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Paper 1, Section I
3F Analysis I

State and prove the alternating series test. Hence show that the series
∑∞

n=1
(−1)n+1

n
converges. Show also that

7

12
6
∞∑

n=1

(−1)n+1

n
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Paper 1, Section I
4F Analysis I

State and prove the Bolzano–Weierstrass theorem.

Consider a bounded sequence (xn). Prove that if every convergent subsequence of
(xn) converges to the same limit L then (xn) converges to L.

Paper 1, Section II
9F Analysis I

(a) State the intermediate value theorem. Show that if f : R → R is a continuous
bijection and x1 < x2 < x3 then either f(x1) < f(x2) < f(x3) or f(x1) > f(x2) > f(x3).
Deduce that f is either strictly increasing or strictly decreasing.

(b) Let f : R → R and g : R → R be functions. Which of the following statements
are true, and which can be false? Give a proof or counterexample as appropriate.

(i) If f and g are continuous then f ◦ g is continuous.

(ii) If g is strictly increasing and f ◦ g is continuous then f is continuous.

(iii) If f is continuous and a bijection then f−1 is continuous.

(iv) If f is differentiable and a bijection then f−1 is differentiable.

Part IA, Paper 1



3

Paper 1, Section II
10F Analysis I

Let f : [a, b] → R be a continuous function.

(a) Let m = minx∈[a,b] f(x) and M = maxx∈[a,b] f(x). If g : [a, b] → R is a positive
continuous function, prove that

m

∫ b

a
g(x)dx 6

∫ b

a
f(x)g(x)dx 6M

∫ b

a
g(x)dx

directly from the definition of the Riemann integral.

(b) Let f : [0, 1] → R be a continuous function. Show that

∫ 1/
√
n

0
nf(x)e−nxdx→ f(0)

as n→ ∞, and deduce that ∫ 1

0
nf(x)e−nxdx→ f(0)

as n→ ∞.

Paper 1, Section II
11F Analysis I

Let f : R→ R be n-times differentiable, for some n > 0.

(a) State and prove Taylor’s theorem for f , with the Lagrange form of the remainder.
[You may assume Rolle’s theorem.]

(b) Suppose that f : R→ R is an infinitely differentiable function such that f(0) = 1
and f ′(0) = 0, and satisfying the differential equation f ′′(x) = −f(x). Prove carefully that

f(x) =

∞∑

k=0

(−1)k
x2k

(2k)!
.
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Paper 1, Section II
12F Analysis I

(a) Let
∑∞

n=0 anz
n be a power series with an ∈ C. Show that there exists R ∈ [0,∞]

(called the radius of convergence) such that the series is absolutely convergent when |z| < R
but is divergent when |z| > R.

Suppose that the radius of convergence of the series
∑∞

n=0 anz
n is R = 2. For a

fixed positive integer k, find the radii of convergence of the following series. [You may
assume that limn→∞ |an|1/n exists.]

(i)
∞∑

n=0

aknz
n .

(ii)
∞∑

n=0

anz
kn .

(iii)
∞∑

n=0

anz
n2

.

(b) Suppose that there exist values of z for which
∑∞

n=0 bne
nz converges and values

for which it diverges. Show that there exists a real number S such that
∑∞

n=0 bne
nz

diverges whenever Re(z) > S and converges whenever Re(z) < S.

Determine the set of values of z for which

∞∑

n=0

2neinz

(n+ 1)2

converges.
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Paper 2, Section I
1A Differential Equations

Solve the difference equation

yn+2 − 4yn+1 + 4yn = n

subject to the initial conditions y0 = 1 and y1 = 0.

Paper 2, Section I
2A Differential Equations

Let y1 and y2 be two linearly independent solutions to the differential equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0 .

Show that the Wronskian W = y1y
′
2 − y2y

′
1 satisfies

dW

dx
+ pW = 0 .

Deduce that if y2(x0) = 0 then

y2(x) = y1(x)

∫ x

x0

W (t)

y1(t)2
dt .

Given that y1(x) = x3 satisfies the equation

x2
d2y

dx2
− x

dy

dx
− 3y = 0

find the solution which satisfies y(1) = 0 and y′(1) = 1.
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Paper 2, Section II
5A Differential Equations

For a linear, second order differential equation define the terms ordinary point,
singular point and regular singular point.

For a, b ∈ R and b /∈ Z consider the following differential equation

x
d2y

dx2
+ (b− x)

dy

dx
− ay = 0 . (∗)

Find coefficients cm(a, b) such that the function y1 = M(x, a, b), where

M(x, a, b) =

∞∑

m=0

cm(a, b)xm,

satisfies (∗). By making the substitution y = x1−bu(x), or otherwise, find a second linearly
independent solution of the form y2 = x1−bM(x, α, β) for suitable α, β.

Suppose now that b = 1. By considering a limit of the form

lim
b→1

y2 − y1
b− 1

,

or otherwise, obtain two linearly independent solutions to (∗) in terms of M and derivatives
thereof.
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Paper 2, Section II
6A Differential Equations

By means of the change of variables η = x − t and ξ = x + t, show that the wave
equation for u = u(x, t)

∂2u

∂x2
− ∂2u

∂t2
= 0 (∗)

is equivalent to the equation
∂2U

∂η ∂ξ
= 0

where U(η, ξ) = u(x, t). Hence show that the solution to (∗) on x ∈ R and t > 0, subject
to the initial conditions

u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x)

is

u(x, t) =
1

2
[f(x− t) + f(x+ t)] +

1

2

∫ x+t

x−t
g(y) dy .

Deduce that if f(x) = 0 and g(x) = 0 on the interval |x − x0| > r then u(x, t) = 0 on
|x− x0| > r + t.

Suppose now that y = y(x, t) is a solution to the wave equation (∗) on the finite
interval 0 < x < L and obeys the boundary conditions

y(0, t) = y(L, t) = 0

for all t. The energy is defined by

E(t) =
1

2

∫ L

0

[(
∂y

∂x

)2

+

(
∂y

∂t

)2
]

dx .

By considering dE/dt, or otherwise, show that the energy remains constant in time.

Paper 2, Section II
7A Differential Equations

The function θ = θ(t) takes values in the interval (−π, π] and satisfies the differential
equation

d2θ

dt2
+ (λ− 2µ) sin θ +

2µ sin θ√
5 + 4 cos θ

= 0 , (∗)

where λ and µ are positive constants.

Let ω = θ̇. Express (∗) in terms of a pair of first order differential equations in
(θ, ω). Show that if 3λ < 4µ then there are three fixed points in the region 0 6 θ 6 π.

Classify all the fixed points of the system in the case 3λ < 4µ. Sketch the phase
portrait in the case λ = 1 and µ = 3/2.

Comment briefly on the case when 3λ > 4µ.
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Paper 2, Section II
8A Differential Equations

For an n× n matrix A, define the matrix exponential by

exp(A) =
∞∑

m=0

Am

m!
,

where A0 ≡ I, with I being the n × n identity matrix. [You may assume that
exp((s + t)A) = exp(sA) exp(tA) for real numbers s, t and you do not need to consider
issues of convergence.] Show that

d

dt
exp(tA) = A exp(tA) .

Deduce that the unique solution to the initial value problem

dy

dt
= Ay, y(0) = y0, where y(t) =



y1(t)

...
yn(t)


 ,

is y(t) = exp(tA)y0.

Let x = x(t) and f = f(t) be vectors of length n and A a real n × n matrix. By
considering a suitable integrating factor, show that the unique solution to

dx

dt
−Ax = f , x(0) = x0 (∗)

is given by

x(t) = exp(tA)x0 +

∫ t

0
exp[(t− s)A]f(s) ds .

Hence, or otherwise, solve the system of differential equations (∗) when

A =




2 2 −2
5 1 −3
1 5 −3


 , f(t) =




sin t
3 sin t

0


 , x0 =




1
1
2


 .

[Hint: Compute A2 and show that A3 = 0.]
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Paper 4, Section I
3C Dynamics and Relativity

A trolley travels with initial speed v0 along a frictionless, horizontal, linear track.
It slows down by ejecting gas in the direction of motion. The gas is emitted at a constant
mass ejection rate α and with constant speed u relative to the trolley. The trolley and its
supply of gas initially have a combined mass of m0. How much time is spent ejecting gas
before the trolley stops? [Assume that the trolley carries sufficient gas.]

Paper 4, Section I
4C Dynamics and Relativity

A rigid body composed of N particles with positions xi, and masses mi (i =
1, 2, . . . , N), rotates about the z-axis with constant angular speed ω. Show that the
body’s kinetic energy is T = 1

2Iω
2, where you should give an expression for the moment

of inertia I in terms of the particle masses and positions.

Consider a solid cuboid of uniform density, mass M , and dimensions 2a × 2b × 2c.
Choose coordinate axes so that the cuboid is described by the points (x, y, z) with
−a 6 x 6 a, −b 6 y 6 b, and −c 6 z 6 c. In terms of M , a, b, and c, find the
cuboid’s moment of inertia I for rotations about the z-axis.
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Paper 4, Section II
9C Dynamics and Relativity

A particle of mass m follows a one-dimensional trajectory x(t) in the presence of a
variable force F (x, t). Write down an expression for the work done by this force as the
particle moves from x(ta) = a to x(tb) = b. Assuming that this is the only force acting on
the particle, show that the work done by the force is equal to the change in the particle’s
kinetic energy.

What does it mean if a force is said to be conservative?

A particle moves in a force field given by

F (x) =

{
−F0 e

−x/λ x > 0

F0 e
x/λ x < 0

where F0 and λ are positive constants. The particle starts at the origin x = 0 with initial
velocity v0 > 0. Show that, as the particle’s position increases from x = 0 to larger x > 0,
the particle’s velocity v at position x is given by

v(x) =
√
v20 + v2e

(
e−|x|/λ − 1

)

where you should determine ve. What determines whether the particle will escape to
infinity or oscillate about the origin? Sketch v(x) versus x for each of these cases, carefully
identifying any significant velocities or positions.

In the case of oscillatory motion, find the period of oscillation in terms of v0, ve,
and λ. [Hint: You may use the fact that

∫ 1

w

du

u
√
u− w =

2 cos−1
√
w√

w

for 0 < w < 1.]
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Paper 4, Section II
10C Dynamics and Relativity

(a) A mass m is acted upon by a central force

F = −km
r3

r

where k is a positive constant and r is the displacement of the mass from the origin. Show
that the angular momentum and energy of the mass are conserved.

(b) Working in plane polar coordinates (r, θ), or otherwise, show that the distance
r = |r| between the mass and the origin obeys the following differential equation

r̈ = − k

r2
+
h2

r3

where h is the angular momentum per unit mass.
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(c) A satellite is initially in a circular orbit of radius r1 and
experiences the force described above. At θ = 0 and time t1, the
satellite emits a short rocket burst putting it on an elliptical orbit with
its closest distance to the centre r1 and farthest distance r2. When
θ = π and the time is t2, the satellite reaches the farthest distance
and a second short rocket burst puts the rocket on a circular orbit of
radius r2. (See figure.) [Assume that the duration of the rocket bursts
is negligible.]

(i) Show that the satellite’s angular momentum per unit
mass while in the elliptical orbit is

h =

√
Ckr1r2
r1 + r2

where C is a number you should determine.

(ii) What is the change in speed as a result of the rocket
burst at time t1? And what is the change in speed at
t2?

(iii) Given that the elliptical orbit can be described by

r =
h2

k(1 + e cos θ)

where e is the eccentricity of the orbit, find t2 − t1 in
terms of r1, r2, and k. [Hint: The area of an ellipse
is equal to πab, where a and b are its semi-major and
semi-minor axes; these are related to the eccentricity by

e =
√

1− b2

a2
.]
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Paper 4, Section II
11C Dynamics and Relativity

Consider an inertial frame of reference S and a frame of reference S′ which is rotating
with constant angular velocity ω relative to S. Assume that the two frames have a common
origin O.

Let A be any vector. Explain why the derivative of A in frame S is related to its
derivative in S′ by the following equation

(
dA

dt

)

S

=

(
dA

dt

)

S′
+ ω ×A .

[Hint: It may be useful to use Cartesian basis vectors in both frames.]

Let r(t) be the position vector of a particle, measured from O. Derive the expression

relating the particle’s acceleration as observed in S,
(
d2r
dt2

)
S

, to the acceleration observed

in S′,
(
d2r
dt2

)
S′ , written in terms of r, ω and

(
dr
dt

)
S′ .

A small bead of mass m is threaded on a smooth, rigid, circular wire of radius
R. At any given instant, the wire hangs in a vertical plane with respect to a downward
gravitational acceleration g. The wire is rotating with constant angular velocity ω about
its vertical diameter. Let θ(t) be the angle between the downward vertical and the radial
line going from the centre of the hoop to the bead.

(i) Show that θ(t) satisfies the following equation of motion

θ̈ =
(
ω2 cos θ − g

R

)
sin θ .

(ii) Find any equilibrium angles and determine their stability.

(iii) Find the force of the wire on the bead as a function of θ and θ̇.

Part IA, Paper 1
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Paper 4, Section II
12C Dynamics and Relativity

Write down the expression for the momentum of a particle of rest mass m, moving
with velocity v where v = |v| is near the speed of light c. Write down the corresponding
4-momentum.

Such a particle experiences a force F. Why is the following expression for the
particle’s acceleration,

a =
F

m
,

not generally correct? Show that the force can be written as follows

F = mγ

(
γ2

c2
(v · a)v + a

)
.

Invert this expression to find the particle’s acceleration as the sum of two vectors, one
parallel to F and one parallel to v.

A particle with rest mass m and charge q is in the presence of a constant electric
field E which exerts a force F = qE on the particle. If the particle is at rest at t = 0, its
motion will be in the direction of E for t > 0. Determine the particle’s speed for t > 0.
How does the velocity behave as t→∞?

[Hint: You may find that trigonometric substitution is helpful in evaluating an
integral.]
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Paper 3, Section I
1D Groups

Let G be a finite group and denote the centre of G by Z(G). Prove that if the
quotient group G/Z(G) is cyclic then G is abelian. Does there exist a group H such that

(i) |H/Z(H)| = 7 ?

(ii) |H/Z(H)| = 6 ?

Justify your answers.

Paper 3, Section I
2D Groups

Let g and h be elements of a group G. What does it mean to say g and h are
conjugate in G? Prove that if two elements in a group are conjugate then they have the
same order.

Define the Möbius group M. Prove that if g, h ∈ M are conjugate they have the
same number of fixed points. Quoting clearly any results you use, show that any nontrivial
element of M of finite order has precisely 2 fixed points.
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Paper 3, Section II
5D Groups

(a) Let x be an element of a finite group G. Define the order of x and the order of
G. State and prove Lagrange’s theorem. Deduce that the order of x divides the order of G.

(b) If G is a group of order n, and d is a divisor of n where d < n, is it always true
that G must contain an element of order d? Justify your answer.

(c) Denote the cyclic group of order m by Cm.

(i) Prove that if m and n are coprime then the direct product Cm×Cn is cyclic.

(ii) Show that if a finite group G has all non-identity elements of order 2, then
G is isomorphic to C2×· · ·×C2. [The direct product theorem may be used
without proof.]

(d) Let G be a finite group and H a subgroup of G.

(i) Let x be an element of order d in G. If r is the least positive integer such
that xr ∈ H, show that r divides d.

(ii) Suppose further that H has index n. If x ∈ G, show that xk ∈ H for some
k such that 0 < k 6 n. Is it always the case that the least positive such k
is a factor of n? Justify your answer.

Paper 3, Section II
6D Groups

(a) Let G be a finite group acting on a set X. For x ∈ X, define the orbit Orb(x)
and the stabiliser Stab(x) of x. Show that Stab(x) is a subgroup of G. State and prove
the orbit-stabiliser theorem.

(b) Let n > k > 1 be integers. Let G = Sn, the symmetric group of degree n,
and X be the set of all ordered k-tuples (x1, . . . , xk) with xi ∈ {1, 2, . . . , n}. Then G acts
on X, where the action is defined by σ(x1, . . . , xk) = (σ(x1), . . . , σ(xk)) for σ ∈ Sn and
(x1, . . . , xk) ∈ X. For x = (1, 2, . . . , k) ∈ X, determine Orb(x) and Stab(x) and verify
that the orbit-stabiliser theorem holds in this case.

(c) We say that G acts doubly transitively on X if, whenever (x1, x2) and (y1, y2) are
elements of X ×X with x1 6= x2 and y1 6= y2, there exists some g ∈ G such that gx1 = y1
and gx2 = y2.

Assume that G is a finite group that acts doubly transitively on X, and let x ∈ X.
Show that if H is a subgroup of G that properly contains Stab(x) (that is, Stab(x) ⊆ H
but Stab(x) 6= H) then the action of H on X is transitive. Deduce that H = G.
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Paper 3, Section II
7D Groups

Let G be a finite group of order n. Show that G is isomorphic to a subgroup H
of Sn, the symmetric group of degree n. Furthermore show that this isomorphism can be
chosen so that any nontrivial element of H has no fixed points.

Suppose n is even. Prove that G contains an element of order 2.

What does it mean for an element of Sm to be odd? Suppose H is a subgroup of
Sm for some m, and H contains an odd element. Prove that precisely half of the elements
of H are odd.

Now suppose n = 4k + 2 for some positive integer k. Prove that G is not simple.
[Hint: Consider the sign of an element of order 2.]

Can a nonabelian group of even order be simple?
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Paper 3, Section II
8D Groups

(a) Let A be an abelian group (not necessarily finite). We define the generalised
dihedral group to be the set of pairs

D(A) = {(a, ε) : a ∈ A, ε = ±1} ,

with multiplication given by

(a, ε)(b, η) = (abε, εη) .

The identity is (e, 1) and the inverse of (a, ε) is (a−ε, ε). You may assume that this
multiplication defines a group operation on D(A).

(i) Identify A with the set of all pairs in which ε = +1. Show that A is a
subgroup of D(A). By considering the index of A in D(A), or otherwise,
show that A is a normal subgroup of D(A).

(ii) Show that every element of D(A) not in A has order 2. Show that D(A) is
abelian if and only if a2 = e for all a ∈ A. If D(A) is non-abelian, what is
the centre of D(A)? Justify your answer.

(b) Let O(2) denote the group of 2× 2 orthogonal matrices. Show that all elements
of O(2) have determinant 1 or −1. Show that every element of SO(2) is a rotation. Let

J =

(
1 0
0 −1

)
. Show that O(2) decomposes as a union SO(2) ∪ SO(2)J .

[You may assume standard properties of determinants.]

(c) Let B be the (abelian) group {z ∈ C : |z| = 1}, with multiplication of
complex numbers as the group operation. Write down, without proof, isomorphisms
SO(2)∼= B ∼= R/Z where R denotes the additive group of real numbers and Z the subgroup
of integers. Deduce that O(2)∼= D(B), the generalised dihedral group defined in part (a).
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1E Numbers and Sets

Consider functions f : X → Y and g : Y → X. Which of the following statements
are always true, and which can be false? Give proofs or counterexamples as appropriate.

(i) If g ◦ f is surjective then f is surjective.

(ii) If g ◦ f is injective then f is injective.

(iii) If g ◦ f is injective then g is injective.

If X = {1, . . . ,m} and Y = {1, . . . , n} with m < n, and g ◦ f is the identity on X,
then how many possibilities are there for the pair of functions f and g?

Paper 4, Section I
2E Numbers and Sets

The Fibonacci numbers Fn are defined by F1 = 1, F2 = 1, Fn+2 = Fn+1+Fn (n > 1).
Let an = Fn+1/Fn be the ratio of successive Fibonacci numbers.

(i) Show that an+1 = 1 + 1/an. Hence prove by induction that

(−1)nan+2 6 (−1)nan

for all n > 1. Deduce that the sequence a2n is monotonically decreasing.

(ii) Prove that
Fn+2Fn − F 2

n+1 = (−1)n+1

for all n > 1. Hence show that an+1 − an → 0 as n→∞.

(iii) Explain without detailed justification why the sequence an has a limit.
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5E Numbers and Sets

(a) Let S be the set of all functions f : N→ R. Define δ : S → S by

(δf)(n) = f(n+ 1)− f(n) .

(i) Define the binomial coefficient
(
n
r

)
for 0 6 r 6 n. Setting

(
n
r

)
= 0 when

r > n, prove from your definition that if fr(n) =
(
n
r

)
then δfr = fr−1.

(ii) Show that if f ∈ S is integer-valued and δk+1f = 0, then

f(n) = c0

(
n

k

)
+ c1

(
n

k − 1

)
+ · · ·+ ck−1

(
n

1

)
+ ck

for some integers c0, . . . , ck.

(b) State the binomial theorem. Show that

n∑

r=0

(−1)r
(
n

r

)2

=

{
0 if n is odd

(−1)n/2
(

n
n/2

)
if n is even

.
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6E Numbers and Sets

(a) (i) By considering Euclid’s algorithm, show that the highest common factor of
two positive integers a and b can be written in the form αa+βb for suitable
integers α and β. Find an integer solution of

15x+ 21y + 35z = 1 .

Is your solution unique?

(ii) Suppose that n and m are coprime. Show that the simultaneous congruences

x ≡ a (mod n) ,

x ≡ b (mod m)

have the same set of solutions as x ≡ c (mod mn) for some c ∈ N. Hence
solve (i.e. find all solutions of) the simultaneous congruences

3x ≡ 1 (mod 5) ,

5x ≡ 1 (mod 7) ,

7x ≡ 1 (mod 3) .

(b) State the inclusion–exclusion principle.

For integers r, n > 1, denote by φr(n) the number of ordered r-tuples
(x1, . . . , xr) of integers xi satisfying 1 6 xi 6 n for i = 1, . . . , r and such
that the greatest common divisor of {n, x1, . . . , xr} is 1. Show that

φr(n) = nr
∏

p|n
(1− 1

pr
)

where the product is over all prime numbers p dividing n.
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7E Numbers and Sets

(a) Prove that every real number α ∈ (0, 1] can be written in the form α =∑∞
n=1 2−bn where (bn) is a strictly increasing sequence of positive integers.

Are such expressions unique?

(b) Let θ ∈ R be a root of f(x) = αdx
d + · · · + α1x + α0, where α0, . . . , αd ∈ Z.

Suppose that f has no rational roots, except possibly θ.

(i) Show that if s, t ∈ R then

|f(s)− f(t)| 6 A(max{|s|, |t|, 1})d−1|s− t| .

where A is a constant depending only on f .

(ii) Deduce that if p, q ∈ Z with q > 0 and 0 <
∣∣θ − p

q

∣∣ < 1 then

∣∣∣∣θ −
p

q

∣∣∣∣ >
1

A

(
1

|θ|+ 1

)d−1 1

qd
.

(c) Prove that α =
∑∞

n=1 2−n! is transcendental.

(d) Let β and γ be transcendental numbers. What of the following statements are
always true and which can be false? Briefly justify your answers.

(i) βγ is transcendental.

(ii) βn is transcendental for every n ∈ N.
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Paper 4, Section II
8E Numbers and Sets

(a) Prove that a countable union of countable sets is countable.

(b) (i) Show that the set NN of all functions N→ N is uncountable.

(ii) Determine the countability or otherwise of each of the two sets

A = {f ∈ NN : f(n) 6 f(n+ 1) for all n ∈ N},
B = {f ∈ NN : f(n) > f(n+ 1) for all n ∈ N}.

Justify your answers.

(c) A permutation σ of the natural numbers N is a mapping σ ∈ NN that is bijective.
Determine the countability or otherwise of each of the two sets C and D of permutations,
justifying your answers:

(i) C is the set of all permutations σ of N such that σ(j) = j for all sufficiently
large j.

(ii) D is the set all permutations σ of N such that

σ(j) = j − 1 or j or j + 1

for each j.
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Paper 2, Section I
3D Probability

A coin has probability p of landing heads. Let qn be the probability that the
number of heads after n tosses is even. Give an expression for qn+1 in terms of qn. Hence,
or otherwise, find qn.

Paper 2, Section I
4F Probability

Let X be a continuous random variable taking values in [0,
√
3]. Let the probability

density function of X be

fX(x) =
c

1 + x2
, for x ∈ [0,

√
3],

where c is a constant.

Find the value of c and calculate the mean, variance and median of X.

[Recall that the median of X is the number m such that P(X 6 m) = 1
2 .]
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9E Probability

(a) (i) Define the conditional probability P(A|B) of the event A given the event B.
Let {Bj : 1 6 j 6 n} be a partition of the sample space such that P(Bj) > 0
for all j. Show that, if P(A) > 0,

P(Bj |A) =
P(A|Bj)P(Bj)∑n
k=1 P(A|Bk)P(Bk)

.

(ii) There are n urns, the rth of which contains r − 1 red balls and n − r blue
balls. Alice picks an urn (uniformly) at random and removes two balls
without replacement. Find the probability that the first ball is blue, and
the conditional probability that the second ball is blue, given that the first is
blue. [You may assume, if you wish, that

∑n−1
i=1 i(i−1) = 1

3n(n−1)(n−2).]

(b) (i) What is meant by saying that two events A and B are independent? Two
fair (6-sided) dice are rolled. Let At be the event that the sum of the
numbers shown is t, and let Bi be the event that the first die shows i. For
what values of t and i are the two events At and Bi independent?

(ii) The casino at Monte Corona features the following game: three coins each
show heads with probability 3/5 and tails otherwise. The first counts 10
points for a head and 2 for a tail; the second counts 4 points for both a head
and a tail; and the third counts 3 points for a head and 20 for a tail. You
and your opponent each choose a coin. You cannot both choose the same
coin. Each of you tosses your coin once and the person with the larger score
wins the jackpot. Would you prefer to be the first or the second to choose
a coin?
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10E Probability

(a) Alanya repeatedly rolls a fair six-sided die. What is the probability that the
first number she rolls is a 1, given that she rolls a 1 before she rolls a 6?

(b) Let (Xn)n>0 be a simple symmetric random walk on the integers starting at
x ∈ Z, that is,

Xn =

{
x if n = 0

x+
∑n

i=1 Yi if n > 1
,

where (Yn)n>1 is a sequence of IID random variables with P(Yn = 1) = P(Yn = −1) = 1
2 .

Let T =min{n > 0 : Xn = 0} be the time that the walk first hits 0.

(i) Let n be a positive integer. For 0 < x < n, calculate the probability that
the walk hits 0 before it hits n.

(ii) Let x = 1 and let A be the event that the walk hits 0 before it hits 3. Find
P(X1 = 0|A). Hence find E(T |A).

(iii) Let x = 1 and let B be the event that the walk hits 0 before it hits 4. Find
E(T |B).

Paper 2, Section II
11D Probability

Let ∆ be the disc of radius 1 with centre at the origin O. Let P be a random point
uniformly distributed in ∆. Let (R,Θ) be the polar coordinates of P . Show that R and
Θ are independent and find their probability density functions fR and fΘ.

Let A, B and C be three random points selected independently and uniformly in
∆. Find the expected area of triangle OAB and hence find the probability that C lies in
the interior of triangle OAB.

Find the probability that O, A, B and C are the vertices of a convex quadrilat-
eral.
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Paper 2, Section II

12F Probability
State and prove Chebyshev’s inequality.

Let (Xi)i⩾1 be a sequence of independent, identically distributed random variables
such that

P(Xi = 1) = p and P(Xi = 0) = 1− p

for some p ∈ [0, 1], and let f : [0, 1] → R be a continuous function.

(i) Prove that

Bn(p) := E
(
f

(
X1 + · · ·+Xn

n

))

is a polynomial function of p, for any natural number n.

(ii) Let δ > 0. Prove that

∑

k∈Kδ

(
n

k

)
pk(1− p)n−k ⩽ 1

4nδ2
,

where Kδ is the set of natural numbers 0 ⩽ k ⩽ n such that |k/n− p| > δ.

(iii) Show that
sup

p∈[0,1]
|f(p)−Bn(p)| → 0

as n→ ∞. [You may use without proof that, for any ϵ > 0, there is a δ > 0
such that |f(x)− f(y)| ⩽ ϵ for all x, y ∈ [0, 1] with |x− y| ⩽ δ.]
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3B Vector Calculus

(a) Prove that

∇× (ψA) = ψ∇×A +∇ψ ×A ,

∇ · (A×B) = B · ∇×A−A · ∇×B ,

where A and B are differentiable vector fields and ψ is a differentiable scalar field.

(b) Find the solution of ∇2u = 16r2 on the two-dimensional domain D when

(i) D is the unit disc 0 6 r 6 1, and u = 1 on r = 1;

(ii) D is the annulus 1 6 r 6 2, and u = 1 on both r = 1 and r = 2.

[Hint: the Laplacian in plane polar coordinates is:

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
. ]

Paper 3, Section I
4B Vector Calculus

(a) What is meant by an antisymmetric tensor of second rank? Show that if a second
rank tensor is antisymmetric in one Cartesian coordinate system, it is antisymmetric in
every Cartesian coordinate system.

(b) Consider the vector field F = (y, z, x) and the second rank tensor defined by
Tij = ∂Fi/∂xj . Calculate the components of the antisymmetric part of Tij and verify that
it equals −(1/2)εijkBk, where εijk is the alternating tensor and B = ∇× F.
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Paper 3, Section II
9B Vector Calculus

(a) Given a space curve r(t) = (x(t), y(t), z(t) ), with t a parameter (not necessarily
arc-length), give mathematical expressions for the unit tangent, unit normal, and unit
binormal vectors.

(b) Consider the closed curve given by

x = 2 cos3 t, y = sin3 t, z =
√
3 sin3 t, (∗)

where t ∈ [0, 2π).

Show that the unit tangent vector T may be written as

T = ±1

2

(
−2 cos t, sin t,

√
3 sin t

)
,

with each sign associated with a certain range of t, which you should specify.

Calculate the unit normal and the unit binormal vectors, and hence deduce that
the curve lies in a plane.

(c) A closed space curve C lies in a plane with unit normal n = (a, b, c). Use
Stokes’ theorem to prove that the planar area enclosed by C is the absolute value of the
line integral

1

2

∫

C
(bz − cy)dx+ (cx− az)dy + (ay − bx)dz.

Hence show that the planar area enclosed by the curve given by (∗) is (3/2)π.

Paper 3, Section II
10B Vector Calculus

(a) By considering an appropriate double integral, show that

∫ ∞

0
e−ax

2
dx =

√
π

4a
,

where a > 0.

(b) Calculate
∫ 1
0 x

ydy, treating x as a constant, and hence show that

∫ ∞

0

(e−u − e−2u)
u

du = log 2 .

(c) Consider the region D in the x-y plane enclosed by x2 + y2 = 4, y = 1, and
y =
√
3x with 1 < y <

√
3x.

Sketch D, indicating any relevant polar angles.

A surface S is given by z = xy/(x2 + y2). Calculate the volume below this surface
and above D.
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11B Vector Calculus

(a) By a suitable change of variables, calculate the volume enclosed by the ellipsoid
x2/a2 + y2/b2 + z2/c2 = 1, where a, b, and c are constants.

(b) Suppose Tij is a second rank tensor. Use the divergence theorem to show that

∫

S
Tijnj dS =

∫

V

∂Tij
∂xj

dV , (∗)

where S is a closed surface, with unit normal nj , and V is the volume it encloses.

[Hint: Consider eiTij for a constant vector ei.]

(c) A half-ellipsoidal membrane S is described by the open surface 4x2+4y2+z2 = 4,
with z > 0. At a given instant, air flows beneath the membrane with velocity u =
(−y, x, α), where α is a constant. The flow exerts a force on the membrane given by

Fi =

∫

S
β2uiujnj dS ,

where β is a constant parameter.

Show the vector ai = ∂(uiuj)/∂xj can be rewritten as a = −(x, y, 0).

Hence use (∗) to calculate the force Fi on the membrane.
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12B Vector Calculus

For a given charge distribution ρ(x, t) and current distribution J(x, t) in R3, the
electric and magnetic fields, E(x, t) and B(x, t), satisfy Maxwell’s equations, which in
suitable units, read

∇ ·E = ρ , ∇×E = −∂B
∂t

,

∇ ·B = 0 , ∇×B = J +
∂E

∂t
.

The Poynting vector P is defined as P = E×B.

(a) For a closed surface S around a volume V, show that

∫

S
P · dS = −

∫

V
E · J dV − ∂

∂t

∫

V

|E|2 + |B|2
2

dV . (∗)

(b) Suppose J = 0 and consider an electromagnetic wave

E = E0 ŷ cos(kx− ωt) and B = B0 ẑ cos(kx− ωt) ,

where E0, B0, k and ω are positive constants. Show that these fields satisfy Maxwell’s
equations for appropriate E0, ω, and ρ.

Confirm the wave satisfies the integral identity (∗) by considering its propagation through
a box V, defined by 0 6 x 6 π/(2k), 0 6 y 6 L, and 0 6 z 6 L.
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1C Vectors and Matrices

(a) Find all complex solutions to the equation zi = 1.

(b) Write down an equation for the numbers z which describe, in the complex plane,
a circle with radius 5 centred at c = 5i. Find the points on the circle at which it intersects
the line passing through c and z0 =

15
4 .

Paper 1, Section I
2B Vectors and Matrices

The matrix

A =




2 −1
2 0
−1 1




represents a linear map Φ : R2 → R3 with respect to the bases

B =

{(
0
2

)
,

(
−2

0

)}
, C =








1
1
0


 ,




0
1
0


 ,




0
1
1





 .

Find the matrix A′ that represents Φ with respect to the bases

B′ =

{(
1
1

)
,

(
1
−1

)}
, C ′ =








1
0
0


 ,




0
1
0


 ,




0
0
1





 .

Part IA, Paper 1 [TURN OVER]



32

Paper 1, Section II
5C Vectors and Matrices

Using the standard formula relating products of the Levi-Civita symbol εijk to
products of the Kronecker δij , prove

a× (b× c) = (a · c)b− (a · b)c .

Define the scalar triple product [a,b, c] of three vectors a, b, and c in R3 in terms
of the dot and cross product. Show that

[a× b,b× c, c× a] = [a,b, c]2 .

Given a basis e1, e2, e3 for R3 which is not necessarily orthonormal, let

e′1 =
e2 × e3

[e1, e2, e3]
, e′2 =

e3 × e1
[e1, e2, e3]

, e′3 =
e1 × e2

[e1, e2, e3]
.

Show that e′1, e
′
2, e

′
3 is also a basis for R3. [You may assume that three linearly independent

vectors in R3 form a basis.]

The vectors e′′1, e′′2, e′′3 are constructed from e′1, e
′
2, e

′
3 in the same way that e′1, e

′
2,

e′3 are constructed from e1, e2, e3. Show that

e′′1 = e1 , e′′2 = e2 , e′′3 = e3 .

An infinite lattice consists of all points with position vectors given by

R = n1e1 + n2e2 + n3e3 with n1, n2, n3 ∈ Z .

Find all points with position vectors K such that K ·R is an integer for all integers n1,
n2, n3.
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Paper 1, Section II
6A Vectors and Matrices

(a) For an n × n matrix A define the characteristic polynomial χA and the
characteristic equation.

The Cayley–Hamilton theorem states that every n × n matrix satisfies its own
characteristic equation. Verify this in the case n = 2.

(b) Define the adjugate matrix adj(A) of an n× n matrix A in terms of the minors
of A. You may assume that

A adj(A) = adj(A)A = det(A)I ,

where I is the n×n identity matrix. Show that if A and B are non-singular n×n matrices
then

adj(AB) = adj(B) adj(A) . (∗)

(c) Let M be an arbitrary n× n matrix. Explain why

(i) there is an α > 0 such that M − tI is non-singular for 0 < t < α ;

(ii) the entries of adj(M − tI) are polynomials in t.

Using parts (i) and (ii), or otherwise, show that (∗) holds for all matrices A,B.

(d) The characteristic polynomial of the arbitrary n× n matrix A is

χA(z) = (−1)nzn + cn−1z
n−1 + · · · + c1z + c0 .

By considering adj(A− tI), or otherwise, show that

adj(A) = (−1)n−1An−1 − cn−1A
n−2 − · · · − c2A− c1I .

[You may assume the Cayley–Hamilton theorem.]
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7A Vectors and Matrices

Let A be a real, symmetric n× n matrix.

We say that A is positive semi-definite if xTAx > 0 for all x ∈ Rn. Prove that A
is positive semi-definite if and only if all the eigenvalues of A are non-negative. [You may
quote results from the course, provided that they are clearly stated.]

We say that A has a principal square root B if A = B2 for some symmetric, positive
semi-definite n × n matrix B. If such a B exists we write B =

√
A. Show that if A is

positive semi-definite then
√
A exists.

Let M be a real, non-singular n × n matrix. Show that MTM is symmetric and
positive semi-definite. Deduce that

√
MTM exists and is non-singular. By considering

the matrix

M
(√

MTM
)−1

,

or otherwise, show M = RP for some orthogonal n×n matrix R and a symmetric, positive
semi-definite n× n matrix P .

Describe the transformation RP geometrically in the case n = 3.

Part IA, Paper 1



35

Paper 1, Section II
8B Vectors and Matrices

(a) Consider the matrix

A =




µ 1 1
2 −µ 0
−µ 2 1


 .

Find the kernel of A for each real value of the constant µ. Hence find how many solutions
x ∈ R3 there are to

Ax =




1
1
2


 ,

depending on the value of µ. [There is no need to find expressions for the solution(s).]

(b) Consider the reflection map Φ : R3 → R3 defined as

Φ : x 7→ x− 2(x · n)n

where n is a unit vector normal to the plane of reflection.

(i) Find the matrix H which corresponds to the map Φ in terms of the
components of n.

(ii) Prove that a reflection in a plane with unit normal n followed by a reflection
in a plane with unit normal vector m (both containing the origin) is
equivalent to a rotation along the line of intersection of the planes with
an angle twice that between the planes.

[Hint: Choose your coordinate axes carefully.]

(iii) Briefly explain why a rotation followed by a reflection or vice-versa can
never be equivalent to another rotation.

END OF PAPER
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