roch theorem and use it to
calculate the degree of a canonical divisor in terms of the genus of C.

Prove that the canonical divisor on a smooth cubic plane curve is linearly equivalent
to the zero divisor.

Part II, Paper 1
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Paper 1, Section II
21F Algebraic Topology

(a) What does it mean for two spaces X and Y to be homotopy equivalent?

(b) What does it mean for a subspace Y ⊆ X to be a retract of a space X? What
does it mean for a space X to be contractible? Show that a retract of a contractible space
is contractible.

(c) Let X be a space and A ⊆ X a subspace. We say the pair (X,A) has the
homotopy extension property if, for any pair of maps f : X×{0} → Y and H ′ : A×I → Y
with

f |A×{0} = H ′|A×{0},
there exists a map H : X × I → Y with

H|X×{0} = f, H|A×I = H ′.

Now suppose that A ⊆ X is contractible. Denote by X/A the quotient of X by the
equivalence relation x ∼ x′ if and only if x = x′ or x, x′ ∈ A. Show that, if (X,A) satisfies
the homotopy extension property, then X and X/A are homotopy equivalent.

Paper 2, Section II
21F Algebraic Topology

(a) State a suitable version of the Seifert–van Kampen theorem and use it to
calculate the fundamental groups of the torus T 2 := S1 × S1 and of the real projective
plane RP2.

(b) Show that there are no covering maps T 2 → RP2 or RP2 → T 2.

(c) Consider the following covering space of S1 ∨ S1:

aa

aa

bb

bb

Here the line segments labelled a and b are mapped to the two different copies of S1

contained in S1 ∨ S1, with orientations as indicated.

Using the Galois correspondence with basepoints, identify a subgroup of

π1(S
1 ∨ S1, x0) = F2

(where x0 is the wedge point) that corresponds to this covering space.
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Paper 3, Section II
20F Algebraic Topology

Let X be a space. We define the cone of X to be

CX := (X × I)/ ∼

where (x1, t1) ∼ (x2, t2) if and only if either t1 = t2 = 1 or (x1, t1) = (x2, t2).

(a) Show that if X is triangulable, so is CX. Calculate Hi(CX). [You may use any
results proved in the course.]

(b) Let K be a simplicial complex and L ⊆ K a subcomplex. Let X = |K|, A = |L|,
and let X ′ be the space obtained by identifying |L| ⊆ |K| with |L| × {0} ⊆ C|L|. Show
that there is a long exact sequence

· · · → Hi+1(X
′)→ Hi(A)→ Hi(X)→ Hi(X

′)→ Hi−1(A)→ · · ·

· · · → H1(X
′)→ H0(A)→ Z⊕H0(X)→ H0(X

′)→ 0.

(c) In part (b), suppose that X = S1× S1 and A = S1×{x} ⊆ X for some x ∈ S1.
Calculate Hi(X

′) for all i.

Paper 4, Section II
21F Algebraic Topology

(a) Define the Euler characteristic of a triangulable space X.

(b) Let Σg be an orientable surface of genus g. A map π : Σg → S2 is a double-
branched cover if there is a set Q = {p1, . . . , pn} ⊆ S2 of branch points, such that the
restriction π : Σg \ π−1(Q) → S2 \ Q is a covering map of degree 2, but for each p ∈ Q,
π−1(p) consists of one point. By carefully choosing a triangulation of S2, use the Euler
characteristic to find a formula relating g and n.

Part II, Paper 1
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Paper 1, Section II
23H Analysis of Functions

Below,M is the σ-algebra of Lebesgue measurable sets and λ is Lebesgue measure.

(a) State the Lebesgue differentiation theorem for an integrable function f : Rn → C.
Let g : R → C be integrable and define G : R → C by G(x) :=

∫
[a,x] g dλ for some a ∈ R.

Show that G is differentiable λ-almost everywhere.

(b) Suppose h : R→ R is strictly increasing, continuous, and maps sets of λ-measure
zero to sets of λ-measure zero. Show that we can define a measure ν on M by setting
ν(A) := λ

(
h(A)

)
for A ∈ M, and establish that ν � λ. Deduce that h is differentiable

λ-almost everywhere. Does the result continue to hold if h is assumed to be non-decreasing
rather than strictly increasing?

[You may assume without proof that a strictly increasing, continuous, function
w : R→ R is injective, and w−1 : w(R)→ R is continuous.]

Paper 2, Section II
23H Analysis of Functions

Define the Schwartz space, S (Rn), and the space of tempered distributions, S ′(Rn),
stating what it means for a sequence to converge in each space.

For a Ck function f : Rn → C, and non-negative integers N, k, we say f ∈ XN,k if

‖f‖N,k := sup
x∈Rn;|α|6k

∣∣∣
(
1 + |x|2

)N
2 Dαf(x)

∣∣∣ <∞.

You may assume that XN,k equipped with ‖ · ‖N,k is a Banach space in which S (Rn) is
dense.

(a) Show that if u ∈ S ′(Rn) there exist N, k ∈ Z>0 and C > 0 such that

|u[φ]| 6 C‖φ‖N,k for all φ ∈ S (Rn) .

Deduce that there exists a unique ũ ∈ X ′N,k such that ũ[φ] = u[φ] for all φ ∈ S (Rn).

(b) Recall that v ∈ S ′(Rn) is positive if v[φ] > 0 for all φ ∈ S (Rn) satisfying
φ > 0. Show that if v ∈ S ′(Rn) is positive, then there exist M ∈ Z>0 and K > 0 such
that

|v[φ]| 6 K‖φ‖M,0, for all φ ∈ S (Rn).
[
Hint: Note that |φ(x)| 6 ‖φ‖M,0

(
1 + |x|2

)−M
2 .
]
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Paper 3, Section II
22H Analysis of Functions

(a) State the Riemann–Lebesgue lemma. Show that the Fourier transform maps
S (Rn) to itself continuously.

(b) For some s > 0, let f ∈ L1(R3) ∩ Hs(R3). Consider the following system of
equations for B : R3 → R3

∇ ·B = f, ∇×B = 0.

Show that there exists a unique B = (B1, B2, B3) solving the equations with Bj ∈
Hs+1(R3) for j = 1, 2, 3. You need not find B explicitly, but should give an expression for
the Fourier transform of Bj . Show that there exists a constant C > 0 such that

‖Bj‖Hs+1 6 C
(
‖f‖L1 + ‖f‖Hs

)
, j = 1, 2, 3.

For what values of s can we conclude that Bj ∈ C1(Rn)?

Paper 4, Section II
23H Analysis of Functions

Fix 1 < p <∞ and let q satisfy p−1 + q−1 = 1.

(a) Let (fj) be a sequence of functions in Lp(Rn). For f ∈ Lp(Rn), what is meant
by (i) fj → f in Lp(Rn) and (ii) fj ⇀ f in Lp(Rn)? Show that if fj ⇀ f , then

‖f‖Lp 6 lim inf
j→∞

‖fj‖Lp .

(b) Suppose that (gj) is a sequence with gj ∈ Lp(Rn), and that there exists K > 0
such that ‖gj‖Lp 6 K for all j. Show that there exists g ∈ Lp(Rn) and a subsequence(
gjk
)∞
k=1

, such that for any sequence (hk) with hk ∈ Lq(Rn) and hk → h ∈ Lq(Rn), we
have

lim
k→∞

∫

Rn

gjkhk dx =

∫

Rn

gh dx.

Give an example to show that the result need not hold if the condition hk → h is replaced
by hk ⇀ h in Lq(Rn).

Part II, Paper 1
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Paper 1, Section II
35B Applications of Quantum Mechanics

(a) Discuss the variational principle that allows one to derive an upper bound on
the energy E0 of the ground state for a particle in one dimension subject to a potential
V (x).

If V (x) = V (−x), how could you adapt the variational principle to derive an upper
bound on the energy E1 of the first excited state?

(b) Consider a particle of mass 2m = ~2 (in certain units) subject to a potential

V (x) = −V0e−x
2

with V0 > 0 .

(i) Using the trial wavefunction

ψ(x) = e−
1
2
x2a ,

with a > 0, derive the upper bound E0 6 E(a), where

E(a) =
1

2
a− V0

√
a√

1 + a
.

(ii) Find the zero of E(a) in a > 0 and show that any extremum must obey

(1 + a)3 =
V 2
0

a
.

(iii) By sketching E(a) or otherwise, deduce that there must always be a minimum
in a > 0. Hence deduce the existence of a bound state.

(iv) Working perturbatively in 0 < V0 � 1, show that

−V0 < E0 6 −
1

2
V 2
0 +O(V 3

0 ) .

[Hint: You may use that

∫ ∞

−∞
e−bx

2
dx =

√
π

b
for b > 0.]
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Paper 2, Section II
36B Applications of Quantum Mechanics

(a) The s-wave solution ψ0 for the scattering problem of a particle of mass m and
momentum ~k has the asymptotic form

ψ0(r) ∼
A

r

[
sin(kr) + g(k) cos(kr)

]
.

Define the phase shift δ0 and verify that tan δ0 = g(k).

(b) Define the scattering amplitude f . For a spherically symmetric potential of finite
range, starting from σT =

∫
|f |2dΩ , derive the expression

σT =
4π

k2

∞∑

l=0

(2l + 1) sin2 δl

giving the cross-section σT in terms of the phase shifts δl of the partial waves.

(c) For g(k) = −k/K with K > 0, show that a bound state exists and compute its
energy. Neglecting the contributions from partial waves with l > 0, show that

σT ≈
4π

K2 + k2
.

(d) For g(k) = γ/(K0 − k) with K0 > 0, γ > 0 compute the s-wave contribution to
σT . Working to leading order in γ � K0, show that σT has a local maximum at k = K0.
Interpret this fact in terms of a resonance and compute its energy and decay width.

Part II, Paper 1
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Paper 3, Section II
34B Applications of Quantum Mechanics

(a) In three dimensions, define a Bravais lattice Λ and its reciprocal lattice Λ∗.

A particle is subject to a potential V (x) with V (x) = V (x + r) for x ∈ R3 and
r ∈ Λ. State and prove Bloch’s theorem and specify how the Brillouin zone is related to
the reciprocal lattice.

(b) A body-centred cubic lattice ΛBCC consists of the union of the points of a cubic
lattice Λ1 and all the points Λ2 at the centre of each cube:

ΛBCC ≡ Λ1 ∪ Λ2 ,

Λ1 ≡
{
r ∈ R3 : r = n1î + n2ĵ + n3k̂ , with n1,2,3 ∈ Z

}
,

Λ2 ≡
{
r ∈ R3 : r = 1

2

(
î + ĵ + k̂

)
+ r′, with r′ ∈ Λ1

}
,

where î, ĵ and k̂ are unit vectors parallel to the Cartesian coordinates in R3. Show that
ΛBCC is a Bravais lattice and determine the primitive vectors a1, a2 and a3.

Find the reciprocal lattice Λ∗BCC . Briefly explain what sort of lattice it is.

[
Hint: The matrix M = 1

2



−1 1 1
1 −1 1
1 1 −1


 has inverse M−1 =




0 1 1
1 0 1
1 1 0


.
]
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Paper 4, Section II
34B Applications of Quantum Mechanics

(a) Consider the nearly free electron model in one dimension with mass m and
periodic potential V (x) = λU(x) with 0 < λ� 1 and

U(x) =
∞∑

l=−∞
Ul exp

(
2πi

a
lx

)
.

Ignoring degeneracies, the energy spectrum of Bloch states with wavenumber k is

E(k) = E0(k) + λ〈k|U |k〉+ λ2
∑

k′ 6=k

〈k|U |k′〉〈k′|U |k〉
E0(k)− E0(k′)

+O(λ3) ,

where {|k〉} are normalized eigenstates of the free Hamiltonian with wavenumber k. What
is E0 in this formula?

If we impose periodic boundary conditions on the wavefunctions, ψ(x) = ψ(x+ L)
with L = Na and N a positive integer, what are the allowed values of k and k′? Determine
〈k|U |k′〉 for these allowed values.

(b) State when the above expression for E(k) ceases to be a good approximation and
explain why. Quoting any result you need from degenerate perturbation theory, calculate
to O(λ) the location and width of the band gaps.

(c) Determine the allowed energy bands for each of the potentials

(i) V (x) = 2λ cos

(
2πx

a

)
,

(ii) V (x) = λa

∞∑

n=−∞
δ(x− na) .

(d) Briefly discuss a macroscopic physical consequence of the existence of energy
bands.

Part II, Paper 1
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Paper 1, Section II
28K Applied Probability

The particles of an Ideal Gas form a spatial Poisson process on R3 with constant
intensity z > 0, called the activity of the gas.

(a) Prove that the independent mixture of two Ideal Gases with activities z1 and z2
is again an Ideal Gas. What is its activity? [You must prove any results about Poisson
processes that you use. The independent mixture of two gases with particles Π1 ⊂ R3 and
Π2 ⊂ R3 is given by Π1 ∪Π2.]

(b) For an Ideal Gas of activity z > 0, find the limiting distribution of

N(Vi)− EN(Vi)√
|Vi|

as i→∞ for a given sequence of subsets Vi ⊂ R3 with |Vi| → ∞.

(c) Let g : R3 → R be a smooth non-negative function vanishing outside a bounded
subset of R3. Find the mean and variance of

∑
x g(x), where the sum runs over the

particles x ∈ R3 of an ideal gas of activity z > 0. [You may use the properties of spatial
Poisson processes established in the lectures.]

[Hint: recall that the characteristic function of a Poisson random variable with mean
λ is e(e

it−1)λ.]

Paper 2, Section II
28K Applied Probability

Let X be an irreducible, non-explosive, continuous-time Markov process on the state
space Z with generator Q = (qx,y)x,y∈Z.

(a) Define its jump chain Y and prove that it is a discrete-time Markov chain.

(b) Define what it means for X to be recurrent and prove that X is recurrent if
and only if its jump chain Y is recurrent. Prove also that this is the case if the transition
semigroup (px,y(t)) satisfies ∫ ∞

0
p0,0(t) dt =∞.

(c) Show that X is recurrent for at least one of the following generators:

qx,y = (1 + |x|)−2e−|x−y|2 (x 6= y),

qx,y = (1 + |x− y|)−2e−|x|2 (x 6= y).

[Hint: You may use that the semigroup associated with a Q-matrix on Z such that qx,y
depends only on x− y (and has sufficient decay) can be written as

px,y(t) =
1

2π

∫ π

−π
e−tλ(k)eik(x−y) dk,

where λ(k) =
∑

y q0,y(1− eiky). You may also find the bound 1− cosx 6 x2/2 useful.]

Part II, Paper 1 [TURN OVER]



14

Paper 3, Section II
27K Applied Probability

(a) Customers arrive at a queue at the event times of a Poisson process of rate
λ. The queue is served by two independent servers with exponential service times with
parameter µ each. If the queue has length n, an arriving customer joins with probability
rn and leaves otherwise (where r ∈ (0, 1] ). For which λ > 0, µ > 0 and r ∈ (0, 1] is there
a stationary distribution?

(b) A supermarket allows a maximum of N customers to shop at the same time.
Customers arrive at the event times of a Poisson process of rate 1, they enter the
supermarket when possible, and they leave forever for another supermarket otherwise.
Customers already in the supermarket pay and leave at the event times of an independent
Poisson process of rate µ. When is there a unique stationary distribution for the number
of customers in the supermarket? If it exists, find it.

(c) In the situation of part (b), started from equilibrium, show that the departure
process is Poissonian.

Part II, Paper 1
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Paper 4, Section II
27K Applied Probability

Let
(
X(t)

)
t>0

be a continuous-time Markov process with state space I = {1, . . . , n}
and generator Q = (qij)i,j∈I satisfying qij = qji for all i, j ∈ I. The local time up to time
t > 0 of X is the random vector L(t) =

(
Li(t)

)
i∈I ∈ Rn defined by

Li(t) =

∫ t

0
1X(s)=i ds (i ∈ I).

(a) Let f : I × Rn → R be any function that is differentiable with respect to its
second argument, and set

ft(i, `) = Eif
(
X(t), `+ L(t)

)
, (i ∈ I, ` ∈ Rn).

Show that
∂

∂t
ft(i, `) = Mft(i, `),

where

Mf(i, `) =
∑

j∈I
qijf(j, `) +

∂

∂`i
f(i, `).

(b) For y ∈ Rn, write y2 = (y2i )i∈I ∈ [0,∞)n for the vector of squares of the
components of y. Let f : I × Rn → R be a function such that f(i, `) = 0 whenever∑

j |`j | > T for some fixed T . Using integration by parts, or otherwise, show that for all i

−
∫

Rn

exp
(
1
2y

TQy
)
yi

n∑

j=1

yjMf(j, 12y
2) dy =

∫

Rn

exp
(
1
2y

TQy
)
f(i, 12y

2) dy ,

where yTQy denotes
∑

k,m∈I
ykqkmym.

(c) Let g : Rn → R be a function with g(`) = 0 whenever
∑

j |`j | > T for some fixed
T . Given t > 0, j ∈ I, now let

f(i, `) = Ei
[
g
(
`+ L(t)

)
1X(t)=j

]
,

in part (b) and deduce, using part (a), that

∫

Rn

exp
(
1
2y

TQy
)
yiyjg(12y

2) dy

=

∫

Rn

exp
(
1
2y

TQy
)(∫ ∞

0
Ei
[
1X(t)=j g

(
1
2y

2 + L(t)
)]
dt

)
dy.

[You may exchange the order of integrals and derivatives without justification.]
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Paper 2, Section II
32A Asymptotic Methods

(a) Let x(t) and φn(t), for n = 0, 1, 2, . . . , be real-valued functions on R.

(i) Define what it means for the sequence
{
φn(t)

}∞
n=0

to be an asymptotic
sequence as t→∞ .

(ii) Define what it means for x(t) to have the asymptotic expansion

x(t) ∼
∞∑

n=0

anφn(t) as t→∞ .

(b) Use the method of stationary phase to calculate the leading-order asymptotic
approximation as x→∞ of

I(x) =

∫ 1

0
sin
(
x(2t4 − t2)

)
dt .

[You may assume that

∫ ∞

−∞
eiu

2
du =

√
π eiπ/4.]

(c) Use Laplace’s method to calculate the leading-order asymptotic approximation
as x→∞ of

J(x) =

∫ 1

0
sinh

(
x(2t4 − t2)

)
dt .

[In parts (b) and (c) you should include brief qualitative reasons for the origin of
the leading-order contributions, but you do not need to give a formal justification.]

Paper 3, Section II
30A Asymptotic Methods

(a) Carefully state Watson’s lemma.

(b) Use the method of steepest descent and Watson’s lemma to obtain an infinite
asymptotic expansion of the function

I(x) =

∫ ∞

−∞

e−x(z
2−2iz)

1− iz dz as x→∞ .

Part II, Paper 1
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Paper 4, Section II
31A Asymptotic Methods

(a) Classify the nature of the point at ∞ for the ordinary differential equation

y′′ +
2

x
y′ +

(
1

x
− 1

x2

)
y = 0 . (∗)

(b) Find a transformation from (∗) to an equation of the form

u′′ + q(x)u = 0 , (†)

and determine q(x) .

(c) Given u(x) satisfies (†), use the Liouville–Green method to find the first three
terms in an asymptotic approximation as x → ∞ for u(x), verifying the consistency of
any approximations made.

(d) Hence obtain corresponding asymptotic approximations as x → ∞ of two
linearly independent solutions y(x) of (∗).
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Paper 1, Section I
4F Automata and Formal Languages

Let fn,k be the partial function on k variables that is computed by the nth machine
(or the empty function if n does not encode a machine).

Define the halting set K.

Given A,B ⊆ N, what is a many–one reduction A 6m B of A to B?

State the s−m− n theorem and use it to show that a subset X of N is recursively
enumerable if and only if X 6m K.

Give an example of a set S ⊆ N with K 6m S but K 6= S.

[You may assume that K is recursively enumerable and that 0 /∈ K.]

Paper 2, Section I
4F Automata and Formal Languages

Assuming the definition of a deterministic finite-state automaton (DFA) D =
(Q,Σ, δ, q0, F ), what is the extended transition function δ̂ for D? Also assuming the
definition of a nondeterministic finite-state automaton (NFA) N , what is δ̂ in this case?

Define the languages accepted by D and N , respectively, in terms of δ̂.

Given an NFA N as above, describe the subset construction and show that the
resulting DFA N accepts the same language as N . If N has one accept state then how
many does N have?

Paper 3, Section I
4F Automata and Formal Languages

Define a regular expression R and explain how this gives rise to a language L(R).

Define a deterministic finite-state automaton D and the language L(D) that it
accepts.

State the relationship between languages obtained from regular expressions and
languages accepted by deterministic finite-state automata.

Let L and M be regular languages. Is L ∪M always regular? What about L ∩M?

Now suppose that L1, L2, . . . are regular languages. Is the countable union
⋃
Li

always regular? What about the countable intersection
⋂
Li?

Part II, Paper 1
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Paper 4, Section I
4F Automata and Formal Languages

State the pumping lemma for regular languages.

Which of the following languages over the alphabet {0, 1} are regular?

(i) {0i1i01 | i > 0}.

(ii) {ww |w ∈ {0, 1}∗} where w is the reverse of the word w.

(iii) {w ∈ {0, 1}∗ |w does not contain the subwords 01 or 10}.

Paper 1, Section II
12F Automata and Formal Languages

For k > 1 give the definition of a partial recursive function f : Nk → N in terms of
basic functions, composition, recursion and minimisation.

Show that the following partial functions from N to N are partial recursive:

(i) s(n) =

{
1 n = 0
0 n > 1 ,

(ii) r(n) =

{
1 n odd
0 n even ,

(iii) p(n) =

{
undefined if n is odd
0 if n is even .

Which of these can be defined without using minimisation?

What is the class of functions f : Nk → N that can be defined using only basic
functions and composition? [Hint: See which functions you can obtain and then show that
these form a class that is closed with respect to the above.]

Show directly that every function in this class is computable.
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Paper 3, Section II
12F Automata and Formal Languages

Suppose that G is a context-free grammar without ε-productions. Given a derivation
of some word w in the language L of G, describe a parse tree for this derivation.

State and prove the pumping lemma for L. How would your proof differ if you did
not assume that G was in Chomsky normal form, but merely that G has no ε- or unit
productions?

For the alphabet Σ = {a, b} of terminal symbols, state whether the following
languages over Σ are context free, giving reasons for your answer.

(i) {aibiai | i > 0},

(ii) {aibj | i > j > 0},

(iii)
{
wabw |w ∈ {a, b}∗

}
.
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Paper 1, Section I
8D Classical Dynamics

Two equal masses m move along a straight line between two stationary walls. The
mass on the left is connected to the wall on its left by a spring of spring constant k1, and
the mass on the right is connected to the wall on its right by a spring of spring constant
k2. The two masses are connected by a third spring of spring constant k3.

(a) Show that the Lagrangian of the system can be written in the form

L =
1

2
Tij ẋiẋj −

1

2
Vijxixj ,

where xi(t), for i = 1, 2, are the displacements of the two masses from their equilibrium
positions, and Tij and Vij are symmetric 2× 2 matrices that should be determined.

(b) Let
k1 = k(1 + εδ) , k2 = k(1− εδ) , k3 = kε ,

where k > 0, ε > 0 and |εδ| < 1. Using Lagrange’s equations of motion, show that the
angular frequencies ω of the normal modes of the system are given by

ω2 = λ
k

m
,

where
λ = 1 + ε

(
1±

√
1 + δ2

)
.

Paper 2, Section I
8D Classical Dynamics

Show that, in a uniform gravitational field, the net gravitational torque on a system
of particles, about its centre of mass, is zero.

Let S be an inertial frame of reference, and let S′ be the frame of reference with the
same origin and rotating with angular velocity ω(t) with respect to S. You may assume
that the rates of change of a vector v observed in the two frames are related by

(
dv

dt

)

S

=

(
dv

dt

)

S′
+ ω × v .

Derive Euler’s equations for the torque-free motion of a rigid body.

Show that the general torque-free motion of a symmetric top involves precession
of the angular-velocity vector about the symmetry axis of the body. Determine how the
direction and rate of precession depend on the moments of inertia of the body and its
angular velocity.
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Paper 3, Section I
8D Classical Dynamics

The Lagrangian of a particle of mass m and charge q in an electromagnetic field
takes the form

L =
1

2
m|ṙ|2 + q (−φ+ ṙ ·A) .

Explain the meaning of φ and A, and how they are related to the electric and magnetic
fields.

Obtain the canonical momentum p and the Hamiltonian H(r,p, t).

Suppose that the electric and magnetic fields have Cartesian components (E, 0, 0)
and (0, 0, B), respectively, where E and B are positive constants. Explain why the
Hamiltonian of the particle can be taken to be

H =
p2x
2m

+
(py − qBx)2

2m
+

p2z
2m
− qEx .

State three independent integrals of motion in this case.

Paper 4, Section I
8D Classical Dynamics

Briefly describe a physical object (a Lagrange top) whose Lagrangian is

L =
1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3

(
ψ̇ + φ̇ cos θ

)2
−Mgl cos θ .

Explain the meaning of the symbols in this equation.

Write down three independent integrals of motion for this system, and show that
the nutation of the top is governed by the equation

u̇2 = f(u) ,

where u = cos θ and f(u) is a certain cubic function that you need not determine.
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Paper 2, Section II
14D Classical Dynamics

(a) Show that the Hamiltonian

H =
1

2
p2 +

1

2
ω2q2 ,

where ω is a positive constant, describes a simple harmonic oscillator with angular
frequency ω. Show that the energy E and the action I of the oscillator are related by
E = ωI.

(b) Let 0 < ε < 2 be a constant. Verify that the differential equation

ẍ+
x

(εt)2
= 0 subject to x(1) = 0 , ẋ(1) = 1

is solved by

x(t) =

√
t

k
sin(k log t)

when t > 1, where k is a constant you should determine in terms of ε.

(c) Show that the solution in part (b) obeys

1

2
ẋ2 +

1

2

x2

(εt)2
=

1− cos(2k log t) + 2k sin(2k log t) + 4k2

8k2t
.

Hence show that the fractional variation of the action in the limit ε� 1 is O(ε), but that
these variations do not accumulate. Comment on this behaviour in relation to the theory
of adiabatic invariance.
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Paper 4, Section II
15D Classical Dynamics

(a) Let (q,p) be a set of canonical phase-space variables for a Hamiltonian system
with n degrees of freedom. Define the Poisson bracket {f, g} of two functions f(q,p) and
g(q,p). Write down the canonical commutation relations that imply that a second set
(Q,P) of phase-space variables is also canonical.

(b) Consider the near-identity transformation

Q = q + δq , P = p + δp ,

where δq(q,p) and δp(q,p) are small. Determine the approximate forms of the canonical
commutation relations, accurate to first order in δq and δp. Show that these are satisfied
when

δq = ε
∂F

∂p
, δp = −ε ∂F

∂q
,

where ε is a small parameter and F (q,p) is some function of the phase-space variables.

(c) In the limit ε → 0 this near-identity transformation is called the infinitesimal
canonical transformation generated by F . Let H(q,p) be an autonomous Hamiltonian.
Show that the change in the Hamiltonian induced by the infinitesimal canonical trans-
formation is

δH = −ε{F,H} .
Explain why F is an integral of motion if and only if the Hamiltonian is invariant under
the infinitesimal canonical transformation generated by F .

(d) The Hamiltonian of the gravitational N -body problem in three-dimensional
space is

H =
1

2

N∑

i=1

|pi|2
2mi

−
N−1∑

i=1

N∑

j=i+1

Gmimj

|ri − rj |
,

where mi, ri and pi are the mass, position and momentum of body i. Determine the form
of F and the infinitesimal canonical transformation that correspond to the translational
symmetry of the system.
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Paper 1, Section I
3K Coding and Cryptography

Let C be an [n,m, d] code. Define the parameters n,m and d. In each of the
following cases define the new code and give its parameters.

(i) C+ is the parity extension of C.

(ii) C− is the punctured code (assume n > 2).

(iii) C is the shortened code (assume n > 2).

Let C = {000, 100, 010, 001, 110, 101, 011, 111}. Suppose the parity extension of C is
transmitted through a binary symmetric channel where p is the probability of a single-bit
error in the channel. Calculate the probability that an error in the transmission of a single
codeword is not noticed.

Paper 2, Section I
3K Coding and Cryptography

State Shannon’s noisy coding theorem for a binary symmetric channel, defining the
terms involved.

Suppose a channel matrix, with output alphabet of size n, is such that the entries in
each row are the elements of the set {p1, . . . , pn} in some order. Further suppose that all
columns are permutations of one another. Show that the channel’s information capacity
C is given by

C = log n+

n∑

i=1

pi log pi .

Show that the information capacity of the channel matrix

(
1
3

1
3

1
6

1
6

1
6

1
6

1
3

1
3

)

is given by C = 5
3 − log 3.

Paper 3, Section I
3K Coding and Cryptography

Let d > 2. Define the Hamming code C of length 2d − 1. Explain what it means to
be a perfect code and show that C is a perfect code.

Suppose you are using the Hamming code of length 2d − 1 and you receive the
message 111 . . . 10 of length 2d − 1. How would you decode this message using minimum
distance decoding? Explain why this leads to correct decoding if at most one channel error
has occurred.
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Paper 4, Section I
3K Coding and Cryptography

Describe the Rabin scheme for coding a message x as x2 modulo a certain integer N .

Describe the RSA encryption scheme with public key (N, e) and private key d.

[In both cases you should explain how you encrypt and decrypt.]

Give an advantage and a disadvantage that the Rabin scheme has over the RSA
scheme.

Paper 1, Section II
11K Coding and Cryptography

Let Σ1 = {µ1, . . . , µN} be a finite alphabet and X a random variable that takes
each value µi with probability pi. Define the entropy H(X) of X.

Suppose Σ2 = {0, 1} and c : Σ1 → Σ∗
2 is a decipherable code. Write down an

expression for the expected word length E(S) of c.

Prove that the minimum expected word length S∗ of a decipherable code c : Σ1 → Σ∗
2

satisfies
H(X) 6 S∗ < H(X) + 1 .

[You can use Kraft’s and Gibbs’ inequalities as long as they are clearly stated.]

Suppose a decipherable binary code has word lengths s1, . . . , sN . Show that

N logN 6 s1 + · · ·+ sN .

Suppose X is a source that emits N sourcewords a1, . . . , aN and pi is the probability
that ai is emitted, where p1 > p2 > · · · > pN . Let b1 = 0 and bi =

∑i−1
j=1 pj for 2 6 i 6 N .

Let si = d− log pie for 1 6 i 6 N . Now define a code c by c(ai) = b∗i where b∗i is the
(fractional part of the) binary expansion of bi to si decimal places. Prove that this defines
a decipherable code.

What does it mean for a code to be optimal? Is the code c defined in the previous
paragraph in terms of the b∗i necessarily optimal? Justify your answer.
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Paper 2, Section II
12K Coding and Cryptography

(a) Define what it means to say that C is a binary cyclic code. Explain the bijection
between the set of binary cyclic codes of length n and the factors of Xn − 1 in F2[X].

(b) What is a linear feedback shift register?

Suppose that M : Fd2 → Fd2 is a linear feedback shift register. Further suppose
0 6= x ∈ Fd2 and k is a positive integer such that Mkx = x. Let H be the d × k matrix
(x,Mx, . . . ,Mk−1x). Considering H as a parity check matrix of a code C, show that C
is a binary cyclic code.

(c) Suppose that C is a binary cyclic code. Prove that, if C does not contain the
codeword 11 . . . 1, then all codewords in C have even weight.
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Paper 1, Section I
9B Cosmology

The continuity, Euler and Poisson equations governing how non-relativistic fluids
with energy density ρ, pressure P and velocity v propagate in an expanding universe take
the form

∂ρ

∂t
+ 3Hρ+

1

a
∇ · (ρv) = 0 ,

ρ a

(
∂

∂t
+

v

a
· ∇
)
u = − 1

c2
∇P − ρ∇Φ ,

∇2Φ =
4πG

c2
ρ a2 ,

where u = v + aH x, H = ȧ/a and a(t) is the scale factor.

(a) Show that, for a homogeneous and isotropic flow with P = P (t), ρ = ρ(t), v = 0
and Φ = Φ(t,x), consistency of the Euler equation with the Poisson equation implies
Raychaudhuri’s equation.

(b) Explain why this derivation of Raychaudhuri’s equation is an improvement over
the derivation of the Friedmann equation using only Newtonian gravity.

(c) Consider small perturbations about a homogeneous and isotropic flow,

ρ = ρ(t) + ε δρ, v = ε δv, P = P (t) + ε δP and Φ = Φ(t,x) + ε δΦ ,

with ε� 1. Show that, to first order in ε, the continuity equation can be written as

∂

∂t

(
δρ

ρ

)
= −1

a
∇ · δv .
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Paper 2, Section I
9B Cosmology

(a) The generalised Boltzmann distribution P (p) is given by

P (p) =
e−β(Ep np−µnp)

Zp
,

where β = (kBT )−1, µ is the chemical potential,

Zp =
∑

np

e−β(Ep np−µnp), Ep =
√
m2c4 + p2c2 and p = |p| .

Find the average particle number 〈N(p)〉 with momentum p, assuming that all particles
have rest mass m and are either

(i) bosons, or

(ii) fermions .

(b) The photon total number density nγ is given by

nγ =
2ζ(3)

π2~3c3
(kB T )3 ,

where ζ(3) ≈ 1.2. Consider now the fractional ionisation of hydrogen

Xe =
ne

ne + nH
.

In our universe ne + nH = np + nH ≈ η nγ , where η ∼ 10−9 is the baryon-to-photon
number density. Find an expression for the ratio

1−Xe

X2
e

in terms of η, (kB T ), the electron mass me, the speed of light c and the ionisation energy
of hydrogen I ≈ 13.6 eV.

One might expect neutral hydrogen to form at a temperature kB T ∼ I, but instead
in our universe it happens at the much lower temperature kB T ≈ 0.3 eV. Briefly explain
why this happens.

[
You may use without proof the Saha equation

nH
n2e

=

(
2π~2

me kB T

)3/2

eβI ,

for chemical equilibrium in the reaction e− + p+ ↔ H + γ .
]
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Paper 3, Section I
9B Cosmology

The expansion of the universe during inflation is governed by the Friedmann
equation (

ȧ

a

)2

=
8πG

3

[
1

2
φ̇2 + V (φ)

]
,

and the equation of motion for the inflaton field φ,

φ̈+ 3
ȧ

a
φ̇+

dV

dφ
= 0 .

Consider the potential
V = V0 e

−λφ

with V0 > 0 and λ > 0.

(a) Show that the inflationary equations have the exact solution

a(t) =

(
t

t0

)γ
and φ = φ0 + α log t,

for arbitrary t0 and appropriate choices of α, γ and φ0. Determine the range of λ for
which the solution exists. For what values of λ does inflation occur?

(b) Using the inflaton equation of motion and

ρ =
1

2
φ̇2 + V ,

together with the continuity equation

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 ,

determine P .

(c) What is the range of the pressure–energy density ratio ω ≡ P/ρ for which
inflation occurs?
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Paper 4, Section I
9B Cosmology

A collection of N particles, with masses mi and positions xi, interact through a
gravitational potential

V =
∑

i<j

Vij = −
∑

i<j

Gmimj

|xi − xj |
.

Assume that the system is gravitationally bound, and that the positions xi and velocities
ẋi are bounded for all time. Further, define the time average of a quantity X by

X = lim
t→∞

1

t

∫ t

0
X(t′) dt′ .

(a) Assuming that the time average of the kinetic energy T and potential energy V
are well defined, show that

T = −1

2
V .

[
You should consider the quantity I =

1

2

N∑

i=1

mi xi · xi , with all xi measured relative to

the centre of mass.
]

(b) Explain how part (a) can be used, together with observations, to provide
evidence in favour of dark matter. [You may assume that time averaging may be replaced
by an average over particles.]
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Paper 1, Section II
15B Cosmology

(a) Consider the following action for the inflaton field φ

S =

∫
d3x dt a(t)3

[
1

2
φ̇2 − c2

2a(t)2
∇φ · ∇φ− V (φ)

]
.

Use the principle of least action to derive the equation of motion for the inflaton φ,

φ̈+ 3Hφ̇− c2

a(t)2
∇2φ+

dV (φ)

dφ
= 0 , (∗)

where H = ȧ/a. [In the derivation you may discard boundary terms.]

(b) Consider a regime where V (φ) is approximately constant so that the universe
undergoes a period of exponential expansion during which a = a0 e

Hinf t. Show that (∗)
can be written in terms of the spatial Fourier transform φ̂k(t) of φ(x, t) as

¨̂
φk + 3Hinf

˙̂
φk +

c2k2

a2
φ̂k = 0 . (∗∗)

(c) Define conformal time τ and determine the range of τ when a = a0 e
Hinf t. Show

that (∗∗) can be written in terms of the conformal time as

d2φ̃k
dτ2

+

(
c2k2 − 2

τ2

)
φ̃k = 0 , where φ̃k = − 1

Hinfτ
φ̂k .

(d) Let |BD〉 denote the state that in the far past was in the ground state of the
standard harmonic oscillator with frequency ω = c k. Assuming that the quantum variance
of φ̂k is given by

Pk ≡ 〈BD|φ̂kφ̂ †
k|BD〉 =

~H2
inf

2c3k3
(
1 + τ2c2k2

)
,

explain in which sense inflation naturally generates a scale-invariant power spectrum. [You
may use that Pk has dimensions of [length]3. ]
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Paper 3, Section II
14B Cosmology

(a) Consider a closed universe endowed with cosmological constant Λ > 0 and filled
with radiation with pressure P and energy density ρ. Using the equation of state P = 1

3ρ
and the continuity equation

ρ̇+
3 ȧ

a
(ρ+ P ) = 0 ,

determine how ρ depends on a. Give the physical interpretation of the scaling of ρ with
a.

(b) For such a universe the Friedmann equation reads

(
ȧ

a

)2

=
8πG

3c2
ρ− c2

R2a2
+

Λ

3
.

What is the physical meaning of R?

(c) Making the substitution a(t) = α ã(t), determine α and Γ > 0 such that the
Friedmann equation takes the form

( ˙̃a

ã

)2

=
Γ

ã4
− 1

ã2
+

Λ

3
.

Using the substitution y(t) = ã(t)2 and the boundary condition y(0) = 0, deduce the
boundary condition for ẏ(0).

Show that

ÿ =
4Λ

3
y − 2 ,

and hence that

ã2(t) =
3

2Λ

[
1 − cosh

(√
4Λ

3
t

)
+ λ sinh

(√
4Λ

3
t

)]
.

Express the constant λ in terms of Λ and Γ.

Sketch the graphs of ã(t) for the cases λ > 1, λ < 1 and λ = 1.
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Paper 1, Section II
26F Differential Geometry

(a) Let S ⊂ R3 be a surface. Give a parametrisation-free definition of the first
fundamental form of S. Use this definition to derive a description of it in terms of the
partial derivatives of a local parametrisation φ : U ⊂ R2 → S.

(b) Let a be a positive constant. Show that the half-cone

Σ = {(x, y, z) | z2 = a(x2 + y2), z > 0}

is locally isometric to the Euclidean plane. [Hint: Use polar coordinates on the plane.]

(c) Define the second fundamental form and the Gaussian curvature of S. State
Gauss’ Theorema Egregium. Consider the set

V = {(x, y, z) |x2 + y2 + z2 − 2xy − 2yz = 0}\{(0, 0, 0)} ⊂ R3.

(i) Show that V is a surface.

(ii) Calculate the Gaussian curvature of V at each point. [Hint: Complete the
square.]

Paper 2, Section II
26F Differential Geometry

Let U be a domain in R2, and let φ : U → R3 be a smooth map. Define what it
means for φ to be an immersion. What does it mean for an immersion to be isothermal?

Write down a formula for the mean curvature of an immersion in terms of the first
and second fundamental forms. What does it mean for an immersed surface to be minimal?
Assume that φ(u, v) =

(
x(u, v), y(u, v), z(u, v)

)
is an isothermal immersion. Prove that it

is minimal if and only if x, y, z are harmonic functions of u, v.

For u ∈ R, v ∈ [0, 2π], and smooth functions f, g : R → R, assume that

φ(u, v) =
(
f(u) cos v, f(u) sin v, g(u)

)

is an isothermal immersion. Find all possible pairs (f, g) such that this immersion is
minimal.
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Paper 3, Section II
25F Differential Geometry

Let X and Y be smooth boundaryless manifolds. Suppose f : X → Y is a smooth
map. What does it mean for y ∈ Y to be a regular value of f? State Sard’s theorem and
the stack-of-records theorem.

Suppose g : X → Y is another smooth map. What does it mean for f and g to be
smoothly homotopic? Assume now that X is compact, and has the same dimension as Y .
Suppose that y ∈ Y is a regular value for both X and Y . Prove that

#f−1(y) = #g−1(y) (mod 2).

Let U ⊂ Sn be a non-empty open subset of the sphere. Suppose that h : Sn → Sn

is a smooth map such that #h−1(y) = 1 (mod 2) for all y ∈ U . Show that there must exist
a pair of antipodal points on Sn which is mapped to another pair of antipodal points by
h.

[You may assume results about compact 1-manifolds provided they are accurately
stated.]

Paper 4, Section II
25F Differential Geometry

Let I ⊂ R be an interval, and S ⊂ R3 be a surface. Assume that α : I → S is a
regular curve parametrised by arc-length. Define the geodesic curvature of α. What does
it mean for α to be a geodesic curve?

State the global Gauss–Bonnet theorem including boundary terms.

Suppose that S ⊂ R3 is a surface diffeomorphic to a cylinder. How large can the
number of simple closed geodesics on S be in each of the following cases?

(i) S has Gaussian curvature everywhere zero;

(ii) S has Gaussian curvature everywhere positive;

(iii) S has Gaussian curvature everywhere negative.

In cases where there can be two or more simple closed geodesics, must they always be
disjoint? Justify your answer.

[A formula for the Gaussian curvature of a surface of revolution may be used without
proof if clearly stated. You may also use the fact that a piecewise smooth curve on a
cylinder without self-intersections either bounds a domain homeomorphic to a disc or is
homotopic to the waist-curve of the cylinder. ]
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Paper 1, Section II
32A Dynamical Systems

(a) State the properties defining a Lyapunov function for a dynamical system
ẋ = f(x). State Lyapunov’s first theorem and La Salle’s invariance principle.

(b) Consider the system

ẋ = y ,

ẏ = −2x(1 − x2)

(1 + x2)3
− ky .

Show that for k > 0 the origin is asymptotically stable, stating clearly any arguments that
you use.

[
Hint:

d

dx

x2

(1 + x2)2
=

2x(1 − x2)

(1 + x2)3
.
]

(c) Sketch the phase plane, (i) for k = 0 and (ii) for 0 < k � 1, giving brief details
of any reasoning and identifying the fixed points. Include the domain of stability of the
origin in your sketch for case (ii).

(d) For k > 0 show that the trajectory x(t) with x(0) = (1, y0), where y0 > 0,

satisfies 0 < y(t) <
√
y20 + 1

2 for t > 0. Show also that, for any ε > 0, the trajectory

cannot remain outside the region 0 < y < ε.

Paper 2, Section II
33A Dynamical Systems

Consider a modified van der Pol system defined by

ẋ = y − µ(13x
3 − x),

ẏ = −x+ F,

where µ > 0 and F are constants.

(a) A parallelogram PQRS of width 2L is defined by

P =
(
L, µf(L)

)
, Q =

(
L, 2L− µf(L)

)
,

R =
(
−L, −µf(L)

)
, S =

(
−L, µf(L) − 2L

)
,

where f(L) = 1
3L

3−L. Show that if L is sufficiently large then trajectories never leave the
region inside the parallelogram.

Hence show that if F 2 < 1 there must be a periodic orbit. Explain your reasoning
carefully.

(b) Use the energy-balance method to analyse the behaviour of the system for µ� 1,
identifying the difference in behaviours between F 2 < 1 and F 2 > 1.

(c) Describe the behaviour of the system for µ � 1, using sketches of the phase
plane to illustrate your arguments for the cases 0 < F < 1 and F > 1.
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Paper 3, Section II
31A Dynamical Systems

Consider the system

ẋ = µy + βxy + y2,

ẏ = x− y − x2,

where µ and β are constants with β > 0.

(a) Find the fixed points, and classify those on y = 0. State how the number of
fixed points depends on µ and β. Hence, or otherwise, deduce the values of µ at which
stationary bifurcations occur for fixed β > 0.

(b) Sketch bifurcation diagrams in the (µ, x)-plane for the cases 0 < β < 1, β = 1
and β > 1, indicating the stability of the fixed points and the type of the bifurcations in
each case. [You are not required to prove that the stabilities or bifurcation types are as
you indicate.]

(c) For the case β = 1, analyse the bifurcation at µ = −1 using extended centre
manifold theory and verify that the evolution equation on the centre manifold matches
the behaviour you deduced from the bifurcation diagram in part (b).

(d) For 0 < µ + 1 � 1, sketch the phase plane in the immediate neighbourhood of
where the bifurcation of part (c) occurs.

Paper 4, Section II
32A Dynamical Systems

(a) A continuous map F of an interval into itself has a periodic orbit of period 3.
Prove that F also has periodic orbits of period n for all positive integers n.

(b) What is the minimum number of distinct orbits of F of periods 2, 4 and 5?
Explain your reasoning with a directed graph. [Formal proof is not required.]

(c) Consider the piecewise linear map F : [0, 1] → [0, 1] defined by linear segments
between F (0) = 1

2 , F (12) = 1 and F (1) = 0. Calculate the orbits of periods 2, 4 and 5
that are obtained from the directed graph in part (b).

[In part (a) you may assume without proof:

(i) If U and V are non-empty closed bounded intervals such that V ⊆ F (U)
then there is a closed bounded interval K ⊆ U such that F (K) = V .

(ii) The Intermediate Value Theorem. ]
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Paper 1, Section II
37C Electrodynamics

(a) An electromagnetic field is specified by a four-vector potential

Aµ(x, t) =
(
φ(x, t)/c , A(x, t)

)
.

Define the corresponding field-strength tensor Fµν and state its transformation property
under a general Lorentz transformation.

(b) Write down two independent Lorentz scalars that are quadratic in the field
strength and express them in terms of the electric and magnetic fields, E = −∇φ−∂A/∂t
and B = ∇×A. Show that both these scalars vanish when evaluated on an electromagnetic
plane-wave solution of Maxwell’s equations of arbitrary wavevector and polarisation.

(c) Find (non-zero) constant, homogeneous background fields E(x, t) = E0 and
B(x, t) = B0 such that both the Lorentz scalars vanish. Show that, for any such
background, the field-strength tensor obeys

Fµρ F
ρ
σF

σ
ν = 0 .

(d) Hence find the trajectory of a relativistic particle of mass m and charge q in
this background. You should work in an inertial frame where the particle is at rest at the
origin at t = 0 and in which B0 = (0, 0, B0).
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36C Electrodynamics

(a) Derive the Larmor formula for the total power P emitted through a large sphere
of radius R by a non-relativistic particle of mass m and charge q with trajectory x(t).
You may assume that the electric and magnetic fields describing radiation due to a source
localised near the origin with electric dipole moment p(t) can be approximated as

BRad(x, t) = − µ0
4πrc

x̂× p̈(t− r/c) ,
ERad(x, t) = − c x̂×BRad(x, t) .

Here, the radial distance r = |x| is assumed to be much larger than the wavelength of
emitted radiation which, in turn, is large compared to the spatial extent of the source.

(b) A non-relativistic particle of mass m, moving at speed v along the x-axis in the
positive direction, encounters a step potential of width L and height V0 > 0 described by

V (x) =





0 , x < 0 ,

f(x) , 0 6 x 6 L ,

V0 , x > L ,

where f(x) is a monotonically increasing function with f(0) = 0 and f(L) = V0. The
particle carries charge q and loses energy by emitting electromagnetic radiation. Assume
that the total energy loss through emission ∆ERad is negligible compared with the
particle’s initial kinetic energy E = mv2/2. For E > V0, show that the total energy
lost is

∆ERad =
q2µ0

6πm2c

√
m

2

∫ L

0
dx

1√
E − f(x)

(
df

dx

)2

.

Find the total energy lost also for the case E < V0.

(c) Take f(x) = V0x/L and explicitly evaluate the particle energy loss ∆ERad in
each of the cases E > V0 and E < V0. What is the maximum value attained by ∆ERad as
E is varied?
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36C Electrodynamics

(a) Define the electric displacement D(x, t) for a medium which exhibits a linear
response with polarisation constant ε to an applied electric field E(x, t) with polarisation
constant ε. Write down the effective Maxwell equation obeyed by D(x) in the time-
independent case and in the absence of any additional mobile charges in the medium.
Describe appropriate boundary conditions for the electric field at an interface between two
regions with differing values of the polarisation constant. [You should discuss separately
the components of the field normal to and tangential to the interface.]

(b) Consider a sphere of radius a, centred at the origin, composed of dielectric
material with polarisation constant ε placed in a vacuum and subjected to a constant,
asymptotically homogeneous, electric field, E(x, t) = E(x) with E(x) → E0 as |x| → ∞.
Using the ansatz

E(x) =

{
αE0 , |x| < a ,

E0 +
(
β(x̂ ·E0)x̂ + δE0

)
/|x|3 , |x| > a ,

with constants α, β and δ to be determined, find a solution to Maxwell’s equations with
appropriate boundary conditions at |x| = a.

(c) By comparing your solution with the long-range electric field due to a dipole
consisting of electric charges ±q located at displacements ±d/2 find the induced electric
dipole moment of the dielectric sphere.
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39A Fluid Dynamics II

(a) Write down the Stokes equations for the motion of an incompressible viscous
fluid with negligible inertia (in the absence of body forces). What does it mean that Stokes
flow is linear and reversible?

(b) The region a < r < b between two concentric rigid spheres of radii a and b is
filled with fluid of large viscosity µ. The outer sphere is held stationary, while the inner
sphere is made to rotate with angular velocity Ω.

(i) Use symmetry and the properties of Stokes flow to deduce that p = 0, where
p is the pressure due to the flow.

(ii) Verify that both solid-body rotation and u(x) = Ω∧∇(1/r) satisfy the Stokes
equations with p = 0. Hence determine the fluid velocity between the spheres.

(iii) Calculate the stress tensor σij in the flow.

(iv) Deduce that the couple G exerted by the fluid in r < c on the fluid in r > c,
where a < c < b, is given by

G =
8πµa3b3Ω

b3 − a3 ,

independent of the value of c. [Hint: Do not substitute the form of A and B
in A+Br−3 until the end of the calculation.]

Comment on the form of this result for a� b and for b− a� a.

[
You may use

∫

r=R
ninj dS =

4

3
πR2δij, where n is the normal to r = R.

]
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39A Fluid Dynamics II

(a) Incompressible fluid of viscosity µ fills the thin, slowly varying gap between rigid
boundaries at z = 0 and z = h(x, y) > 0. The boundary at z = 0 translates in its own
plane with a constant velocity U = (U, 0, 0), while the other boundary is stationary. If h
has typical magnitude H and varies on a lengthscale L, state conditions for the lubrication
approximation to be appropriate.

Write down the lubrication equations for this problem and show that the horizontal
volume flux q = (qx, qy, 0) is given by

q =
Uh

2
− h3

12µ
∇p,

where p(x, y) is the pressure.

Explain why q = ∇ ∧ (0, 0, ψ) for some function ψ(x, y). Deduce that ψ satisfies
the equation

∇ ·
(

1

h3
∇ψ

)
= − U

h3
∂h

∂y
.

(b) Now consider the case U = 0, h = h0 for r > a and h = h1 for r < a, where
h0, h1 and a are constants, and (r, θ) are polar coordinates. A uniform pressure gradient
∇p = −Gex is applied at infinity. Show that ψ ∼ Ar sin θ as r →∞, where the constant
A is to be determined.

Given that a � h0, h1, you may assume that the equations of part (a) apply for
r < a and r > a, and are subject to conditions that the radial component qr of the volume
flux and the pressure p are both continuous across r = a. Show that these continuity
conditions imply that [∂ψ

∂θ

]+
−

= 0 and
[ 1

h3
∂ψ

∂r

]+
−

= 0 ,

respectively, where [ ]+− denotes the jump across r = a.

Hence determine ψ(r, θ) and deduce that the total flux through r = a is given by

4Aah31
h30 + h31

.
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38A Fluid Dynamics II

Viscous fluid occupying z > 0 is bounded by a rigid plane at z = 0 and is extracted
through a small hole at the origin at a constant flow rate Q = 2πA. Assume that for
sufficiently small values of R = |x| the velocity u(x) is well-approximated by

u = −Ax

R3
, (∗)

except within a thin axisymmetric boundary layer near z = 0.

(a) Estimate the Reynolds number of the flow as a function of R, and thus give an
estimate for how small R needs to be for such a solution to be applicable. Show that the
radial pressure gradient is proportional to R−5.

(b) In cylindrical polar coordinates (r, θ, z), the steady axisymmetric boundary-layer
equations for the velocity components (u, 0, w) can be written as

u
∂u

∂r
+ w

∂u

∂z
= −1

ρ

dP

dr
+ ν

∂2u

∂z2
, where u = −1

r

∂Ψ

∂z
, w =

1

r

∂Ψ

∂r

and Ψ(r, z) is the Stokes streamfunction. Verify that the condition of incompressibility is
satisfied by the use of Ψ.

Use scaling arguments to estimate the thickness δ(r) of the boundary layer near
z = 0 and then to motivate seeking a similarity solution of the form

Ψ = (Aνr)1/2F (η) , where η = z/δ(r) .

(c) Obtain the differential equation satisfied by F , and state the conditions that
would determine its solution. [You are not required to find this solution.]

By considering the flux in the boundary layer, explain why there should be a
correction to the approximation (∗) of relative magnitude (νR/A)1/2 � 1.

Part II, Paper 1 [TURN OVER]



44

Paper 4, Section II
38A Fluid Dynamics II

Consider a steady axisymmetric flow with components (−αr, v(r), 2αz) in cyl-
indrical polar coordinates (r, θ, z), where α is a positive constant. The fluid has density
ρ and kinematic viscosity ν.

(a) Briefly describe the flow and confirm that it is incompressible.

(b) Show that the vorticity has one component ω(r), in the z direction. Write down
the corresponding vorticity equation and derive the solution

ω = ω0e
−αr2/(2ν) .

Hence find v(r) and show that it has a maximum at some finite radius r∗, indicating how
r∗ scales with ν and α.

(c) Find an expression for the net advection of angular momentum, ρrv, into the
finite cylinder defined by r 6 r0 and −z0 6 z 6 z0. Show that this is always positive and
asymptotes to the value

8πρz0ω0ν
2

α
as r0 →∞.

(d) Show that the torque exerted on the cylinder of part (c) by the exterior flow
is always negative and demonstrate that it exactly balances the net advection of angular
momentum. Comment on why this has to be so.

[
You may assume that for a flow (u, v, w) in cylindrical polar coordinates

erθ =
r

2

∂

∂r

(v
r

)
+

1

2r

∂u

∂θ
, eθz =

1

2r

∂w

∂θ
+

1

2

∂v

∂z
, erz =

1

2

∂u

∂z
+

1

2

∂w

∂r

and ω =
1

r

∣∣∣∣∣∣

er reθ ez
∂/∂r ∂/∂θ ∂/∂z
u rv w

∣∣∣∣∣∣
.

]
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7E Further Complex Methods

Evaluate the integral

P
∫ ∞

0

sinx

x(x2 − 1)
dx ,

stating clearly any standard results involving contour integrals that you use.

Paper 2, Section I
7E Further Complex Methods

The function w(z) satisfies the differential equation

d2w

dz2
+ p(z)

dw

dz
+ q(z)w = 0 , (†)

where p(z) and q(z) are complex analytic functions except, possibly, for isolated singular-
ities in C = C ∪ {∞} (the extended complex plane).

(a) Given equation (†), state the conditions for a point z0 ∈ C to be

(i) an ordinary point,

(ii) a regular singular point,

(iii) an irregular singular point.

(b) Now consider z0 = ∞ and use a suitable change of variables z → t, with
y(t) = w(z), to rewrite (†) as a differential equation that is satisfied by y(t). Hence,
deduce the conditions for z0 = ∞ to be

(i) an ordinary point,

(ii) a regular singular point,

(iii) an irregular singular point.

[In each case, you should express your answer in terms of the functions p and q.]

(c) Use the results above to prove that any equation of the form (†) must have at
least one singular point in C.
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Paper 3, Section I
7E Further Complex Methods

The Beta function is defined by

B(p, q) =

∫ 1

0
tp−1(1− t)q−1 dt

for Re p > 0 and Re q > 0 .

(a) Prove that B(p, q) = B(q, p) and find B(1, q) .

(b) Show that (p+ z)B(p, z + 1) = zB(p, z) .

(c) For each fixed p with Re p > 0, use part (b) to obtain the analytic continuation
of B(p, z) as an analytic function of z ∈ C, with the exception of the points z =
0,−1,−2,−3, ... .

(d) Use part (c) to determine the type of singularity that the function B(p, z) has
at z = 0,−1,−2,−3, ... , for fixed p with Re p > 0 .

Paper 4, Section I
7E Further Complex Methods

(a) Explain in general terms the meaning of the Papperitz symbol

P





a b c
α β γ z
α′ β′ γ′



 .

State a condition satisfied by α, β, γ, α′, β′ and γ′. [You need not write down any
differential equations explicitly, but should provide explicit explanation of the meaning
of a, b, c, α, β, γ, α′, β′ and γ′.]

(b) The Papperitz symbol

P





1 −1 ∞
−m/2 m/2 n z
m/2 −m/2 1− n



 , (†)

where n,m are constants, can be transformed into

P





0 1 ∞
0 0 n

1− z
2

m −m 1− n




. (∗)

(i) Provide an explicit description of the transformations required to obtain (∗) from
(†).

(ii) One of the solutions to the P -equation that corresponds to (∗) is a hypergeometric
function F (a, b; c; z′). Express a, b, c and z′ in terms of n, m and z.
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Paper 1, Section II
14E Further Complex Methods

(a) Functions g1(z) and g2(z) are analytic in a connected open set D ⊆ C with
g1 = g2 in a non-empty open subset D̃ ⊂ D. State the identity theorem.

(b) Let D1 and D2 be connected open sets with D1 ∩ D2 6= ∅. Functions f1(z) and
f2(z) are analytic on D1 and D2 respectively with f1 = f2 on D1∩D2. Explain briefly what
is meant by analytic continuation of f1 and use part (a) to prove that analytic continuation
to D2 is unique.

(c) The function F (z) is defined by

F (z) =

∫ ∞

−∞

eit

(t− z)ndt ,

where Im z > 0 and n is a positive integer. Use the method of contour deformation to
construct the analytic continuation of F (z) into Im z 6 0.

(d) The function G(z) is defined by

G(z) =

∫ ∞

−∞

eit

(t− z)ndt ,

where Im z 6= 0 and n is a positive integer. Prove that G(z) experiences a discontinuity
when z crosses the real axis. Determine the value of this discontinuity. Hence, explain
why G(z) cannot be used as an analytic continuation of F (z).
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Paper 2, Section II
13E Further Complex Methods

The temperature T (x, t) in a semi-infinite bar (0 6 x < ∞) satisfies the heat
equation

∂T

∂t
= κ

∂2T

∂x2
, for x > 0 and t > 0 ,

where κ is a positive constant.

For t < 0, the bar is at zero temperature. For t > 0, the temperature is subject to
the boundary conditions

T (0, t) = a(1− e−bt),
where a and b are positive constants, and T (x, t)→ 0 as x→∞.

(a) Show that the Laplace transform of T (x, t) with respect to t takes the form

T̂ (x, p) = f̂(p)e−x
√
p/κ ,

and find f̂(p). Hence write T̂ (x, p) in terms of a, b, κ, p and x.

(b) By performing the inverse Laplace transform using contour integration, show
that for t > 0

T (x, t) = a

[
1− e−bt cos

(√ b

κ
x
)]

+
2ab

π
P
∫ ∞

0

e−v
2t sin(xv/

√
κ)

v(v2 − b) dv .
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18I Galois Theory

(a) Let K ⊆ L be fields, and f(x) ∈ K[x] a polynomial.

Define what it means for L to be a splitting field for f over K.

Prove that splitting fields exist, and state precisely the theorem on uniqueness of
splitting fields.

Let f(x) = x3 − 2 ∈ Q[x]. Find a subfield of C which is a splitting field for f over
Q. Is this subfield unique? Justify your answer.

(b) Let L = Q[ζ7], where ζ7 is a primitive 7th root of unity.

Show that the extension L/Q is Galois. Determine all subfields M ⊆ L.

For each subfield M , find a primitive element for the extension M/Q explicitly in
terms of ζ7, find its minimal polynomial, and write down Aut(M/Q) and Aut(L/M).

Which of these subfields M are Galois over Q?

[You may assume the Galois correspondence, but should prove any results you need
about cyclotomic extensions directly.]

Paper 2, Section II
18I Galois Theory

(a) Let f(x) ∈ Fq[x] be a polynomial of degree n, and let L be its splitting field.

(i) Suppose that f is irreducible. Compute Gal(f), carefully stating any
theorems you use.

(ii) Now suppose that f(x) factors as f = h1 · · ·hr in Fq[x], with each hi
irreducible, and hi 6= hj if i 6= j. Compute Gal(f), carefully stating any
theorems you use.

(iii) Explain why L/Fq is a cyclotomic extension. Define the corresponding
homomorphism Gal(L/Fq) ↪→ (Z/mZ)∗ for this extension (for a suitable
integer m), and compute its image.

(b) Compute Gal(f) for the polynomial f = x4 + 8x+ 12 ∈ Q[x]. [You may assume
that f is irreducible and that its discriminant is 5762.]

Part II, Paper 1 [TURN OVER]



50

Paper 3, Section II
18I Galois Theory

Define the elementary symmetric functions in the variables x1, . . . , xn. State the
fundamental theorem of symmetric functions.

Let f(x) = xn + an−1x
n−1 + · · · + a0 ∈ K[x], where K is a field. Define the

discriminant of f , and explain why it is a polynomial in a0, . . . , an−1.

Compute the discriminant of x5 + q.

Let f(x) = x5 + px2 + q. When does the discriminant of f(x) equal zero? Compute
the discriminant of f(x).

Paper 4, Section II
18I Galois Theory

Let L be a field, and G a group which acts on L by field automorphisms.

(a) Explain the meaning of the phrase in italics in the previous sentence.

Show that the set LG of fixed points is a subfield of L.

(b) Suppose that G is finite, and set K = LG. Let α ∈ L. Show that α is algebraic
and separable over K, and that the degree of α over K divides the order of G.

Assume that α is a primitive element for the extension L/K, and that G is a
subgroup of Aut(L). What is the degree of α over K? Justify your answer.

(c) Let L = C(z), and let ζn be a primitive nth root of unity in C for some integer
n > 1. Show that the C-automorphisms σ, τ of L defined by

σ(z) = ζnz, τ(z) = 1/z

generate a group G isomorphic to the dihedral group of order 2n.

Find an element w ∈ L for which LG = C(w).
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38C General Relativity

The Weyl tensor Cαβγδ may be defined (in n = 4 spacetime dimensions) as

Cαβγδ = Rαβγδ −
1

2
(gαγRβδ + gβδRαγ − gαδRβγ − gβγRαδ) +

1

6
(gαγgβδ − gαδgβγ)R ,

where Rαβγδ is the Riemann tensor, Rαβ is the Ricci tensor and R is the Ricci scalar.

(a) Show that Cαβαδ = 0 and deduce that all other contractions vanish.

(b) A conformally flat metric takes the form

gαβ = e2ωηαβ ,

where ηαβ is the Minkowski metric and ω is a scalar function. Calculate the Weyl tensor
at a given point p. [You may assume that ∂αω = 0 at p.]

(c) The Schwarzschild metric outside a spherically symmetric mass (such as the Sun,
Earth or Moon) is

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dΩ2.

(i) Calculate the leading-order contribution to the Weyl component Ctrtr valid at
large distances, r � 2M , beyond the central spherical mass.

(ii) What physical phenomenon, known from ancient times, can be attributed to
this component of the Weyl tensor at the location of the Earth? [This is after subtracting
off the Earth’s own gravitational field, and neglecting the Earth’s motion within the solar
system.] Briefly explain why your answer is consistent with the Einstein equivalence
principle.
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38C General Relativity

Consider the following metric for a 3-dimensional, static and rotationally symmetric
Lorentzian manifold:

ds2 = r−2(−dt2 + dr2) + r2dθ2 .

(a) Write down a Lagrangian L for arbitrary geodesics in this metric, if the geodesic
is affinely parameterized with respect to λ. What condition may be imposed to distinguish
spacelike, timelike, and null geodesics?

(b) Find the three constants of motion for any geodesic.

(c) Two observation stations are sitting at radii r = R and r = 2R respectively,
and at the same angular coordinate. Each is accelerating so as to remain stationary with
respect to time translations. At t = 0 a photon is emitted from the naked singularity at
r = 0.

(i) At what time t1 does the photon reach the inner station?

(ii) Express the frequency ν2 of the photon at the outer station in terms of the
frequency ν1 at the inner station. Explain whether the photon is redshifted
or blueshifted as it travels.

(d) Consider a complete (i.e. infinite in both directions) spacelike geodesic on a
constant-t slice with impact parameter b = rmin > 0. What is the angle ∆θ between the
two asymptotes of the geodesic at r = ∞? [You need not be concerned with the sign of
∆θ or the periodicity of the θ coordinate.]

[Hint: You may find integration by substitution useful.]
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37C General Relativity

(a) Determine the signature of the metric tensor gµν given by

gµν =




0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1


 .

Is it Riemannian, Lorentzian, or neither?

(b) Consider a stationary black hole with the Schwarzschild metric:

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dΩ2.

These coordinates break down at the horizon r = 2M . By making a change of coordinates,
show that this metric can be converted to infalling Eddington–Finkelstein coordinates.

(c) A spherically symmetric, narrow pulse of radiation with total energy E falls
radially inwards at the speed of light from infinity, towards the origin of a spherically
symmetric spacetime that is otherwise empty. Assume that the radial width λ of the
pulse is very small compared to the energy (λ � E), and the pulse can therefore be
treated as instantaneous.

(i) Write down a metric for the region outside the pulse, which is free from
coordinate singularities. Briefly justify your answer. For what range of
coordinates is this metric valid?

(ii) Write down a metric for the region inside the pulse. Briefly justify your
answer. For what range of coordinates is this metric valid?

(iii) What is the final state of the system?
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37C General Relativity

(a) A flat (k=0), isotropic and homogeneous universe has metric gαβ given by

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
. (†)

(i) Show that the non-vanishing Christoffel symbols and Ricci tensor components
are

Γ0
ii = a ȧ , Γi0i = Γii0 =

ȧ

a
, R00 = −3

ä

a
, Rii = a ä+ 2ȧ2 ,

where dots are time derivatives and i ∈ {1, 2, 3} (no summation assumed).

(ii) Derive the first-order Friedmann equation from the Einstein equations,
Gαβ + Λgαβ = 8πTαβ.

(b) Consider a flat universe described by (†) with Λ = 0 in which late-time accel-
eration is driven by “phantom” dark energy obeying an equation of state with pressure
Pph = wρph, where w < −1 and the energy density ρph > 0. The remaining matter is
dust, so we have ρ = ρph +ρdust with each component separately obeying ρ̇ = −3 ȧa(ρ+P ).

(i) Calculate an approximate solution for the scale factor a(t) that is valid at late
times. Show that the asymptotic behaviour is given by a Big Rip, that is, a
singularity in which a→∞ at some finite time t∗.

(ii) Sketch a diagram of the scale factor a as a function of t for a convenient choice
of w, ensuring that it includes (1) the Big Bang, (2) matter domination, (3)
phantom-energy domination, and (4) the Big Rip. Label these epochs and
mark them on the axes.

(iii) Most reasonable classical matter fields obey the null energy condition, which
states that the energy–momentum tensor everywhere satisfies Tαβ V

αV β > 0
for any null vector V α. Determine if this applies to phantom energy.

[
The energy–momentum tensor for a perfect fluid is Tαβ = (ρ+ P )uαuβ + Pgαβ

]
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17G Graph Theory

Define the binomial random graph G(n, p), where n ∈ N and p ∈ (0, 1).

(a) Let Gn ∼ G(n, p) and let Et be the event that Gn contains a copy of the complete
graph Kt. Show that if p = p(n) is such that p · n2/(t−1) → 0 then P(Et)→ 0 as n→∞.

(b) State Chebyshev’s inequality. Show that if p · n→∞ then P(E3)→ 1.

(c) Let H be a triangle with an added leaf vertex, that is

H = ({x1, . . . , x4}, {x1x2, x2x3, x3x1, x1x4}),

where x1, . . . , x4 are distinct. Let F be the event that Gn ∼ G(n, p) contains a copy of H.
Show that if p = n−0.9 then P(F )→ 1.

Paper 2, Section II
17G Graph Theory

(a) Define a tree and what it means for a graph to be acyclic. Show that if G is an
acyclic graph on n vertices then e(G) 6 n− 1. [You may use the fact that a spanning tree
on n vertices has n− 1 edges.]

(b) Show that any 3-regular graph on n vertices contains a cycle of length 6
100 log n. Hence show that there exists n0 such that every 3-regular graph on more than
n0 vertices must contain two cycles C1, C2 with disjoint vertex sets.

(c) An unfriendly partition of a graph G = (V,E) is a partition V = A ∪ B, where
A,B 6= ∅, such that every vertex v ∈ A has |N(v) ∩ B| > |N(v) ∩ A| and every v ∈ B
has |N(v) ∩ A| > |N(v) ∩ B|. Show that every graph G with |G| > 2 has an unfriendly
partition.

(d) A friendly partition of a graph G = (V,E) is a partition V = S ∪ T , where
S, T 6= ∅, such that every vertex v ∈ S has |N(v) ∩ S| > |N(v) ∩ T | and every v ∈ T has
|N(v)∩ T | > |N(v)∩ S|. Give an example of a 3-regular graph (on at least 1 vertex) that
does not have a friendly partition. Using part (b), show that for large enough n0 every
3-regular graph G with |G| > n0 has a friendly partition.
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Paper 3, Section II
17G Graph Theory

(a) Define the Ramsey number R(k) and show that R(k) 6 4k.

Show that every 2-coloured complete graph Kn with n > 2 contains a monochro-
matic spanning tree. Is the same true if Kn is coloured with 3 colours? Give a proof or
counterexample.

(b) Let G = (V,E) be a graph. Show that the number of paths of length 2 in G is

∑

x∈V
d(x)

(
d(x) − 1

)
.

Now consider a 2-coloured complete graph Kn with n > 3. Show that the number
of monochromatic triangles in Kn is

1

2

∑

x

{(
dr(x)

2

)
+

(
db(x)

2

)}
− 1

2

(
n

3

)
,

where dr(x) denotes the number of red edges incident with a vertex x and db(x) =
(n − 1) − dr(x) denotes the number of blue edges incident with x. [Hint: Count paths
of length 2 in two different ways.]

Paper 4, Section II
17G Graph Theory

State and prove Hall’s theorem, giving any definitions required by the proof (e.g. of
an M -alternating path).

Let G = (V,E) be a (not necessarily bipartite) graph, and let γ(G) be the size of
the largest matching in G. Let β(G) be the smallest k for which there exist k vertices
v1, . . . , vk ∈ V such that every edge in G is incident with at least one of v1, . . . , vk. Show
that γ(G) 6 β(G) and that β(G) 6 2γ(G). For each positive integer k, find a graph G
with β(G) = 2k and γ(G) = k. Determine β(G) and γ(G) when G is the Turan graph
T3(30) on 30 vertices.

By using Hall’s theorem, or otherwise, show that if G is a bipartite graph then
γ(G) = β(G).

Define the chromatic index χ′(G) of a graph G. Prove that if n = 2r with r > 1
then χ′(Kn) = n− 1.
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Paper 1, Section II
33D Integrable Systems

(a) Let U(z, z̄, λ) and V (z, z̄, λ) be matrix-valued functions, whilst ψ(z, z̄, λ) is a
vector-valued function. Show that the linear system

∂zψ = Uψ , ∂z̄ψ = V ψ

is over-determined and derive a consistency condition on U , V that is necessary for there
to be non-trivial solutions.

(b) Suppose that

U =
1

2λ

(
λ∂zu e−u

eu −λ∂zu

)
and V =

1

2

(
−∂z̄u λeu

λe−u ∂z̄u

)
,

where u(z, z̄) is a scalar function. Obtain a partial differential equation for u that is
equivalent to your consistency condition from part (a).

(c) Now let z = x + iy and suppose u is independent of y. Show that the trace of
(U−V )n is constant for all positive integers n. Hence, or otherwise, construct a non-trivial
first integral of the equation

d2φ

dx2
= 4 sinhφ , where φ = φ(x) .
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Paper 2, Section II
34D Integrable Systems

(a) Explain briefly how the linear operators L = −∂2x+u(x, t) and A = 4∂3x−3u∂x−
3∂xu can be used to give a Lax-pair formulation of the KdV equation ut+uxxx−6uux = 0 .

(b) Give a brief definition of the scattering data

Su(t) =
{
{R(k, t)}k∈R , {−κn(t)2, cn(t)}Nn=1

}

attached to a smooth solution u = u(x, t) of the KdV equation at time t. [You may assume
u(x, t) to be rapidly decreasing in x.] State the time dependence of κn(t) and cn(t), and
derive the time dependence of R(k, t) from the Lax-pair formulation.

(c) Show that

F (x, t) =
N∑

n=1

cn(t)2 e−κn(t)x +
1

2π

∫ ∞

−∞
R(k, t) eikx dk

satisfies ∂tF + 8∂3xF = 0. Now let K(x, y, t) be the solution of the equation

K(x, y, t) + F (x+ y, t) +

∫ ∞

x
K(x, z, t)F (z + y, t) dz = 0

and let u(x, t) = −2∂xφ(x, t), where φ(x, t) = K(x, x, t). Defining G(x, y, t) by G =(
∂2x − ∂2y − u(x, t)

)
K(x, y, t), show that

G(x, y, t) +

∫ ∞

x
G(x, z, t)F (z + y, t) dz = 0 .

(d) Given that K(x, y, t) obeys the equations

(∂2x − ∂2y)K − uK = 0 ,

(∂t + 4∂3x + 4∂3y)K − 3(∂xu)K − 6u ∂xK = 0 ,

where u = u(x, t), deduce that

∂tK + (∂x + ∂y)
3K − 3u (∂x + ∂y)K = 0 ,

and hence that u solves the KdV equation.
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Paper 3, Section II
32D Integrable Systems

(a) Consider the group of transformations of R2 given by gs1 : (t, x) 7→ (t̃, x̃) =
(t, x+ st), where s ∈ R. Show that this acts as a group of Lie symmetries for the equation
d2x/dt2 = 0.

(b) Let (ψ1, ψ2) ∈ R2 and define ψ = ψ1 + iψ2. Show that the vector field
ψ1∂ψ2 − ψ2∂ψ1 generates the group of phase rotations gs2 : ψ → eisψ .

(c) Show that the transformations of R2 × C defined by

gs : (t, x, ψ) 7→ (t̃, x̃, ψ̃) = (t, x+ st, ψ eisx+is
2t/2)

form a one-parameter group generated by the vector field

V = t∂x + x(ψ1∂ψ2 − ψ2∂ψ1) = t∂x + ix(ψ∂ψ − ψ∗∂ψ∗) ,

and find the second prolongation Pr(2)gs of the action of {gs}. Hence find the coefficients
η0 and η11 in the second prolongation of V ,

pr(2)V = t∂x+
(
ixψ∂ψ+η0∂ψt +η1∂ψx +η00∂ψtt +η01∂ψxt +η11∂ψxx +complex conjugate

)
.

(d) Show that the group {gs} of transformations in part (c) acts as a group of Lie
symmetries for the nonlinear Schrödinger equation i∂tψ + 1

2∂
2
xψ + |ψ|2ψ = 0. Given that

aeia
2t/2 sech(ax) solves the nonlinear Schrödinger equation for any a ∈ R, find a solution

which describes a solitary wave travelling at arbitrary speed s ∈ R.

Part II, Paper 1 [TURN OVER]



60

Paper 1, Section II
22H Linear Analysis

Let H be a separable Hilbert space and {ei} be a Hilbertian (orthonormal) basis of
H. Given a sequence (xn) of elements of H and x∞ ∈ H, we say that xn weakly converges
to x∞, denoted xn ⇀ x∞, if ∀h ∈ H, limn→∞〈xn, h〉 = 〈x∞, h〉.

(a) Given a sequence (xn) of elements of H, prove that the following two statements
are equivalent:

(i) ∃x∞ ∈ H such that xn ⇀ x∞;

(ii) the sequence (xn) is bounded in H and ∀i > 1, the sequence (〈xn, ei〉) is
convergent.

(b) Let (xn) be a bounded sequence of elements of H. Show that there exists
x∞ ∈ H and a subsequence (xφ(n)) such that xφ(n) ⇀ x∞ in H.

(c) Let (xn) be a sequence of elements of H and x∞ ∈ H be such that xn ⇀ x∞.
Show that the following three statements are equivalent:

(i) limn→∞ ‖xn − x∞‖ = 0;

(ii) limn→∞ ‖xn‖ = ‖x∞‖;

(iii) ∀ε > 0, ∃I(ε) such that ∀n > 1,
∑

i>I(ε) |〈xn, ei〉|2 < ε.

Paper 2, Section II
22H Linear Analysis

(a) Let V be a real normed vector space. Show that any proper subspace of V has
empty interior.

Assuming V to be infinite-dimensional and complete, prove that any algebraic basis
of V is uncountable. [The Baire category theorem can be used if stated properly.] Deduce
that the vector space of polynomials with real coefficients cannot be equipped with a
complete norm, i.e. a norm that makes it complete.

(b) Suppose that ‖ · ‖1 and ‖ · ‖2 are norms on a vector space V such that (V, ‖ · ‖1)
and (V, ‖·‖2) are both complete. Prove that if there exists C1 > 0 such that ‖x‖2 6 C1‖x‖1
for all x ∈ V , then there exists C2 > 0 such that ‖x‖1 6 C2‖x‖2 for all x ∈ V . Is this still
true without the assumption that (V, ‖ · ‖1) and (V, ‖ · ‖2) are both complete? Justify your
answer.

(c) Let V be a real normed vector space (not necessarily complete) and V ∗ be the
set of linear continuous forms f : V → R. Let (xn)n>1 be a sequence in V such that∑

n>1 |f(xn)| <∞ for all f ∈ V ∗. Prove that

sup
‖f‖V ∗61

∑

n>1

|f(xn)| <∞ .
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Paper 3, Section II
21H Linear Analysis

(a) State the Arzela–Ascoli theorem, including the definition of equicontinuity.

(b) Consider a sequence (fn) of continuous real-valued functions on R such that for
all x ∈ R,

(
fn(x)

)
is bounded and the sequence is equicontinuous at x. Prove that there

exists f ∈ C(R) and a subsequence (fϕ(n)) such that fϕ(n) → f uniformly on any closed
bounded interval.

(c) Let K be a Hausdorff compact topological space, and C(K) the real-valued
continuous functions on K. Let K ⊂ C(K) be a compact subset of C(K). Prove that the
collection of functions K is equicontinuous.

(d) We say that a Hausdorff topological space X is locally compact if every point
has a compact neighbourhood. Let X be such a space, K ⊂ X compact and U ⊂ X
open such that K ⊂ U . Prove that there exists f : X → R continuous with compact
support contained in U and equal to 1 on K. [Hint: Construct an open set V such that
K ⊂ V ⊂ V ⊂ U and V is compact, and use Urysohn’s lemma to construct a function in
V and then extend it by zero.]

Paper 4, Section II
22H Linear Analysis

(a) Let (H1, 〈·, ·〉1), (H2, 〈·, ·〉2) be two Hilbert spaces, and T : H1 → H2 be
a bounded linear operator. Show that there exists a unique bounded linear operator
T ∗ : H2 → H1 such that

〈Tx1, x2〉2 = 〈x1, T ∗x2〉1 , ∀x1 ∈ H1, x2 ∈ H2 .

(b) Let H be a separable Hilbert space. We say that a sequence (ei) is a frame of
H if there exists A,B > 0 such that

∀x ∈ H, A‖x‖2 6
∑

i>1

|〈x, ei〉|2 6 B‖x‖2.

State briefly why such a frame exists. From now on, let (ei) be a frame of H. Show that
Span{ei} is dense in H.

(c) Show that the linear map U : H → `2 given by U(x) =
(
〈x, ei〉

)
i>1

is bounded
and compute its adjoint U∗.

(d) Assume now that (ei) is a Hilbertian (orthonormal) basis of H and let a ∈ H.
Show that the Hilbert cube Ca =

{
x ∈ H such that ∀i > 1, |〈x, ei〉| 6 |〈a, ei〉|

}
is a

compact subset of H.
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Paper 1, Section II
16G Logic and Set Theory

Let S and T be sets of propositional formulae.

(a) What does it mean to say that S is deductively closed? What does it mean to
say that S is consistent? Explain briefly why if S is inconsistent then some finite subset
of S is inconsistent.

(b) We write S ` T to mean S ` t for all t ∈ T . If S ` T and T ` S we say S and
T are equivalent. If S is equivalent to a finite set F of formulae we say that S is finitary.
Show that if S is finitary then there is a finite set R ⊂ S with R ` S.

(c) Now let T0, T1, T2, . . . be deductively closed sets of formulae with

T0 $ T1 $ T2 $ · · · .

Show that each Ti is consistent.

Let T =
⋃∞
i=0 Ti. Show that T is consistent and deductively closed, but that it is

not finitary.

Paper 2, Section II
16G Logic and Set Theory

Write down the inductive definition of ordinal exponentiation. Show that ωα > α
for every ordinal α. Deduce that, for every ordinal α, there is a least ordinal α∗ with
ωα
∗
> α. Show that, if α 6= 0, then α∗ must be a successor ordinal.

Now let α be a non-zero ordinal. Show that there exist ordinals β and γ, where
γ < α, and a positive integer n such that α = ωβn+ γ. Hence, or otherwise, show that α
can be written in the form

α = ωβ1n1 + ωβ2n2 + · · ·+ ωβknk ,

where k, n1, n2, . . . , nk are positive integers and β1 > β2 > · · · > βk are ordinals. [We
call this the Cantor normal form of α, and you may henceforth assume that it is unique.]

Given ordinals δ1, δ2 and positive integers m1, m2 find the Cantor normal form of
ωδ1m1 + ωδ2m2. Hence, or otherwise, given non-zero ordinals α and α′, find the Cantor
normal form of α+ α′ in terms of the Cantor normal forms

α = ωβ1n1 + ωβ2n2 + · · ·+ ωβknk

and
α′ = ωβ

′
1n′1 + ωβ

′
2n′2 + · · ·+ ωβ

′
k′n′k′

of α and α′.
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Paper 3, Section II
16G Logic and Set Theory

(a) Let κ and λ be cardinals. What does it mean to say that κ < λ? Explain briefly
why, assuming the Axiom of Choice, every infinite cardinal is of the form ℵα for some
ordinal α, and that for every ordinal α we have ℵα+1 < 22

ℵα
.

(b) Henceforth, you should not assume the Axiom of Choice.

Show that, for any set x, there is an injection from x to its power set Px, but there
is no bijection from x to Px. Deduce that if κ is a cardinal then κ < 2κ.

Let x and y be sets, and suppose that there exists a surjection f : x→ y. Show that
there exists an injection g : Py → Px.

Let α be an ordinal. Prove that ℵαℵα = ℵα.

By considering P(ωα × ωα) as the set of relations on ωα, or otherwise, show that

there exists a surjection f : P(ωα × ωα)→ ωα+1. Deduce that ℵα+1 < 22
ℵα

.

Paper 4, Section II
16G Logic and Set Theory

Write down the Axiom of Foundation.

What is the transitive closure of a set x? Prove carefully that every set x has a
transitive closure. State and prove the principle of ∈-induction.

Let (V,∈) be a model of ZF. Let F : V → V be a surjective function class such
that for all x, y ∈ V we have F (x) ∈ F (y) if and only if x ∈ y. Show, by ∈-induction or
otherwise, that F is the identity.
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Paper 1, Section I
6E Mathematical Biology

(a) Consider a population of size N(t) whose per capita rates of birth and death are
be−aN and d, respectively, where b > d and all parameters are positive constants.

(i) Write down the equation for the rate of change of the population.

(ii) Show that a population of size N∗ =
1

a
log

b

d
is stationary and that it is

asymptotically stable.

(b) Consider now a disease introduced into this population, where the number of
susceptibles and infectives, S and I, respectively, satisfy the equations

dS

dt
= be−aSS − βSI − dS ,

dI

dt
= βSI − (d+ δ)I .

(i) Interpret the biological meaning of each term in the above equations and com-
ment on the reproductive capacity of the susceptible and infected individuals.

(ii) Show that the disease-free equilibrium, S = N∗ and I = 0, is linearly unstable
if

N∗ >
d+ δ

β
.

(iii) Show that when the disease-free equilibrium is unstable there exists an
endemic equilibrium satisfying

βI + d = be−aS

and that this equilibrium is linearly stable.
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Paper 2, Section I
6E Mathematical Biology

Consider a stochastic birth–death process in a population of size n(t), where deaths
occur in pairs for n > 2. The probability per unit time of a birth, n→ n+ 1 for n > 0, is
b, that of a pair of deaths, n → n − 2 for n > 2, is dn, and that of the death of a lonely
singleton, 1→ 0, is D.

(a) Write down the master equation for pn(t), the probability of a population of size
n at time t, distinguishing between the cases n > 2, n = 0 and n = 1.

(b) For a function f(n), n > 0, show carefully that

d

dt
〈f(n)〉 = b

∞∑

n=0

(fn+1 − fn)pn − d
∞∑

n=2

(fn − fn−2)npn −D(f1 − f0)p1 ,

where fn = f(n).

(c) Deduce the evolution equation for the mean µ(t) = 〈n〉, and simplify it for the
case D = 2d .

(d) For the same value of D, show that

d

dt
〈n2〉 = b(2µ+ 1)− 4d

(
〈n2〉 − µ

)
− 2dp1

Deduce that the variance σ2 in the stationary state for b, d > 0 satisfies

3b

4d
− 1

2
< σ2 <

3b

4d
.
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Paper 3, Section I
6E Mathematical Biology

The population density n(a, t) of individuals of age a at time t satisfies the partial
differential equation

∂n

∂t
+
∂n

∂a
= −d(a)n(a, t) (1)

with the boundary condition

n(0, t) =

∫ ∞

0
b(a)n(a, t) da , (2)

where b(a) and d(a) are, respectively, the per capita age-dependent birth and death rates.

(a) What is the biological interpretation of the boundary condition?

(b) Solve equation (1) assuming a separable form of solution, n(a, t) = A(a)T (t).

(c) Use equation (2) to obtain a necessary condition for the existence of a separable
solution to the full problem.

(d) For a birth rate b(a) = βe−λa with λ > 0 and an age-independent death rate d,
show that a separable solution to the full problem exists and find the critical value of β
above which the population density grows with time.

Paper 4, Section I
6E Mathematical Biology

A marine population grows logistically and disperses by diffusion. It is moderately
predated on up to a distance L from a straight coast. Beyond that distance, predation is
sufficiently excessive to eliminate the population. The density n(x, t) of the population at
a distance x < L from the coast satisfies

∂n

∂t
= rn

(
1 − n

K

)
− δn+D

∂2n

∂x2
, (∗)

subject to the boundary conditions

∂n

∂x
= 0 at x = 0 , n = 0 at x = L .

(a) Interpret the terms on the right-hand side of (∗), commenting on their depend-
ence on n. Interpret the boundary conditions.

(b) Show that a non-zero population is viable if r > δ and

L >
π

2

√
D

r − δ
.

Interpret these conditions.
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Paper 3, Section II
13E Mathematical Biology

Consider an epidemic spreading in a population that has been aggregated by age
into groups numbered i = 1, . . . ,M . The ith age group has size Ni and the numbers of
susceptible, infective and recovered individuals in this group are, respectively, Si, Ii and
Ri. The spread of the infection is governed by the equations

dSi
dt

= −λi(t)Si ,
dIi
dt

= λi(t)Si − γIi , (1)

dRi
dt

= γIi ,

where

λi(t) = β

M∑

j=1

Cij
Ij
Nj

, (2)

and Cij is a matrix satisfying NiCij = NjCji , for i, j = 1, . . . ,M .

(a) Describe the biological meaning of the terms in equations (1) and (2), of the
matrix Cij and the condition it satisfies, and of the lack of dependence of β and γ on i.

State the condition on the matrix Cij that would ensure the absence of any
transmission of infection between age groups.

(b) In the early stages of an epidemic, Si ≈ Ni and Ii � Ni. Use this information
to linearise the dynamics appropriately, and show that the linearised system predicts

I(t) = exp [γ(L− 1)t] I(0) ,

where I(t) = [I1(t), . . . , IM (t)] is the vector of infectives at time t, 1 is the M ×M identity
matrix and L is a matrix that should be determined.

(c) Deduce a condition on the eigenvalues of the matrix C that allows the epidemic
to grow.
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Paper 4, Section II
14E Mathematical Biology

The spatial density n(x, t) of a population at location x and time t satisfies

∂n

∂t
= f(n) +D

∂2n

∂x2
, (∗)

where f(n) = −n(n− r)(n− 1), 0 < r < 1 and D > 0.

(a) Give a biological example of the sort of phenomenon that this equation describes.

(b) Show that there are three spatially homogeneous and stationary solutions to
(∗), of which two are linearly stable to homogeneous perturbations and one is linearly
unstable.

(c) For r = 1
2 , find the stationary solution to (∗) subject to the conditions

lim
x→−∞

n(x) = 1, lim
x→∞

n(x) = 0 and n(0) =
1

2
.

(d) Write down the differential equation that is satisfied by a travelling-wave solution
to (∗) of the form n(x, t) = u(x − ct). Let n0(x) be the solution from part (c). Verify
that n0(x− ct) satisfies this differential equation for r 6= 1

2 , provided the speed c is chosen
appropriately. [Hint: Consider the change to the equation from part (c).]

(e) State how the sign of c depends on r, and give a brief qualitative explanation
for why this should be the case.
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Paper 1, Section II
31J Mathematics of Machine Learning

Let H be a family of functions h : X → {0, 1} with |H| > 2. Define the shattering
coefficient s(H, n) and the VC dimension VC(H) of H.

Briefly explain why if H′ ⊆ H and |H′| > 2, then VC(H′) 6 VC(H).

Prove that if F is a vector space of functions f : X → R with F ′ ⊆ F and we define

H = {1{u:f(u)60} : f ∈ F ′},

then VC(H) 6 dim(F).

Let A =
{
{x : ‖x− c‖22 6 r2} : c ∈ Rd, r ∈ [0,∞)

}
be the set of all spheres in Rd.

Suppose H = {1A : A ∈ A}. Show that

VC(H) 6 d+ 2.

[
Hint: Consider the class of functions F ′ =

{
fc,r : c ∈ Rd, r ∈ [0,∞)

}
, where

fc,r(x) = ‖x‖22 − 2cTx+ ‖c‖22 − r2 .
]
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Paper 2, Section II
31J Mathematics of Machine Learning

(a) What is meant by the subdifferential ∂f(x) of a convex function f : Rd → R
at x ∈ Rd? Write down the subdifferential ∂f(x) of the function f : R → R given by
f(x) = γ|x|, where γ > 0.

Show that x minimises f if and only if 0 ∈ ∂f(x).

What does it mean for a function f : Rd → R to be strictly convex? Show that any
minimiser of a strictly convex function must be unique.

(b) Suppose we have input–output pairs (x1, y1), . . . , (xn, yn) ∈ {−1, 1}p × {−1, 1}
with p > 2. Consider the objective function

f(β) =
1

n

n∑

i=1

exp(−yixTi β) + γ‖β‖1,

where β = (β1, . . . , βp)
T and γ > 0. Assume that (yi)

n
i=1 6= (xi1)

n
i=1. Fix β2, . . . , βp and

define

κ1 =
∑

16i6n :
xi1 6=yi

exp(−yiηi) and κ2 =

n∑

i=1

exp(−yiηi),

where ηi =
∑p

j=2 xijβj for i = 1, . . . , n. Show that if |2κ1 − κ2| 6 γ , then

argminβ1∈Rf(β1, β2, . . . , βp) = 0.

[You may use any results from the course without proof, other than those whose proof is
asked for directly.]
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Paper 4, Section II
30J Mathematics of Machine Learning

Let D = (xi, yi)
n
i=1 be a dataset of n input–output pairs lying in Rp × [−M,M ]

for M ∈ R. Describe the random-forest algorithm as applied to D using decision trees
(T̂ (b))Bb=1 to produce a fitted regression function frf . [You need not explain in detail
the construction of decision trees, but should describe any modifications specific to the
random-forest algorithm.]

Briefly explain why for each x ∈ Rp and b = 1, . . . , B, we have T̂ (b)(x) ∈ [−M,M ].

State the bounded-differences inequality.

Treating D as deterministic, show that with probability at least 1− δ,

sup
x∈Rp

|frf(x)− µ(x)| 6M

√
2 log(1/δ)

B
+ E

(
sup
x∈Rp

|frf(x)− µ(x)|
)
,

where µ(x) := Efrf(x).
[
Hint: Treat each T̂ (b) as a random variable taking values in an appropriate space

Z (of functions), and consider a function G satisfying

G(T̂ (1), . . . , T̂ (B)) = sup
x∈Rp

|frf(x)− µ(x)|.
]
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Paper 1, Section II
20G Number Fields

Let K = Q(α), where α3 = 5α− 8.

(a) Show that [K : Q] = 3.

(b) Let β = (α + α2)/2. By considering the matrix of β acting on K by
multiplication, or otherwise, show that β is an algebraic integer, and that (1, α, β) is
a Z-basis for OK . [The discriminant of T 3 − 5T + 8 is −4 · 307, and 307 is prime.]

(c) Compute the prime factorisation of the ideal (3) in OK . Is (2) a prime ideal of
OK? Justify your answer.

Paper 2, Section II
20G Number Fields

Let K be a field containing Q. What does it mean to say that an element of K is
algebraic? Show that if α ∈ K is algebraic and non-zero, then there exists β ∈ Z[α] such
that αβ is a non-zero (rational) integer.

Now let K be a number field, with ring of integers OK . Let R be a subring of OK
whose field of fractions equals K. Show that every element of K can be written as r/m,
where r ∈ R and m is a positive integer.

Prove that R is a free abelian group of rank [K : Q], and that R has finite index in
OK . Show also that for every nonzero ideal I of R, the index (R : I) of I in R is finite,
and that for some positive integer m, mOK is an ideal of R.

Suppose that for every pair of non-zero ideals I, J ⊂ R, we have

(R : IJ) = (R : I)(R : J) .

Show that R = OK .

[You may assume without proof that OK is a free abelian group of rank [K : Q]. ]
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Paper 4, Section II
20G Number Fields

(a) Compute the class group of K = Q(
√
30). Find also the fundamental unit of K,

stating clearly any general results you use.

[The Minkowski bound for a real quadratic field is |dK |1/2/2. ]

(b) Let K = Q(
√
d) be real quadratic, with embeddings σ1, σ2 ↪→ R. An element

α ∈ K is totally positive if σ1(α) > 0 and σ2(α) > 0. Show that the totally positive
elements of K form a subgroup of the multiplicative group K∗ of index 4.

Let I, J ⊂ OK be non-zero ideals. We say that I is narrowly equivalent to J if
there exists a totally positive element α of K such that I = αJ . Show that this is an
equivalence relation, and that the equivalence classes form a group under multiplication.
Show also that the order of this group equals

{
the class number hK of K if the fundamental unit of K has norm −1,
2hK otherwise.
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Paper 1, Section I
1I Number Theory

State Euler’s criterion.

Let p be an odd prime. Show that every primitive root modulo p is a quadratic
non-residue modulo p.

Let p be a Fermat prime, that is, a prime of the form 22
k
+ 1 for some k > 1. By

evaluating φ(p − 1), or otherwise, show that every quadratic non-residue modulo p is a
primitive root modulo p. Deduce that 3 is a primitive root modulo p for every Fermat
prime p.

Paper 2, Section I
1I Number Theory

Define the Möbius function µ, and explain what it means for it to be multiplicative.

Show that for every positive integer n

∑

d|n

µ(d)2

φ(d)
=

n

φ(n)
,

where φ is the Euler totient function.

Fix an integer k > 1. Use the Chinese remainder theorem to show that there are
infinitely many positive integers n for which

µ(n) = µ(n+ 1) = · · · = µ(n+ k).

Paper 3, Section I
1I Number Theory

Define the continued fraction expansion of θ ∈ R, and show that this expansion
terminates if and only if θ ∈ Q.

Define the convergents (pn/qn)n>−1 of the continued fraction expansion of θ, and
show that for all n > 0,

pnqn−1 − pn−1qn = (−1)n−1.

Deduce that if θ ∈ R \Q, then for all n > 0, at least one of

∣∣∣∣θ −
pn
qn

∣∣∣∣ <
1

2q2n
and

∣∣∣∣θ −
pn+1

qn+1

∣∣∣∣ <
1

2q2n+1

must hold.

[You may assume that θ lies strictly between pn/qn and pn+1/qn+1 for all n > 0.]
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Paper 4, Section I
1I Number Theory

Let p be a prime, and let N =

(
2n

n

)
for some positive integer n.

Show that if a prime power pk divides N for some k > 1, then pk 6 2n.

Given a positive real x, define ψ(x) =
∑

n6x Λ(n), where Λ(n) is the von Mangoldt

function, taking the value log p if n = pk for some prime p and integer k > 1, and 0
otherwise. Show that

ψ(x) =
∑

p6x, p prime

⌊
log x

log p

⌋
log p.

Deduce that for all integers n > 1, ψ(2n) > n log 2.

Paper 3, Section II
11I Number Theory

State what it means for two binary quadratic forms to be equivalent, and define the
class number h(d).

Let m be a positive integer, and let f be a binary quadratic form. Show that f
properly represents m if and only if f is equivalent to a binary quadratic form

mx2 + bxy + cy2

for some integers b and c.

Let d < 0 be an integer such that d ≡ 0 or 1 mod 4. Show that m is properly
represented by some binary quadratic form of discriminant d if and only if d is a square
modulo 4m.

Fix a positive integer A > 2. Show that n2 + n+A is composite for some integer n
such that 0 6 n 6 A− 2 if and only if d = 1 − 4A is a square modulo 4p for some prime
p < A.

Deduce that h(1−4A) = 1 if and only if n2+n+A is prime for all n = 0, 1, . . . , A−2.
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Paper 4, Section II
11I Number Theory

(a) Let N > 3 be an odd integer and b an integer with (b,N) = 1. What does it
mean to say that N is a (Fermat) pseudoprime to base b?

Let b, k > 2 be integers. Show that if N > 3 is an odd composite integer dividing
bk − 1 and satisfying N ≡ 1 mod k, then N is a pseudoprime to base b.

(b) Fix b > 2. Let p be an odd prime not dividing b2 − 1, and let

n =
bp − 1

b− 1
and m =

bp + 1

b+ 1
.

Use the conclusion of part (a) to show that N = nm is a pseudoprime to base b. Deduce
that there are infinitely many pseudoprimes to base b.

(c) Let b, k > 2 be integers, and let n = p1 · · · pk, where p1, p2, . . . , pk are distinct
primes not dividing 2b. For each j = 1, 2, . . . , k, let rj = n/pj . Show that n is a
pseudoprime to base b if and only if for all j = 1, 2, . . . , k, the order of b modulo pj
divides rj − 1.

(d) By considering products of prime factors of 2k − 1 and 2k + 1 for primes k > 5,
deduce that there are infinitely many pseudoprimes to base 2 with two prime factors.

[Hint: You may assume that gcd(j, k) = 1 for j, k > 1 implies gcd(2j−1, 2k−1) = 1,
and that for k > 3, 2k + 1 is not a power of 3.]
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Paper 1, Section II
41E Numerical Analysis

Let A ∈ Rn×n with n > 2 and define Spec(A) = {λ ∈ C |A − λI is not invertible}.
The QR algorithm for computing Spec(A) is defined as follows. Set A0 = A. For
k = 0, 1, . . . compute the QR factorization Ak = QkRk and set Ak+1 = RkQk. (Here
Qk is an n× n orthogonal matrix and Rk is an n× n upper triangular matrix.)

(a) Show that Ak+1 is related to the original matrix A by the similarity trans-
formation Ak+1 = Q̄TkAQ̄k, where Q̄k = Q0Q1 · · ·Qk is orthogonal and Q̄kR̄k is the QR
factorization of Ak+1 with R̄k = RkRk−1 · · ·R0.

(b) Suppose that A is symmetric and that its eigenvalues satisfy

|λ1| < |λ2| < · · · < |λn−1| = |λn| .

Suppose, in addition, that the first two canonical basis vectors are given by e1 =
∑n

i=1 biwi,
e2 =

∑n
i=1 ciwi, where bi 6= 0, ci 6= 0 for i = 1, . . . , n and {wi}ni=1 are the normalised

eigenvectors of A.

Let Bk ∈ R2×2 be the 2×2 upper left corner of Ak. Show that dH
(
Spec(Bk), S

)
→ 0

as k →∞, where S = {λn} ∪ {λn−1} and dH denotes the Hausdorff metric

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y
|x− y|, sup

y∈Y
inf
x∈X
|x− y|

}
, X, Y ⊂ C .

[Hint: You may use the fact that for real symmetric matrices U, V we have
dH
(
Spec(U),Spec(V )

)
6 ‖U − V ‖2.]
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Paper 2, Section II
41E Numerical Analysis

(a) Let x ∈ RN and define y ∈ R2N by

yn =

{
xn, 0 6 n 6 N − 1

x2N−n−1, N 6 n 6 2N − 1.

Let Y ∈ C2N be defined as the discrete Fourier transform (DFT) of y, i.e.

Yk =
2N−1∑

n=0

ynω
nk
2N , ω2N = exp (−πi/N) , 0 6 k 6 2N − 1.

Show that

Yk = 2ω
−k/2
2N

N−1∑

n=0

xn cos

[
π

N

(
n+

1

2

)
k

]
, 0 6 k 6 2N − 1.

(b) Define the discrete cosine transform (DCT) CN : RN → RN by

z = CNx, where zk =
N−1∑

n=0

xn cos

[
π

N

(
n+

1

2

)
k

]
, k = 0, . . . , N − 1 .

For N = 2p with p ∈ N, show that, similar to the Fast Fourier Transform (FFT), there
exists an algorithm that computes the DCT of a vector of length N , where the number of
multiplications required is bounded by CN logN , where C is some constant independent
of N .

[You may not assume that the FFT algorithm requires O(N logN) multiplications
to compute the DFT of a vector of length N . If you use this, you must prove it. ]
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Paper 3, Section II
40E Numerical Analysis

Consider discretisation of the diffusion equation

∂u

∂t
=
∂2u

∂x2
, 0 6 t 6 1 , (∗)

by the Crank–Nicholson method:

un+1
m − 1

2µ(un+1
m−1−2un+1

m +un+1
m+1) = unm+ 1

2µ(unm−1−2unm+unm+1) , n = 0 , . . . , N , (†)

where µ= k
h2

is the Courant number, h is the step size in the space discretisation, k = 1
N+1

is the step size in the time discretisation, and unm ≈ u(mh, nk), where u(x, t) is the solution
of (∗). The initial condition u(x, 0) = u0(x) is given.

(a) Consider the Cauchy problem for (∗) on the whole line, x ∈ R (thus m ∈ Z),
and derive the formula for the amplification factor of the Crank–Nicholson method (†).
Use the amplification factor to show that the Crank–Nicholson method is stable for the
Cauchy problem for all µ > 0.

[You may quote basic properties of the Fourier transform mentioned in lectures, but
not the theorem on sufficient and necessary conditions on the amplification factor to have
stability.]

(b) Consider (∗) on the interval 0 6 x 6 1 (thus m = 1, . . . ,M and h = 1
M+1) with

Dirichlet boundary conditions u(0, t) = φ0(t) and u(1, t) = φ1(t), for some sufficiently
smooth functions φ0 and φ1. Show directly (without using the Lax equivalence theorem)
that, given sufficient smoothness of u, the Crank–Nicholson method is convergent, for any
µ > 0, in the norm defined by ‖η‖2,h =

(
h
∑M

m=1 |ηm|2
)
1/2 for η ∈ RM .

[You may assume that the Trapezoidal method has local order 3, and that the
standard three-point centred discretisation of the second derivative (as used in the Crank–
Nicholson method) has local order 2.]
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Paper 4, Section II
40E Numerical Analysis

(a) Show that if A and B are real matrices such that both A and A−B−BT are
symmetric positive definite, then the spectral radius of H = −(A−B)−1B is strictly less
than 1.

(b) Consider the Poisson equation∇2u = f (with zero Dirichlet boundary condition)
on the unit square, where f is some smooth function. Given m ∈ N and an equidistant
grid on the unit square with stepsize h = 1/(m + 1), the standard five-point method is
given by

ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j = h2fi,j , i, j = 1, . . . ,m , (∗)

where fi,j = f(ih, jh) and u0,j = um+1,j = ui,0 = ui,m+1 = 0. Equation (∗) can be written

as a linear system Ax = b, where A ∈ Rm2×m2
and b ∈ Rm2

both depend on the chosen
ordering of the grid points.

Use the result in part (a) to show that the Gauss–Seidel method converges for the
linear system Ax = b described above, regardless of the choice of ordering of the grid
points.

[You may quote convergence results – based on the spectral radius of the iteration
matrix – mentioned in the lecture notes.]
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Paper 1, Section II
34B Principles of Quantum Mechanics

(a) A group G of transformations acts on a quantum system. Briefly explain
why the Born rule implies that these transformations may be represented by operators
U(g) : H → H obeying

U(g)† U(g) = 1H

U(g1)U(g2) = eiφ(g1,g2) U(g1 · g2)
for all g1, g2 ∈ G, where φ(g1, g2) ∈ R.

What additional property does U(g) have when G is a group of symmetries of the
Hamiltonian? Show that symmetries correspond to conserved quantities.

(b) The Coulomb Hamiltonian describing the gross structure of the hydrogen atom
is invariant under time reversal, t 7→ −t. Suppose we try to represent time reversal by a
unitary operator T obeying U(t)T = TU(−t), where U(t) is the time-evolution operator.
Show that this would imply that hydrogen has no stable ground state.

An operator A : H → H is anti linear if

A
(
a|α〉+ b|β〉

)
= ā A|α〉+ b̄ A|β〉

for all |α〉, |β〉 ∈ H and all a, b ∈ C, and antiunitary if, in addition,

〈β′|α′〉 = 〈β|α〉 ,

where |α′〉 = A|α〉 and |β′〉 = A|β〉. Show that if time reversal is instead represented by
an antiunitary operator then the above instability of hydrogen is avoided.

Paper 2, Section II
35B Principles of Quantum Mechanics

(a) Let {|n〉} be a basis of eigenstates of a non-degenerate Hamiltonian H, with
corresponding eigenvalues {En}. Write down an expression for the energy levels of the
perturbed Hamiltonian H + λ∆H, correct to second order in the dimensionless constant
λ� 1.

(b) A particle travels in one dimension under the influence of the potential

V (X) =
1

2
mω2X2 + λ ~ω

X3

L3
,

where m is the mass, ω a frequency and L =
√
~/2mω a length scale. Show that, to first

order in λ, all energy levels coincide with those of the harmonic oscillator. Calculate the
energy of the ground state to second order in λ.

Does perturbation theory in λ converge for this potential? Briefly explain your
answer.
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Paper 3, Section II
33B Principles of Quantum Mechanics

(a) A quantum system with total angular momentum j1 is combined with another of
total angular momentum j2. What are the possible values of the total angular momentum
j of the combined system? For given j, what are the possible values of the angular
momentum along any axis?

(b) Consider the case j1 = j2. Explain why all the states with j = 2j1 − 1 are
antisymmetric under exchange of the angular momenta of the two subsystems, while all
the states with j = 2j1 − 2 are symmetric.

(c) An exotic particle X of spin 0 and negative intrinsic parity decays into a pair
of indistinguishable particles Y . Assume each Y particle has spin 1 and that the decay
process conserves parity. Find the probability that the direction of travel of the Y particles
is observed to lie at an angle θ ∈ (π/4, 3π/4) from some axis along which their total spin
is observed to be +~?

Paper 4, Section II
33B Principles of Quantum Mechanics

(a) A quantum system has Hamiltonian H = H0 + V (t). Let {|n〉}n∈N0 be an
orthonormal basis of H0 eigenstates, with corresponding energies En = ~ωn. For t < 0,
V (t) = 0 and the system is in state |0〉. Calculate the probability that it is found to be in
state |1〉 at time t > 0, correct to lowest non-trivial order in V .

(b) Now suppose {|0〉, |1〉} form a basis of the Hilbert space, with respect to which

(
〈0|H|0〉 〈0|H|1〉
〈1|H|0〉 〈1|H|1〉

)
=

(
~ω0 ~vΘ(t)eiωt

~vΘ(t)e−iωt ~ω1

)
,

where Θ(t) is the Heaviside step function and v is a real constant. Calculate the exact
probability that the system is in state |1〉 at time t. For which frequency ω is this
probability maximized?
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Paper 1, Section II
29J Principles of Statistics

Let X1, . . . , Xn be random variables with joint probability density function in a
statistical model {fθ : θ ∈ R}.

(a) Define the Fisher information In(θ). What do we mean when we say that the
Fisher information tensorises?

(b) Derive the relationship between the Fisher information and the derivative of the
score function in a regular model.

(c) Consider the model defined by X1 = θ + ε1 and

Xi = θ(1−√γ) +
√
γ Xi−1 +

√
1− γ εi for i = 2, . . . , n,

where ε1, . . . , εn are i.i.d. N(0, 1) random variables, and γ ∈ [0, 1) is a known constant.
Compute the Fisher information In(θ). For which values of γ does the Fisher information
tensorise? State a lower bound on the variance of an unbiased estimator θ̂ in this model.

Paper 2, Section II
29J Principles of Statistics

Let X1, . . . , Xn be i.i.d. random observations taking values in [0, 1] with a continuous
distribution function F . Let F̂n(x) = n−1

∑n
i=1 1{Xi6x} for each x ∈ [0, 1].

(a) State the Kolmogorov–Smirnov theorem. Explain how this theorem may be used
in a goodness-of-fit test for the null hypothesis H0 : F = F0, with F0 continuous.

(b) Suppose you do not have access to the quantiles of the sampling distribution of
the Kolmogorov–Smirnov test statistic. However, you are given i.i.d. samples Z1, . . . , Znm
with distribution function F0. Describe a test of H0 : F = F0 with size exactly 1/(m+ 1).

(c) Now suppose that X1, . . . , Xn are i.i.d. taking values in [0,∞) with probability
density function f , with supx>0

(
|f(x)|+ |f ′(x)|

)
< 1. Define the density estimator

f̂n(x) = n−2/3
n∑

i=1

1{
Xi − 1

2n1/3 6 x 6 Xi + 1
2n1/3

}, x > 0.

Show that for all x > 0 and all n > 1,

E
[(
f̂n(x)− f(x)

)
2
]
6 2

n2/3
.
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Paper 3, Section II
28J Principles of Statistics

Let X1, . . . , Xn ∼iid Gamma(α, β) for some known α > 0 and some unknown β > 0.
[The gamma distribution has probability density function

f(x) =
βα

Γ(α)
xα−1e−βx, x > 0,

and its mean and variance are α/β and α/β2, respectively.]

(a) Find the maximum likelihood estimator β̂ for β and derive the distributional
limit of

√
n(β̂−β). [You may not use the asymptotic normality of the maximum likelihood

estimator proved in the course.]

(b) Construct an asymptotic (1 − γ)-level confidence interval for β and show that
it has the correct (asymptotic) coverage.

(c) Write down all the steps needed to construct a candidate to an asymptotic
(1− γ)-level confidence interval for β using the nonparametric bootstrap.

Paper 4, Section II
28J Principles of Statistics

Suppose that X | θ ∼ Poisson(θ), θ > 0, and suppose the prior π on θ is a gamma
distribution with parameters α > 0 and β > 0. [Recall that π has probability density
function

f(z) =
βα

Γ(α)
zα−1e−βz, z > 0,

and that its mean and variance are α/β and α/β2, respectively. ]

(a) Find the π-Bayes estimator for θ for the quadratic loss, and derive its quadratic
risk function.

(b) Suppose we wish to estimate µ = e−θ = Pθ(X = 0). Find the π-Bayes estimator
for µ for the quadratic loss, and derive its quadratic risk function. [Hint: The moment
generating function of a Poisson(θ) distribution is M(t) = exp

(
θ(et − 1)

)
for t ∈ R, and

that of a Gamma(α, β) distribution is M(t) = (1− t/β)−α for t < β.]

(c) State a sufficient condition for an admissible estimator to be minimax, and give
a proof of this fact.

(d) For each of the estimators in parts (a) and (b), is it possible to deduce using the
condition in (c) that the estimator is minimax for some value of α and β? Justify your
answer.
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Paper 1, Section II
27H Probability and Measure

(a) State and prove Fatou’s lemma. [You may use the monotone convergence
theorem without proof, provided it is clearly stated.]

(b) Show that the inequality in Fatou’s lemma can be strict.

(c) Let (Xn : n ∈ N) and X be non-negative random variables such that Xn → X
almost surely as n→ ∞. Must we have EX 6 supn EXn?

Paper 2, Section II
27H Probability and Measure

Let (E, E , µ) be a measure space. A function f is simple if it is of the form
f =

∑N
i=1 ai1Ai , where ai ∈ R, N ∈ N and Ai ∈ E .
Now let f : (E, E , µ) → [0,∞] be a Borel-measurable map. Show that there exists

a sequence fn of simple functions such that fn(x)→ f(x) for all x ∈ E as n→∞.

Next suppose f is also µ-integrable. Construct a sequence fn of simple µ-integrable
functions such that

∫
E |fn − f |dµ→ 0 as n→∞.

Finally, suppose f is also bounded. Show that there exists a sequence fn of simple
functions such that fn → f uniformly on E as n→∞.

Paper 3, Section II
26H Probability and Measure

Show that random variables X1, . . . , XN defined on some probability space (Ω,F ,P)
are independent if and only if

E
( N∏

n=1

fn(Xn)
)

=

N∏

n=1

E
(
fn(Xn)

)

for all bounded measurable functions fn : R → R, n = 1, . . . , N .

Now let (Xn : n ∈ N) be an infinite sequence of independent Gaussian random
variables with zero means, EXn = 0, and finite variances, EX2

n = σ2n > 0. Show that the
series

∑∞
n=1Xn converges in L2(P) if and only if

∑∞
n=1 σ

2
n <∞.

[You may use without proof that E[eiuXn ] = e−u
2σ2

n/2 for u ∈ R.]

Part II, Paper 1 [TURN OVER]



86

Paper 4, Section II
26H Probability and Measure

Let (Ω,F ,P) be a probability space. Show that for any sequence An ∈ F satisfying∑∞
n=1 P(An) <∞ one necessarily has P(lim supnAn) = 0.

Let (Xn : n ∈ N) and X be random variables defined on (Ω,F ,P). Show that
Xn → X almost surely as n→ ∞ implies that Xn → X in probability as n→ ∞.

Show that Xn → X in probability as n → ∞ if and only if for every subsequence
Xn(k) there exists a further subsequence Xn(k(r)) such that Xn(k(r)) → X almost surely as
r → ∞.
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Paper 1, Section I
10D Quantum Information and Computation

Alice wishes to communicate to Bob a 1-bit message m = 0 or m = 1 chosen by
her with equal prior probabilities 1/2. For m = 0 (respectively m = 1) she sends Bob
the quantum state |a0〉 (respectively |a1〉). On receiving the state, Bob applies quantum
operations to it, to try to determine Alice’s message. The Helstrom–Holevo theorem
asserts that the probability PS for Bob to correctly determine Alice’s message is bounded
by PS 6 1

2(1 + sin θ), where θ = cos−1 |〈a0|a1〉|, and that this bound is achievable.

(a) Suppose that |a0〉 = |0〉 and |a1〉 = 1√
2
(|0〉 + |1〉), and that Bob measures

the received state in the basis {|b0〉 , |b1〉}, where |b0〉 = cosβ |0〉 + sinβ |1〉 and |b1〉 =
− sinβ |0〉+cosβ |1〉, to produce his output 0 or 1, respectively. Calculate the probability
PS that Bob correctly determines Alice’s message, and show that the maximum value of
PS over choices of β ∈ (−π

2 ,
π
2 ] achieves the Helstrom–Holevo bound.

(b) State the no-cloning theorem as it applies to unitary processes and a set of two
non-orthogonal states {|c0〉 , |c1〉}. Show that the Helstrom–Holevo theorem implies the
validity of the no-cloning theorem in this situation.

Paper 2, Section I
10D Quantum Information and Computation

Let Bn denote the set of all n-bit strings and let f : Bn → B1 be a Boolean function
which obeys either

(I) f(x) = 0 for all x ∈ Bn, or
(II) f(x) = 0 for exactly half of all x ∈ Bn.

Suppose we are given the n-qubit state

| ξ〉 = 1√
2n

∑

x∈Bn

(−1)f(x) |x〉 .

Show how we may determine with certainty whether f is of case (I) or case (II).

Suppose now that Alice and Bob are separated in space. Alice possesses a quantum
oracle for a Boolean function fA : Bn → B1 and Bob similarly possess a quantum oracle
for a Boolean function fB : Bn → B1. These functions are arbitrary, except that either

(1) fA(x) = fB(x) for all x ∈ Bn, or
(2) fA(x) = fB(x) for exactly half of all x ∈ Bn.

Alice and Bob each have available a supply of qubits in state |0〉 and each can apply local
quantum operations (including their own function oracle) to any qubits in their possession.
Additionally, they can send qubits to each other.

Show how Bob may decide with certainty which case applies, after he has received
n qubits from Alice. [Hint: You may find it helpful to consider the function h(x) =
fA(x)⊕ fB(x), where ⊕ denotes addition mod 2.]
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Paper 3, Section I
10D Quantum Information and Computation

Let |ψ〉AB be the joint state of a bipartite system AB with subsystems A and B
separated in space. Suppose that Alice and Bob have access only to subsystems A and B
respectively, on which they can perform local quantum operations.

Alice performs a unitary operation U on A and then a (generally incomplete)
measurement on A, with projectors {Πa} labelled by her possible measurement outcomes
a. Then Bob performs a complete measurement on B relative to the orthonormal basis
{|b〉} labelled by his possible outcomes b.

Show that the probability distribution of Bob’s measurement outcomes is unaffected
by whether or not Alice actually performs the local operations on A described above.

Paper 4, Section I
10D Quantum Information and Computation

Let H be a state space of dimension N with standard orthonormal basis {|k〉}
labelled by k ∈ ZN . Let QFT denote the quantum Fourier transform mod N and let S
denote the operation defined by S|k〉 = |k + 1 mod N〉.

(a) Introduce the basis {|χk〉} defined by |χk〉 = QFT−1|k〉. Show that each |χk〉 is
an eigenstate of S and determine the corresponding eigenvalue.

(b) By expressing a generic state |v〉 ∈ H in the {|χk〉} basis, show that QFT |v〉
and QFT(S|v〉) have the same output distribution if measured in the standard basis.

(c) Let A, r be positive integers with Ar = N , and let x0 be an integer with
0 6 x0 < r. Suppose that we are given the state

|ξ〉 =
1√
A

A−1∑

j=0

|x0 + jr mod N〉 ,

where x0 and r are unknown to us. Using part (b) or otherwise, show that a standard
basis measurement on QFT |ξ〉 has an output distribution that is independent of x0.

Part II, Paper 1



89

Paper 2, Section II
15D Quantum Information and Computation

Alice and Bob are separated in space and can communicate only over a noiseless
public classical channel, i.e. they can exchange bit string messages perfectly, but the
messages can be read by anyone. An eavesdropper Eve constantly monitors the channel,
but cannot alter any passing messages. Alice wishes to communicate an m-bit string
message to Bob whilst keeping it secret from Eve.

(a) Explain how Alice can do this by the one-time pad method, specifying clearly
any additional resource that Alice and Bob need. Explain why in this method, Alice’s
message does, in fact, remain secure against eavesdropping.

(b) Suppose now that Alice and Bob do not possess the additional resource needed
in part (a) for the one-time pad, but that they instead possess n pairs of qubits, where
n� 1, with each pair being in the state

|ψ〉AB = t |00〉AB + s |11〉AB ,

where the real parameters (t, s) are known to Alice and Bob and obey t > s > 0 and
t2+ s2 = 1. For each qubit pair in state |ψ〉AB, Alice possesses qubit A and Bob possesses
qubit B. They each also have available a supply of ancilla qubits, each in state |0〉, and
they can each perform local quantum operations on qubits in their possession.

Show how Alice, using only local quantum operations, can convert each |ψ〉AB state
into |φ+〉AB = 1√

2
(|00〉AB + |11〉AB) by a process that succeeds with non-zero probability.

[Hint: It may be useful for Alice to start by adjoining an ancilla qubit |0〉A′ and work
locally on her two qubits in |0〉A′ |ψ〉AB.]

Hence, or otherwise, show how Alice can communicate a bit string of expected
length (2s2)n to Bob in a way that keeps it secure against eavesdropping by Eve.
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Paper 3, Section II
15D Quantum Information and Computation

Let Bn denote the set of all n-bit strings and let Hn denote the space of n qubits.

(a) Suppose f : B2 → B1 has the property that f(x0) = 1 for a unique x0 ∈ B2 and
suppose we have a quantum oracle Uf .

(i) Let |ψ0〉 = 1
2

∑
x∈B2

|x〉 and introduce the operators

Ix0 = I2 − 2 |x0〉〈x0| and J = I2 − 2 |ψ0〉〈ψ0|

on H2, where I2 is the identity operator. Give a geometrical description of the
actions of −J , Ix0 and Q = −JIx0 on the 2-dimensional subspace of H2 given
by the real span of |x0〉 and |ψ0〉. [You may assume without proof that the
product of two reflections in R2 is a rotation through twice the angle between
the mirror lines.]

(ii) Using the results of part (i), or otherwise, show how we may determine x0
with certainty, starting with a supply of qubits each in state |0〉 and using Uf
only once, together with other quantum operations that are independent of
f .

(b) Suppose Hn = A ⊕ A⊥, where A is a fixed linear subspace with orthogonal
complement A⊥. Let ΠA denote the projection operator onto A and let IA = I − 2 ΠA,
where I is the identity operator on Hn.

(i) Show that any |ξ〉 ∈ Hn can be written as |ξ〉 = sin θ |α〉 + cos θ |β〉, where
θ ∈ [0, π/2], and |α〉 ∈ A and |β〉 ∈ A⊥ are normalised.

(ii) Let Iξ = I−2 |ξ〉〈ξ| andQ = −IξIA. Show thatQ|α〉 = − sin 2θ |β〉+cos 2θ |α〉.

(iii) Now assume, in addition, that Q|β〉 = cos 2θ |β〉 + sin 2θ |α〉 and that |ξ〉 =
U |0 . . . 0〉 for some unitary operation U . Suppose we can implement the
operators U , U †, IA as well as the operation I − 2|0 . . . 0〉〈0 . . . 0|. In the
case θ = π/10, show how the n-qubit state |α〉 may be made exactly from
|0 . . . 0〉 by a process that succeeds with certainty.
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Paper 1, Section II
19I Representation Theory

(a) What does it mean to say that a representation of a group is completely reducible?
State Maschke’s theorem for representations of finite groups over fields of characteristic 0.
State and prove Schur’s lemma. Deduce that if there exists a faithful irreducible complex
representation of G, then Z(G) is cyclic.

(b) IfG is any finite group, show that the regular representation CG is faithful. Show
further that for every finite simple group G, there exists a faithful irreducible complex
representation of G.

(c) Which of the following groups have a faithful irreducible representation? Give
brief justification of your answers.

(i) the cyclic groups Cn (n a positive integer);

(ii) the dihedral group D8;

(iii) the direct product C2 ×D8.

Paper 2, Section II
19I Representation Theory

Let G be a finite group and work over C.

(a) Let χ be a faithful character of G, and suppose that χ(g) takes precisely r
different values as g varies over all the elements of G. Show that every irreducible character
of G is a constituent of one of the powers χ0, χ1, . . . , χr−1. [Standard properties of the
Vandermonde matrix may be assumed if stated correctly.]

(b) Assuming that the number of irreducible characters of G is equal to the number
of conjugacy classes of G, show that the irreducible characters of G form a basis of the
complex vector space of all class functions on G. Deduce that g, h ∈ G are conjugate if
and only if χ(g) = χ(h) for all characters χ of G.

(c) Let χ be a character of G which is not faithful. Show that there is some
irreducible character ψ of G such that 〈χn, ψ〉 = 0 for all integers n > 0.
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Paper 3, Section II
19I Representation Theory

In this question we work over C.

(a) (i) Let H be a subgroup of a finite group G. Given an H-space W , define the
complex vector space V = IndGH(W ). Define, with justification, the G-action on V .

(ii) Write C(g) for the conjugacy class of g ∈ G. Suppose that H ∩ C(g) breaks
up into s conjugacy classes of H with representatives x1, . . . , xs. If ψ is a character of H,
write down, without proof, a formula for the induced character IndGH(ψ) as a certain sum
of character values ψ(xi).

(b) Define permutations a, b ∈ S7 by a = (1 2 3 4 5 6 7), b = (2 3 5)(4 7 6) and let
G be the subgroup 〈a, b〉 of S7. It is given that the elements of G are all of the form aibj

for 0 6 i 6 6, 0 6 j 6 2 and that G has order 21.

(i) Find the orders of the centralisers CG(a) and CG(b). Hence show that there
are five conjugacy classes of G.

(ii) Find all characters of degree 1 of G by lifting from a suitable quotient group.

(iii) Let H = 〈a〉. By first inducing linear characters of H using the formula
stated in part (a)(ii), find the remaining irreducible characters of G.

Paper 4, Section II
19I Representation Theory

(a) Define the group S1. Sketch a proof of the classification of the irreducible
continuous representations of S1. Show directly that the characters obey an orthogonality
relation.

(b) Define the group SU(2).

(i) Show that there is a bijection between the conjugacy classes in G = SU(2)
and the subset [−1, 1] of the real line. [If you use facts about a maximal torus
T , you should prove them.]

(ii) Write Ox for the conjugacy class indexed by an element x, where −1 < x < 1.
Show that Ox is homeomorphic to S2. [Hint: First show that Ox is in bijection
with G/T .]

(iii) Let t : G→ [−1, 1] be the parametrisation of conjugacy classes from part (i).
Determine the representation of G whose character is the function g 7→ 8t(g)3.
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Paper 1, Section II
24F Riemann Surfaces

(a) Consider an open disc D ⊆ C. Prove that a real-valued function u : D → R is
harmonic if and only if

u = Re(f)

for some analytic function f .

(b) Give an example of a domain D and a harmonic function u : D → R that is not
equal to the real part of an analytic function on D. Justify your answer carefully.

(c) Let u be a harmonic function on C∗ such that u(2z) = u(z) for every z ∈ C∗.
Prove that u is constant, justifying your answer carefully. Exhibit a countable subset
S ⊆ C∗ and a non-constant harmonic function u on C∗ \ S such that for all z ∈ C∗ \ S we
have 2z ∈ C∗ \ S and u(2z) = u(z).

(d) Prove that every non-constant harmonic function u : C→ R is surjective.

Paper 2, Section II
24F Riemann Surfaces

Let D ⊆ C be a domain, let (f, U) be a function element in D, and let α : [0, 1]→ D
be a path with α(0) ∈ U . Define what it means for a function element (g, V ) to be an
analytic continuation of (f, U) along α.

Suppose that β : [0, 1]→ D is a path homotopic to α and that (h, V ) is an analytic
continuation of (f, U) along β. Suppose, furthermore, that (f, U) can be analytically
continued along any path in D. Stating carefully any theorems that you use, prove that
g
(
α(1)

)
= h

(
β(1)

)
.

Give an example of a function element (f, U) that can be analytically continued to
every point of C∗ and a pair of homotopic paths α, β in C∗ starting in U such that the
analytic continuations of (f, U) along α and β take different values at α(1) = β(1).
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Paper 3, Section II
23F Riemann Surfaces

(a) Let f : C → C be a polynomial of degree d > 0, and let m1, . . . ,mk be the
multiplicities of the ramification points of f . Prove that

k∑

i=1

(mi − 1) = d− 1 . (∗)

Show that, for any list of integers m1, . . . ,mk > 2 satisfying (∗), there is a polynomial f
of degree d such that the mi are the multiplicities of the ramification points of f .

(b) Let f : C∞ → C∞ be an analytic map, and let B be the set of branch points.
Prove that the restriction f : C∞ \ f−1(B) → C∞ \ B is a regular covering map. Given
z0 /∈ B, explain how a closed loop γ in C∞ \B gives rise to a permutation σγ of f−1(z0).
Show that the group of all such permutations is transitive, and that the permutation σγ
only depends on γ up to homotopy.

(c) Prove that there is no meromorphic function f : C∞ → C∞ of degree 4 with
branch points B = {0, 1,∞} such that every preimage of 0 and 1 has ramification index 2,
while some preimage of ∞ has ramification index equal to 3. [Hint: You may use the fact
that every non-trivial product of (2, 2)-cycles in the symmetric group S4 is a (2, 2)-cycle.]
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Paper 1, Section I
5J Statistical Modelling

Let µ > 0. The probability density function of the inverse Gaussian distribution
(with the shape parameter equal to 1) is given by

f(x;µ) =
1√
2πx3

exp

[
−(x− µ)2

2µ2x

]
.

Show that this is a one-parameter exponential family. What is its natural parameter?
Show that this distribution has mean µ and variance µ3.

Paper 2, Section I
5J Statistical Modelling

Define a generalised linear model for a sample Y1, . . . , Yn of independent random
variables. Define further the concept of the link function. Define the binomial regression
model (without the dispersion parameter) with logistic and probit link functions. Which
of these is the canonical link function?

Paper 3, Section I
5J Statistical Modelling

Consider the normal linear model Y | X ∼ N(Xβ, σ2I), where X is a n× p design
matrix, Y is a vector of responses, I is the n× n identity matrix, and β, σ2 are unknown
parameters.

Derive the maximum likelihood estimator of the pair β and σ2. What is the
distribution of the estimator of σ2? Use it to construct a (1− α)-level confidence interval
of σ2. [You may use without proof the fact that the “hat matrix” H = X(XTX)−1XT is
a projection matrix.]
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Paper 4, Section I
5J Statistical Modelling

The data frame data contains the daily number of new avian influenza cases in a
large poultry farm.

> rbind(head(data, 2), tail(data, 2))

Day Count

1 1 4

2 2 6

13 13 42

14 14 42

Write down the model being fitted by the R code below. Does the model seem to
provide a satisfactory fit to the data? Justify your answer.

The owner of the farm estimated that the size of the epidemic was initially doubling
every 7 days. Is that estimate supported by the analysis below? [You may need
log 2 ≈ 0.69.]

> fit <- glm(Count ~ Day, family = poisson, data)

> summary(fit)

Call:

glm(formula = Count ~ Day, family = poisson, data = data)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7298 -0.6639 0.0897 0.4473 1.4466

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.5624 0.1759 8.883 <2e-16 ***

Day 0.1658 0.0166 9.988 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 122.9660 on 13 degrees of freedom

Residual deviance: 9.9014 on 12 degrees of freedom

> pchisq(9.9014, 12, lower.tail = FALSE)

[1] 0.6246105

> plot(Count ~ Day, data)

> lines(data$Day, predict(fit, data, type = "response"))

[QUESTION CONTINUES ON THE NEXT PAGE]
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Paper 1, Section II
13J Statistical Modelling

The following data were obtained in a randomised controlled trial for a drug. Due
to a manufacturing error, a subset of trial participants received a low dose (LD) instead
of a standard dose (SD) of the drug.

> data

treatment outcome count

1 Control Better 5728

2 Control Worse 101

3 LD Better 1364

4 LD Worse 3

5 SD Better 4413

6 SD Worse 27

(a) Below we analyse the data using Poisson regression:

> fit1 <- glm(count ~ treatment + outcome, family = poisson, data)

> fit2 <- glm(count ~ treatment * outcome, family = poisson, data)

> anova(fit1, fit2, test = "LRT")

Analysis of Deviance Table

Model 1: count ~ treatment + outcome

Model 2: count ~ treatment * outcome

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2 44.48

2 0 0.00 2 44.48 2.194e-10 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(i) After introducing necessary notation, write down the Poisson models being
fitted above.

(ii) Write down the corresponding multinomial models, then state the key the-
oretical result (the “Poisson trick”) that allows you to fit the multinomial
models using Poisson regression. [You do not need to prove this theoretical
result.]

(iii) Explain why the number of degrees of freedom in the likelihood ratio test is
2 in the analysis of deviance table. What can you conclude about the drug?

(b) Below is the summary table of the second model:

[QUESTION CONTINUES ON THE NEXT PAGE]
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> summary(fit2)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 8.65312 0.01321 654.899 < 2e-16 ***

treatmentLD -1.43494 0.03013 -47.628 < 2e-16 ***

treatmentSD -0.26081 0.02003 -13.021 < 2e-16 ***

outcomeWorse -4.03800 0.10038 -40.228 < 2e-16 ***

treatmentLD:outcomeWorse -2.08156 0.58664 -3.548 0.000388 ***

treatmentSD:outcomeWorse -1.05847 0.21758 -4.865 1.15e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(i) Drug efficacy is defined as one minus the ratio of the probability of worsening
in the treated group to the probability of worsening in the control group. By
using a more sophisticated method, a published analysis estimated that the
drug efficacy is 90.0% for the LD treatment and 62.1% for the SD treatment.
Are these numbers similar to what is obtained by Poisson regression? [Hint:
e−1 ≈ 0.37, e−2 ≈ 0.14, and e−3 ≈ 0.05, where e is the base of the natural
logarithm.]

(ii) Explain why the information in the summary table is not enough to test the
hypothesis that the LD drug and the SD drug have the same efficacy. Then
describe how you can test this hypothesis using analysis of deviance in R.
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Paper 4, Section II
13J Statistical Modelling

Let X be an n × p non-random design matrix and Y be a n-vector of random
responses. Suppose Y ∼ N(µ, σ2I), where µ is an unknown vector and σ2 > 0 is known.

(a) Let λ > 0 be a constant. Consider the ridge regression problem

β̂λ = arg min
β
‖Y −Xβ‖2 + λ‖β‖2 .

Let µ̂λ = Xβ̂λ be the fitted values. Show that µ̂λ = HλY , where

Hλ = X(XTX + λI)−1XT .

(b) Show that

E(‖Y − µ̂λ‖2) = ‖(I −Hλ)µ‖2 +
{
n− 2 trace(Hλ) + trace(H2

λ)
}
σ2.

(c) Let Y ∗ = µ + ε∗, where ε∗ ∼ N(0, σ2I) is independent of Y . Show that
‖Y − µ̂λ‖2 + 2σ2trace(Hλ) is an unbiased estimator of E(‖Y ∗ − µ̂λ‖2).

(d) Describe the behaviour (monotonicity and limits) of E(‖Y ∗− µ̂λ‖2) as a function
of λ when p = n and X = I. What is the minimum value of E(‖Y ∗ − µ̂λ‖2)?
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Paper 1, Section II
36C Statistical Physics

Throughout this question you should consider a classical gas and assume that the
number of particles is fixed.

(a) Write down the equation of state for an ideal gas. Write down an expression for
the internal energy of an ideal gas in terms of the heat capacity at constant volume, CV .

(b) Starting from the first law of thermodynamics, find a relation between CV and
the heat capacity at constant pressure, Cp, for an ideal gas. Hence give an expression for
γ = Cp/CV .

(c) Describe the meaning of an adiabatic process. Using the first law of thermo-
dynamics, derive the equation for an adiabatic process in the (p, V )-plane for an ideal
gas.

(d) Consider a simplified Otto cycle (an idealised petrol engine) involving an ideal
gas and consisting of the following four reversible steps:

A→ B: Adiabatic compression from volume V1 to volume V2 < V1;

B → C: Heat Q1 injected at constant volume;

C → D: Adiabatic expansion from volume V2 to volume V1;

D → A: Heat Q2 extracted at constant volume.

Sketch the cycle in the (p, V )-plane and in the (T, S)-plane.

Derive an expression for the efficiency, η = W/Q1, where W is the work out, in
terms of the compression ratio r = V1/V2. How can the efficiency be maximized?

Part II, Paper 1 [TURN OVER]



102

Paper 2, Section II
37C Statistical Physics

(a) What systems are described by microcanonical, canonical and grand canonical
ensembles? Under what conditions is the choice of ensemble irrelevant?

(b) In a simple model a meson consists of two quarks bound in a linear potential,
U(r) = α|r|, where r is the relative displacement of the two quarks and α is a positive
constant. You are given that the classical (non-relativistic) Hamiltonian for the meson is

H(P,R,p, r) =
|P|2
2M

+
|p|2
2µ

+ α|r| ,

where M = 2m is the total mass, µ = m/2 is the reduced mass, P is the total momentum,
p = µdr/dt is the internal momentum, and R is the centre of mass position.

(i) Show that the partition function for a single meson in thermal equilibrium at
temperature T in a three-dimensional volume V can be written as Z1 = ZtransZint, where

Ztrans =
V

(2π~)3

∫
d3P e−β|P|

2/(2M) , Zint =
1

(2π~)3

∫
d3r d3p e−β|p|

2/(2µ)e−βα|r|

and β = 1/(kBT ).

Evaluate Ztrans and evaluate Zint in the large-volume limit (βαV 1/3 � 1).

What is the average separation of the quarks within the meson at temperature T?
[
You may assume that

∫ ∞

−∞
e−c x

2
dx =

√
π/c for c > 0.

]

(ii) Now consider an ideal gas of N such mesons in a three-dimensional volume V .
Calculate the total partition function of the gas.

What is the heat capacity CV ?
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Paper 3, Section II
35C Statistical Physics

(a) A gas of non-interacting particles with spin degeneracy gs has the energy–
momentum relationship E = A(~k)α, for constants A,α > 0. Show that the density
of states, g(E) dE, in a d-dimensional volume V with d > 2 is given by

g(E) dE = BV E(d−α)/αdE ,

where B is a constant that you should determine. [You may denote the surface area of a
unit (d−1)-dimensional sphere by Sd−1.]

(b) Write down the Bose–Einstein distribution for the average number of identical
bosons in a state with energy Er > 0 in terms of β = 1/kBT and the chemical potential
µ. Explain why µ < 0.

(c) Show that an ideal quantum Bose gas in a d-dimensional volume V , with
E = A(~k)α, as above, has

p V = DE ,

where p is the pressure and D is a constant that you should determine.

(d) For such a Bose gas, write down an expression for the number of particles that
do not occupy the ground state. Use this to determine the values of α for which there
exists a Bose–Einstein condensate at sufficiently low temperatures.
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Paper 4, Section II
35C Statistical Physics

(a) Explain what is meant by a first-order phase transition and a second-order phase
transition.

(b) Explain why the (Helmholtz) free energy is the appropriate thermodynamic
potential to consider at fixed T , V and N .

(c) Consider a ferromagnet with free energy

F (T,m) = F0(T ) +
a

2
(T − Tc)m

2 +
b

4
m4 ,

where T is the temperature, m is the magnetization, and a, b, Tc > 0 are constants.

Find the equilibrium value of m at high and low temperatures. Hence, evaluate
the equilibrium thermodynamic free energy as a function of T and compute the entropy
and heat capacity. Determine the jump in the heat capacity and identify the order of the
phase transition.

(d) Now consider a ferromagnet with free energy

F (T,m) = F0(T ) +
a

2
(T − Tc)m

2 +
b

4
m4 +

c

6
m6 ,

where a, b, c, Tc are constants with a, c, Tc > 0, but b 6 0.

Find the equilibrium value of m at high and low temperatures. What is the order
of the phase transition?

For b = 0 determine the behaviour of the heat capacity at high and low temperat-
ures.
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Paper 1, Section II
30K Stochastic Financial Models

(a) What does it mean to say that a stochastic process (Xn)n>0 is a martingale with
respect to a filtration (Fn)n>0?

(b) Let (Xn)n>0 be a martingale, and let ξn = Xn − Xn−1 for n > 1. Suppose ξn
takes values in the set {−1,+1} almost surely for all n > 1. Show that (Xn)n>0 is a simple
symmetric random walk, i.e. that the sequence (ξn)n>1 is IID with P(ξ1 = 1) = 1/2 =
P(ξ1 = −1).

(c) Let (Xn)n>0 be a martingale and let the bounded process (Hn)n>1 be previsible.
Let X̂0 = 0 and

X̂n =

n∑

k=1

Hk(Xk −Xk−1) for n > 1.

Show that (X̂n)n>0 is a martingale.

(d) Let (Xn)n>0 be a simple symmetric random walk with X0 = 0, and let

Ta = inf{n > 0 : Xn = a},

where a is a positive integer. Let

X̂n =

{
Xn if n 6 Ta
2a−Xn if n > Ta.

Show that (X̂n)n>0 is a simple symmetric random walk.

(e) Let (Xn)n>0 be a simple symmetric random walk with X0 = 0, and let
Mn = max06k6nXk. Compute P(Mn = a) for a positive integer a.
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30K Stochastic Financial Models

Consider a one-period market model with d risky assets and one risk-free asset. Let
St denote the vector of prices of the risky assets at time t ∈ {0, 1} and let r be the interest
rate.

(a) What does it mean to say a portfolio ϕ ∈ Rd is an arbitrage for this market?

(b) An investor wishes to maximise their expected utility of time-1 wealth X1

attainable by investing in the market with their time-0 wealth X0 = x. The investor’s
utility function U is increasing and concave. Show that, if there exists an optimal solution
X∗

1 to the investor’s expected utility maximisation problem, then the market has no
arbitrage. [Assume that U(X1) is integrable for any attainable time-1 wealth X1.]

(c) Now introduce a contingent claim with time-1 bounded payout Y . How does
the investor in part (b) calculate an indifference bid price π(Y ) for the claim? Assuming
each such claim has a unique indifference price, show that the map Y 7→ π(Y ) is concave.
[Assume that any relevant utility maximisation problem that you consider has an optimal
solution.]

(d) Consider a contingent claim with time-1 bounded payout Y . Let I ⊆ R be the
set of initial no-arbitrage prices for the claim; that is, the set I consists of all p such that the
market augmented with the contingent claim with time-0 price p has no arbitrage. Show
that π(Y ) 6 sup{p ∈ I}. [Assume that any relevant utility maximisation problem that
you consider has an optimal solution. You may use results from lectures without proof,
such as the fundamental theorem of asset pricing or the existence of marginal utility prices,
as long as they are clearly stated.]
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29K Stochastic Financial Models

(a) Let M = (Mn)n>0 be a martingale and M̂ = (M̂n)n>0 a supermartingale. If
M0 = M̂0, show that E(MT ) > E(M̂T ) for any bounded stopping time T . [If you use a
general result about supermartingales, you must prove it.]

(b) Consider a market with one stock with time-n price Sn and constant interest
rate r. Explain why a self-financing investor’s wealth process (Xn)n>0 satisfies

Xn = (1 + r)Xn−1 + θn
[
Sn − (1 + r)Sn−1

]
,

where θn is the number of shares of the stock held during the nth period.

(c) Given an initial wealth X0, an investor seeks to maximize E[U(XN )], where U is
a given utility function. Suppose the stock price is such that Sn = Sn−1ξn, where (ξn)n>1

is a sequence of independent copies of a random variable ξ. Let V be defined inductively
by

V (n− 1, x) = sup
t∈R

E
[
V
(
n, (1+r)x+ t(1+r−ξ)

) ]
,

with terminal condition V (N, x) = U(x) for all x ∈ R.

Show that the process
(
V (n,Xn)

)
06n6N is a supermartingale for any trading

strategy (θn)16n6N . Suppose that the trading strategy (θ∗n)16n6N with corresponding
wealth process (X∗n)06n6N are such that the process

(
V (n,X∗n)

)
06n6N is a martingale.

Show that (θ∗n)16n6N is optimal.
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(a) What does it mean to say that a stochastic process is a Brownian motion? Show
that, if (Wt)t>0 is a continuous Gaussian process such that E(Wt) = 0 and E(WsWt) = s
for all 0 6 s 6 t, then (Wt)t>0 is a Brownian motion.

For the rest of the question, let (Wt)t>0 be a Brownian motion.

(b) Let Ŵ0 = 0 and Ŵt = tW1/t for t > 0. Show that (Ŵt)t>0 is a Brownian motion.
[You may use without proof the Brownian strong law of large numbers: Wt/t→ 0 almost
surely as t→∞. ]

(c) Fix constants c ∈ R and T > 0. Show that

E
[
f
(
(Wt + ct)06t6T

)]
= E

[
exp

(
cWT−1

2c
2T
)
f
(
(Wt)06t6T

)]
,

for any bounded function f : C[0, T ]→ R of the form

f(ω) = g
(
ω(t1), . . . , ω(tn)

)
,

for some fixed g and fixed 0 < t1 < . . . < tn = T , where C[0, T ] is the space of continuous
functions on [0, T ]. [If you use a general theorem from the lectures, you should prove it.]

(d) Fix constants x ∈ R and T > 0. Show that

E
[
f
(
(Wt + x)t>T

)]
= E

[
exp

(
(x/T )WT−1

2(x2/T )
)
f
(
(Wt)t>T

)]
,

for any bounded function f : C[T,∞)→ R. [In this part you may use the Cameron–Martin
theorem without proof. ]
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2H Topics in Analysis

Write
P = {x ∈ Rn : xj > 0 for all 1 6 j 6 n}

and suppose that K is a non-empty, closed, convex and bounded subset of Rn with
K∩ IntP 6= ∅. By taking logarithms, or otherwise, show that there is a unique x∗ ∈ K∩P
such that

n∏

j=1

xj 6
n∏

j=1

x∗j

for all x ∈ K ∩ P .

Show that
n∑

j=1

xj
x∗j

6 n for all x ∈ K ∩ P .

Identify the point x∗ in the case that K has the property

(x1, x2, . . . , xn−1, xn) ∈ K ⇒ (x2, x3, . . . , xn, x1) ∈ K ,

and justify your answer.

Show that, given any a ∈ IntP , we can find a set K, as above, with x∗ = a.

Paper 2, Section I
2H Topics in Analysis

Let Ω be a non-empty bounded open set in R2 with closure Ω and boundary ∂Ω
and let φ : Ω → R be a continuous function. Give a proof or a counterexample for each of
the following assertions.

(i) If φ is twice differentiable on Ω with ∇2φ(x) > 0 for all x ∈ Ω, then there
exists an x0 ∈ ∂Ω with φ(x0) > φ(x) for all x ∈ Ω.

(ii) If φ is twice differentiable on Ω with ∇2φ(x) < 0 for all x ∈ Ω, then there
exists an x0 ∈ ∂Ω with φ(x0) > φ(x) for all x ∈ Ω.

(iii) If φ is four times differentiable on Ω with

∂4φ

∂x4
(x) +

∂4φ

∂y4
(x) > 0

for all x ∈ Ω, then there exists an x0 ∈ ∂Ω with φ(x0) > φ(x) for all x ∈ Ω.

(iv) If φ is twice differentiable on Ω with ∇2φ(x) = 0 for all x ∈ Ω, then there
exists an x0 ∈ ∂Ω with φ(x0) > φ(x) for all x ∈ Ω.
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2H Topics in Analysis

State Runge’s theorem on the approximation of analytic functions by polynomials.

Let Ω = {z ∈ C, Re z > 0, Im z > 0}. Establish whether the following statements
are true or false by giving a proof or a counterexample in each case.

(i) If f : Ω → C is the uniform limit of a sequence of polynomials Pn, then f is
a polynomial.

(ii) If f : Ω → C is analytic, then there exists a sequence of polynomials Pn such

that for each integer r > 0 and each z ∈ Ω we have P
(r)
n (z) → f (r)(z).

Paper 4, Section I
2H Topics in Analysis

(a) State Brouwer’s fixed-point theorem in 2 dimensions.

(b) State an equivalent theorem on retraction and explain (without detailed calcu-
lations) why it is equivalent.

(c) Suppose that A is a 3× 3 real matrix with strictly positive entries. By defining
an appropriate function f : 4→ 4, where

4 = {x ∈ R3 : x1 + x2 + x3 = 1, x1, x2, x3 > 0},

show that A has a strictly positive eigenvalue.
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11H Topics in Analysis

Let r : [−1, 1]→ R be a continuous function with r(x) > 0 for all but finitely many
values of x.

(a) Show that

〈u, v〉 =

∫ 1

−1
u(x)v(x)r(x) dx (∗)

defines an inner product on C([−1, 1]).

(b) Show that for each n there exists a polynomial Pn of degree exactly n which is
orthogonal, with respect to the inner product (∗), to all polynomials of lower degree.

(c) Show that Pn has n simple zeros ω1(n), ω2(n), . . . , ωn(n) on [−1, 1].

(d) Show that for each n there exist unique real numbers Aj(n), 1 6 j 6 n, such
that whenever Q is a polynomial of degree at most 2n− 1,

∫ 1

−1
Q(x)r(x) dx =

n∑

j=1

Aj(n)Q
(
ωj(n)

)
.

(e) Show that
n∑

j=1

Aj(n)f
(
ωj(n)

)
→
∫ 1

−1
f(x)r(x) dx

as n→∞ for all f ∈ C([−1, 1]).

(f) If R > 1, K > 0, am is real with |am| 6 KR−m and f(x) =

∞∑

m=1

amx
m, show

that ∣∣∣∣∣∣

∫ 1

−1
f(x)r(x) dx−

n∑

j=1

Aj(n)f
(
ωj(n)

)
∣∣∣∣∣∣
6 2KR−2n+1

R− 1

∫ 1

−1
r(x) dx.

(g) If r(x) = (1 − x2)1/2 and Pn(0) = 1, identify Pn (giving brief reasons) and the
ωj(n). [Hint: A change of variable may be useful.]
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12H Topics in Analysis

Let x be irrational with nth continued fraction convergent

pn
qn

= a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 +
1

. . .

an−1 +
1

an
.

Show that (
pn pn−1

qn qn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an−1 1

1 0

)(
an 1
1 0

)

and deduce that ∣∣∣∣
pn
qn

− x

∣∣∣∣ 6
1

qnqn+1
.

[You may quote the result that x lies between pn/qn and pn+1/qn+1. ]

We say that y is a quadratic irrational if it is an irrational root of a quadratic
equation with integer coefficients. Show that if y is a quadratic irrational, we can find an
M > 0 such that ∣∣∣∣

p

q
− y

∣∣∣∣ >
M

q2

for all integers p and q with q > 0.

Using the hypotheses and notation of the first paragraph, show that if the sequence
(an) is unbounded, x cannot be a quadratic irrational.
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40A Waves

Compressible fluid of equilibrium density ρ0, pressure p0 and sound speed c0 is
contained in the region between an inner rigid sphere of radius R and an outer elastic
sphere of equilibrium radius 2R. The elastic sphere is made to oscillate radially in such
a way that it exerts a spherically symmetric, perturbation pressure p̃ = εp0 cosωt on the
fluid at r = 2R, where ε� 1 and the frequency ω is sufficiently small that

α ≡ ωR

c0
6 π

2
.

You may assume that the acoustic velocity potential satisfies the wave equation

∂2φ

∂t2
= c20∇2φ .

(a) Derive an expression for φ(r, t).

(b) Hence show that the net radial component of the acoustic intensity (wave-energy
flux) I = p̃u is zero when averaged appropriately in a way you should define. Interpret
this result physically.

(c) Briefly discuss the possible behaviour of the system if the forcing frequency ω is
allowed to increase to larger values.

[
For a spherically symmetric variable ψ(r, t), ∇2ψ =

1

r

∂2

∂r2
(rψ) .

]
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40A Waves

A semi-infinite elastic medium with shear modulus µ and shear-wave speed cs lies
in z 6 0. Above it, there is a layer 0 6 z 6 h of a second elastic medium with shear
modulus µ and shear-wave speed cs < cs. The top boundary is stress-free. Consider
a monochromatic SH-wave propagating in the x-direction at speed c with wavenumber
k > 0.

(a) Derive the dispersion relation

tan
[
kh
√
c2/c2s − 1

]
=
µ

µ

√
1− c2/c2s√
c2/c2s − 1

for trapped modes with no disturbance as z → −∞.

(b) Show graphically that there is always a zeroth mode, and show that the other
modes have cut-off frequencies

ω(n)
c =

nπcscs

h
√
c2s − c2s

,

where n is a positive integer. Sketch a graph of frequency ω against k for the n = 1 mode
showing the behaviour near cut-off and for large k.
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39A Waves

Consider a two-dimensional stratified fluid of sufficiently slowly varying background
density ρb(z) that small-amplitude vertical-velocity perturbations w(x, z, t) can be as-
sumed to satisfy the linear equation

∇2

(
∂2w

∂t2

)
+N2(z)

∂2w

∂x2
= 0, where N2 =

−g
ρ0

dρb
dz

and ρ0 is a constant. The background density profile is such that N2 is piecewise constant
with N2 = N2

0 > 0 for |z| > L and with N2 = 0 in a layer |z| < L of uniform density ρ0.

A monochromatic internal wave of amplitude AI is incident on the intermediate
layer from z = −∞, and produces velocity perturbations of the form

w(x, z, t) = ŵ(z)ei(kx−ωt),

where k > 0 and 0 < ω < N0.

(a) Show that the vertical variations have the form

ŵ(z) =





AI exp
[
− im (z + L)

]
+AR exp

[
im
(
z + L

)]
for z < −L ,

BC cosh kz +BS sinh kz for |z| < L ,

AT exp
[
− im (z − L)

]
for z > L ,

where AR, BC , BS and AT are (in general) complex amplitudes and

m = k

√
N2

0

ω2
− 1 .

In particular, you should justify the choice of signs for the coefficients involving m.

(b) What are the appropriate boundary conditions to impose on ŵ at z = ±L to
determine the unknown amplitudes?

(c) Apply these boundary conditions to show that

AT
AI

=
2imk

2imk cosh 2α+ (k2 −m2) sinh 2α
,

where α = kL.

(d) Hence show that

∣∣∣∣
AT
AI

∣∣∣∣
2

=

[
1 +

(
sinh 2α

sin 2ψ

)2
]−1

,

where ψ is the angle between the incident wavevector and the downward vertical.
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39A Waves

A plane shock is moving with speed U into a perfect gas. Ahead of the shock the
gas is at rest with pressure p1 and density ρ1, while behind the shock the velocity, pressure
and density of the gas are u2, p2 and ρ2 respectively.

(a) Write down the Rankine–Hugoniot relations across the shock, briefly explaining
how they arise.

(b) Show that

ρ1
ρ2

=
2c21 + (γ − 1)U2

(γ + 1)U2
,

where c21 = γp1/ρ1 and γ is the ratio of the specific heats of the gas.

(c) Now consider a change of frame such that the shock is stationary and the gas has
a component of velocity U parallel to the shock on both sides. Deduce that a stationary
shock inclined at a 45 degree angle to an incoming stream of Mach number M =

√
2U/c1

deflects the flow by an angle δ given by

tan δ =
M2 − 2

γM2 + 2
.

[
Note that tan(α− β) =

tanα− tanβ

1 + tanα tanβ
.
]
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