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SECTION I

1H Number Theory
Let N > 3 be an odd integer and b an integer with (b,N) = 1. What does it mean to say

that N is an Euler pseudoprime to base b?

Show that if N is not an Euler pseudoprime to some base b0, then it is not an Euler
pseudoprime to at least half the bases {1 6 b < N : (b,N) = 1}.

Show that if N is odd and composite, then there exists an integer b such that N is not an
Euler pseudoprime to base b.

2H Topics in Analysis
State Runge’s theorem about the uniform approximation of holomorphic functions by

polynomials.

Explicitly construct, with a brief justification, a sequence of polynomials which converges
uniformly to 1/z on the semicircle {z : |z| = 1, Re(z) 6 0}.

Does there exist a sequence of polynomials converging uniformly to 1/z on
{z : |z| = 1, z 6= 1}? Give a justification.

3I Coding and Cryptography
Let N and p be very large positive integers with p a prime and p > N. The Chair of the

Committee is able to inscribe pairs of very large integers on discs. The Chair wishes to inscribe a
collection of discs in such a way that any Committee member who acquires r of the discs and knows
the prime p can deduce the integer N , but owning r− 1 discs will give no information whatsoever.
What strategy should the Chair follow?

[You may use without proof standard properties of the determinant of the r × r Vandermonde
matrix.]

4F Automata and Formal Languages
Define a context-free grammar G, a sentence of G and the language L(G) generated by G.

For the alphabet Σ = {a, b}, which of the following languages over Σ are context-free?

(i) {a2mb2m |m > 0},
(ii) {am2

bm
2 |m > 0}.

[You may assume standard results without proof if clearly stated.]

Part II, Paper 3
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5J Statistical Modelling
Suppose we have data (Y1, x

T
1 ), . . . , (Yn, x

T
n ), where the Yi are independent conditional

on the design matrix X whose rows are the xTi , i = 1, . . . , n. Suppose that given xi, the true
probability density function of Yi is fxi , so that the data is generated from an element of a model
F := {(fxi

(· ; θ))ni=1 , θ ∈ Θ} for some Θ ⊆ Rq and q ∈ N.

(a) Define the log-likelihood function for F , the maximum likelihood estimator of θ and
Akaike’s Information Criterion (AIC) for F .

From now on let F be the normal linear model, i.e. Y := (Y1, . . . , Yn)T = Xβ + ε, where
X ∈ Rn×p has full column rank and ε ∼ Nn(0, σ2I).

(b) Let σ̂2 denote the maximum likelihood estimator of σ2. Show that the AIC of F is

n(1 + log(2πσ̂2)) + 2(p+ 1).

(c) Let χ2
n−p be a chi-squared distribution on n − p degrees of freedom. Using any results

from the course, show that the distribution of the AIC of F is

n log(χ2
n−p) + n(log(2πσ2/n) + 1) + 2(p+ 1).

[Hint: σ̂2 := n−1‖Y −Xβ̂‖2 = n−1‖(I−P )ε‖2, where β̂ is the maximum likelihood estimator
of β and P is the projection matrix onto the column space of X.]

6B Mathematical Biology
Consider a model for the common cold in which the population is partitioned into susceptible

(S), infective (I), and recovered (R) categories, which satisfy

dS

dt
= αR− βSI ,

dI

dt
= βSI − γI ,

dR

dt
= γI − αR ,

where α, β and γ are positive constants.

(i) Show that the sum N ≡ S + I +R does not change in time.

(ii) Determine the condition, in terms of β, γ and N , for an endemic steady state to exist,
that is, a time-independent state with a non-zero number of infectives.

(iii) By considering a reduced set of equations for S and I only, show that the endemic
steady state identified in (ii) above, if it exists, is stable.
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7E Further Complex Methods
The Weierstrass elliptic function is defined by

P(z) =
1

z2
+
∑

m,n

[
1

(z − ωm,n)2
− 1

ωm,n2

]
,

where ωm,n = mω1 + nω2, with non-zero periods (ω1, ω2) such that ω1/ω2 is not real, and where
(m,n) are integers not both zero.

(i) Show that, in a neighbourhood of z = 0,

P(z) =
1

z2
+

1

20
g2z

2 +
1

28
g3z

4 +O(z6) ,

where
g2 = 60

∑

m,n

(ωm,n)−4, g3 = 140
∑

m,n

(ωm,n)−6.

(ii) Deduce that P satisfies

(
dP
dz

)2

= 4P3 − g2P − g3.

8B Classical Dynamics
A particle of mass m experiences a repulsive central force of magnitude k/r2, where r = |r|

is its distance from the origin. Write down the Hamiltonian of the system.

The Laplace–Runge–Lenz vector for this system is defined by

A = p× L +mk r̂ ,

where L = r× p is the angular momentum and r̂ = r/r is the radial unit vector. Show that

{L, H} = {A, H} = 0 ,

where {·, ·} is the Poisson bracket. What are the integrals of motion of the system? Show that the
polar equation of the orbit can be written as

r =
λ

e cos θ − 1
,

where λ and e are non-negative constants.

Part II, Paper 3
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9D Cosmology
At temperature T , with β = 1/(kBT ), the distribution of ultra-relativistic particles with

momentum p is given by

n(p) =
1

eβpc ∓ 1
,

where the minus sign is for bosons and the plus sign for fermions, and with p = |p|.
Show that the total number of fermions, nf , is related to the total number of bosons, nb,

by nf =
3
4nb.

Show that the total energy density of fermions, ρf , is related to the total energy density of
bosons, ρb, by ρf =

7
8ρb.

10C Quantum Information and Computation
For φ ∈ [0, 2π) and |ψ〉 ∈ C4 consider the operator

Rφψ = I−
(
1− eiφ

)
|ψ〉 〈ψ| .

Let U be a unitary operator on C4 = C2 ⊗ C2 with action on |00〉 given as follows

U |00〉 =
√
p |g〉+

√
1− p |b〉 =: |ψin〉 , (†)

where p is a constant in [0, 1] and |g〉 , |b〉 ∈ C4 are orthonormal states.

(i) Give an explicit expression of the state RφgU |00〉.

(ii) Find a |ψ〉 ∈ C4 for which Rπψ = URπ00U
†.

(iii) Choosing p = 1/4 in equation (†), calculate the state URπ00U
†RφgU |00〉. For what choice

of φ ∈ [0, 2π) is this state proportional to |g〉?

(iv) Describe how the above considerations can be used to find a marked element g in a list
of four items {g, b1, b2, b3}. Assume that you have the state |00〉 and can act on it with a unitary
operator that prepares the uniform superposition of four orthonormal basis states |g〉 , |b1〉 , |b2〉 , |b3〉
of C4. [You may use the operators U (defined in (†)), U† and Rφψ for any choice of φ ∈ [0, 2π) and

any |ψ〉 ∈ C4.]
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SECTION II

11H Number Theory
Let p be an odd prime.

(i) Define the Legendre symbol
(
x
p

)
, and show that when (x, p) = 1, then

(
x−1

p

)
=
(
x
p

)
.

(ii) State and prove Gauss’s lemma, and use it to evaluate
(−1
p

)
. [You may assume Euler’s

criterion.]

(iii) Prove that
p∑

x=1

(
x

p

)
= 0,

and deduce that
p∑

x=1

(
x(x+ 1)

p

)
= −1.

Hence or otherwise determine the number of pairs of consecutive integers z, z + 1 such that
1 6 z, z + 1 6 p− 1 and both z and z + 1 are quadratic residues mod p.

12F Automata and Formal Languages
Give the definition of a deterministic finite state automaton and of a regular language.

State and prove the pumping lemma for regular languages.

Let S = {2n |n = 0, 1, 2, . . . } be the subset of N consisting of the powers of 2.
If we write the elements of S in base 2 (with no preceding zeros), is S a regular language over
{0, 1}?

Now suppose we write the elements of S in base 10 (again with no preceding zeros).
Show that S is not a regular language over {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. [Hint: Give a proof by
contradiction; use the above lemma to obtain a sequence a1, a2, . . . of powers of 2, then consider
ai+1 − 10dai for i = 1, 2, 3, . . . and a suitable fixed d.]
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13B Mathematical Biology
The larva of a parasitic worm disperses in one dimension while laying eggs at rate λ > 0.

The larvae die at rate µ and have diffusivity D, so that their density, n(x, t), obeys

∂n

∂t
= D

∂2n

∂x2
− µn , (D > 0, µ > 0).

The eggs do not diffuse, so that their density, e(x, t), obeys

∂e

∂t
= λn .

At t = 0 there are no eggs and N larvae concentrated at x = 0, so that n(x, 0) = Nδ(x).

(i) Determine n(x, t) for t > 0. Show that n(x, t)→ 0 as t→∞.

(ii) Determine the limit of e(x, t) as t→∞.

(iii) Provide a physical explanation for the remnant density of the eggs identified in part (ii).

[You may quote without proof the results

∫ ∞

−∞
exp(−x2)dx =

√
π

∫ ∞

−∞

exp(ikx)

k2 + α2
dk = π exp(−α|x|)/α , α > 0 . ]

14D Cosmology
In an expanding spacetime, the density contrast δ(x, t) satisfies the linearised equation

δ̈ + 2Hδ̇ − c2s
(

1

a2
∇2 + k2J

)
δ = 0 , (∗)

where a is the scale factor, H is the Hubble parameter, cs is a constant, and kJ is the Jeans
wavenumber, defined by

c2sk
2
J =

4πG

c2
ρ̄(t) ,

with ρ̄(t) the background, homogeneous energy density.

(i) Solve for δ(x, t) in a static universe, with a = 1 and H = 0 and ρ̄ constant. Identify two
regimes: one in which sound waves propagate, and one in which there is an instability.

(ii) In a matter-dominated universe with ρ̄ ∼ 1/a3, use the Friedmann equation H2 =
8πGρ̄/3c2 to find the growing and decaying long-wavelength modes of δ as a function of a.

(iii) Assuming c2s ≈ c2sk
2
J ≈ 0 in equation (∗), find the growth of matter perturbations

in a radiation-dominated universe and find the growth of matter perturbations in a curvature-
dominated universe.
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15C Quantum Information and Computation
Consider the quantum oracle Uf for a function f : Bn → Bn which acts on the state |x〉 |y〉

of 2n qubits as follows:
Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 . (1)

The function f is promised to have the following property: there exists a z ∈ Bn such that for any
x, y ∈ Bn,

[f(x) = f(y)] if and only if x⊕ y ∈ {0n, z}, (2)

where 0n ≡ (0, 0, . . . , 0) ∈ Bn.

(a) What is the nature of the function f for the case in which z = 0n, and for the case in
which z 6= 0n?

(b) Suppose initially each of the 2n qubits are in the state |0〉. They are then subject to
the following operations:

1. Each of the first n qubits forming an input register are acted on by Hadamard gates;
2. The 2n qubits are then acted on by the quantum oracle Uf ;
3. Next, the qubits in the input register are individually acted on by Hadamard gates.

(i) List the states of the 2n qubits after each of the above operations; the expression for the
final state should involve the n-bit “dot product” which is defined as follows:

a · b = (a1b1 + a2b2 + . . .+ anbn) mod 2,

where a, b ∈ Bn with a = (a1, . . . , an) and b = (b1, . . . , bn).

(ii) Justify that if z = 0n then for any y ∈ Bn and any ϕ(x, y) ∈ {−1,+1}, the following
identity holds: ∥∥∥∥∥

∑

x∈Bn

ϕ(x, y) |f(x)〉
∥∥∥∥∥

2

=

∥∥∥∥∥
∑

x∈Bn

ϕ(x, y) |x〉
∥∥∥∥∥

2

. (3)

(iii) For the case z = 0n, what is the probability that a measurement of the input register,
relative to the computational basis of Cn results in a string y ∈ Bn?

(iv) For the case z 6= 0n, show that the probability that the above-mentioned measurement
of the input register results in a string y ∈ Bn, is equal to the following:

zero for all strings y ∈ Bn satisfying y · z = 1, and

2−(n−1) for any fixed string y ∈ Bn satisfying y · z = 0.

[State any identity you may employ. You may use (x⊕ z) · y = (x · y)⊕ (z · y), ∀x, y, z ∈ Bn.]
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16H Logic and Set Theory
Let (V,∈) be a model of ZF. Give the definition of a class and a function class in V . Use

the concept of function class to give a short, informal statement of the Axiom of Replacement.

Let z0 = ω and, for each n ∈ ω, let zn+1 = Pzn. Show that y = {zn|n ∈ ω} is a set.

We say that a set x is small if there is an injection from x to zn for some n ∈ ω. Let HS be
the class of sets x such that every member of TC({x}) is small, where TC({x}) is the transitive
closure of {x}. Show that n ∈ HS for all n ∈ ω and deduce that ω ∈ HS. Show further that
zn ∈ HS for all n ∈ ω. Deduce that y ∈ HS.

Is (HS,∈) a model of ZF? Justify your answer.

[Recall that 0 = ∅ and that n+ 1 = n ∪ {n} for all n ∈ ω.]

17G Graph Theory
(i) State and prove Turán’s theorem.

(ii) Let G be a graph of order 2n > 4 with n2 + 1 edges. Show that G must contain a
triangle, and that if n = 2 then G contains two triangles.

(iii) Show that if every edge of G lies in a triangle then G contains at least (n2 + 1)/3
triangles.

(iv) Suppose that G has some edge uv contained in no triangles. Show that Γ(u)∩Γ(v) = ∅,
and that if |Γ(u)|+ |Γ(v)| = 2n then Γ(u) and Γ(v) are not both independent sets.

By induction on n, or otherwise, show that every graph of order 2n > 4 with n2 + 1 edges
contains at least n triangles. [Hint: If uv is an edge that is contained in no triangles, consider
G− u− v.]

18G Galois Theory
(a) Let L/K be a Galois extension of fields, with Aut(L/K) = A10, the alternating group

on 10 elements. Find [L : K].

Let f(x) = x2 + bx + c ∈ K[x] be an irreducible polynomial, charK 6= 2. Show that f(x)
remains irreducible in L[x].

(b) Let L = Q[ξ11], where ξ11 is a primitive 11th root of unity.

Determine all subfields M ⊆ L. Which are Galois over Q?

For each proper subfield M , show that an element in M which is not in Q must be primitive,
and give an example of such an element explicitly in terms of ξ11 for each M . [You do not need to
justify that your examples are not in Q.]

Find a primitive element for the extension L/Q.

19F Representation Theory
State Mackey’s restriction formula and Frobenius reciprocity for characters. Deduce

Mackey’s irreducibility criterion for an induced representation.

For n > 2 show that if Sn−1 is the subgroup of Sn consisting of the elements that fix n, and
W is a complex representation of Sn−1, then IndSn

Sn−1
W is not irreducible.
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20F Algebraic Topology
Let K be a simplicial complex with four vertices v1, . . . , v4 with simplices 〈v1, v2, v3〉, 〈v1, v4〉

and 〈v2, v4〉 and their faces.

(a) Draw a picture of |K|, labelling the vertices.

(b) Using the definition of homology, calculate Hn(K) for all n.

(c) Let L be the subcomplex of K consisting of the vertices v1, v2, v4 and the 1-simplices
〈v1, v2〉, 〈v1, v4〉, 〈v2, v4〉. Let i : L → K be the inclusion. Construct a simplicial map j : K → L
such that the topological realisation |j| of j is a homotopy inverse to |i|. Construct an explicit
chain homotopy h : C•(K) → C•(K) between i• ◦ j• and idC•(K), and verify that h is a chain
homotopy.

21I Linear Analysis
Let H be a separable complex Hilbert space.

(a) For an operator T : H → H, define the spectrum and point spectrum. Define what it
means for T to be: (i) a compact operator; (ii) a self-adjoint operator and (iii) a finite rank operator.

(b) Suppose T : H → H is compact. Prove that given any δ > 0, there exists a finite-
dimensional subspace E ⊂ H such that ‖T (en) − PET (en)‖ < δ for each n, where {e1, e2, e3, . . .}
is an orthonormal basis for H and PE denotes the orthogonal projection onto E. Deduce that a
compact operator is the operator norm limit of finite rank operators.

(c) Suppose that S : H → H has finite rank and λ ∈ C \ {0} is not an eigenvalue of S.
Prove that S − λI is surjective. [You may wish to consider the action of S(S − λI) on ker(S)⊥.]

(d) Suppose T : H → H is compact and λ ∈ C \ {0} is not an eigenvalue of T . Prove that
the image of T − λI is dense in H.

Prove also that T − λI is bounded below, i.e. prove also that there exists a constant c > 0
such that ‖(T − λI)x‖ > c‖x‖ for all x ∈ H. Deduce that T − λI is surjective.

22I Analysis of Functions
Let X be a Banach space.

(a) Define the dual space X ′, giving an expression for ‖Λ‖X′ for Λ ∈ X ′. If Y = Lp(Rn) for
some 1 6 p <∞, identify Y ′ giving an expression for a general element of Y ′. [You need not prove
your assertion.]

(b) For a sequence (Λi)
∞
i=1 with Λi ∈ X ′, what is meant by: (i) Λi → Λ, (ii) Λi ⇀ Λ

(iii) Λi
∗
⇀ Λ? Show that (i) =⇒ (ii) =⇒ (iii). Find a sequence (fi)

∞
i=1 with fi ∈ L∞(R) =

(L1(R))′ such that, for some f, g ∈ L∞(Rn):

fi
∗
⇀ f, f2i

∗
⇀ g, g 6= f2.

(c) For f ∈ C0
c (Rn), let Λ : C0

c (Rn) → C be the map Λf = f(0). Show that Λ may be
extended to a continuous linear map Λ̃ : L∞(Rn) → C, and deduce that (L∞(Rn))′ 6= L1(Rn). For
which 1 6 p 6 ∞ is Lp(Rn) reflexive? [You may use without proof the Hahn–Banach theorem].
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23F Riemann Surfaces
Let Λ = 〈λ, µ〉 ⊆ C be a lattice. Give the definition of the associated Weierstrass ℘-function

as an infinite sum, and prove that it converges. [You may use without proof the fact that

∑

w∈Λr{0}

1

|w|t

converges if and only if t > 2.]

Consider the half-lattice points

z1 = λ/2 , z2 = µ/2 , z3 = (λ+ µ)/2 ,

and let ei = ℘(zi). Using basic properties of ℘, explain why the values e1, e2, e3 are distinct.

Give an example of a lattice Λ and a conformal equivalence θ : C/Λ → C/Λ such that θ
acts transitively on the images of the half-lattice points z1, z2, z3.

24F Algebraic Geometry
(i) Suppose f(x, y) = 0 is an affine equation whose projective completion is a smooth

projective curve. Give a basis for the vector space of holomorphic differential forms on this curve.
[You are not required to prove your assertion.]

Let C ⊂ P2 be the plane curve given by the vanishing of the polynomial

X4
0 −X4

1 −X4
2 = 0

over the complex numbers.

(ii) Prove that C is nonsingular.

(iii) Let ` be a line in P2 and define D to be the divisor ` ∩C. Prove that D is a canonical
divisor on C.

(iv) Calculate the minimum degree d such that there exists a non-constant map

C → P1

of degree d.

[You may use any results from the lectures provided that they are stated clearly.]
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25I Differential Geometry
(a) Show that for a compact regular surface S ⊂ R3, there exists a point p ∈ S such that

K(p) > 0, where K denotes the Gaussian curvature. Show that if S is contained in a closed ball
of radius R in R3, then there is a point p such that K(p) > R−2.

(b) For a regular surface S ⊂ R3, give the definition of a geodesic polar coordinate system at
a point p ∈ S. Show that in such a coordinate system, limr→0G(r, θ) = 0, limr→0(

√
G)r(r, θ) = 1,

E(r, θ) = 1 and F (r, θ) = 0. [You may use without proof standard properties of the exponential
map provided you state them clearly.]

(c) Let S ⊂ R3 be a regular surface. Show that if K 6 0, then any geodesic polar coordinate
ball B(p, ε0) ⊂ S of radius ε0 around p has area satisfying

Area B(p, ε0) > πε20.

[You may use without proof the identity (
√
G)rr(r, θ) = −

√
GK.]

(d) Let S ⊂ R3 be a regular surface, and now suppose −∞ < K 6 C for some constant
0 < C < ∞. Given any constant 0 < γ < 1, show that there exists ε0 > 0, depending only on C
and γ, so that if B(p, ε) ⊂ S is any geodesic polar coordinate ball of radius ε 6 ε0, then

Area B(p, ε) > γπε2.

[Hint: For any fixed θ0, consider the function f(r) :=
√
G(r, θ0)−α sin(

√
Cr), for all 0 < α < 1√

C
.

Derive the relation f ′′ > −Cf and show f(r) > 0 for an appropriate range of r. The following
variant of Wirtinger’s inequality may be useful and can be assumed without proof: if g is a C1

function on [0, L] vanishing at 0, then
∫ L
0
|g(x)|2dx 6 L

2π

∫ L
0
|g′(x)|2dx.]

26K Probability and Measure
Let (X,A,m, T ) be a probability measure preserving system.

(a) State what it means for (X,A,m, T ) to be ergodic.

(b) State Kolmogorov’s 0-1 law for a sequence of independent random variables. What does
it imply for the canonical model associated with an i.i.d. random process?

(c) Consider the special case when X = [0, 1], A is the σ-algebra of Borel subsets, and T is
the map defined as

Tx =

{
2x, if x ∈ [0, 12 ],

2− 2x, if x ∈ [ 12 , 1].

(i) Check that the Lebesgue measure m on [0, 1] is indeed an invariant probability measure
for T .

(ii) Let X0 := 1(0, 12 ) and Xn := X0 ◦ Tn for n > 1. Show that (Xn)n>0 forms a sequence of

i.i.d. random variables on (X,A,m), and that the σ-algebra σ(X0, X1, . . .) is all of A. [Hint: check
first that for any integer n > 0, T−n(0, 12 ) is a disjoint union of 2n intervals of length 1/2n+1.]

(iii) Is (X,A,m, T ) ergodic? Justify your answer.
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27K Applied Probability
Define a renewal–reward process, and state the renewal–reward theorem.

A machine M is repaired at time t = 0. After any repair, it functions without intervention
for a time that is exponentially distributed with parameter λ, at which point it breaks down
(assume the usual independence). Following any repair at time T , say, it is inspected at times T ,
T +m, T + 2m, . . . , and instantly repaired if found to be broken (the inspection schedule is then
restarted). Find the long run proportion of time that M is working. [You may express your answer
in terms of an integral.]

28J Principles of Statistics
Let Θ = Rp, let µ > 0 be a probability density function on Θ and suppose we are given

a further auxiliary conditional probability density function q(·|t) > 0, t ∈ Θ, on Θ from which we
can generate random draws. Consider a sequence of random variables {ϑm : m ∈ N} generated as
follows:

• For m ∈ N and given ϑm, generate a new draw sm ∼ q(·|ϑm).

• Define

ϑm+1 =

{
sm, with probability ρ(ϑm, sm),

ϑm, with probability 1− ρ(ϑm, sm)

where ρ(t, s) = min
{
µ(s)
µ(t)

q(t|s)
q(s|t) , 1

}
.

(i) Show that the Markov chain (ϑm) has invariant measure µ, that is, show that for all
(measurable) subsets B ⊂ Θ and all m ∈ N we have

∫

Θ

Pr(ϑm+1 ∈ B|ϑm = t)µ(t)dt =

∫

B

µ(θ)dθ.

(ii) Now suppose that µ is the posterior probability density function arising in a statistical
model {f(·, θ) : θ ∈ Θ} with observations x and a N(0, Ip) prior distribution on θ. Derive a family
{q(· | t) : t ∈ Θ} such that in the above algorithm the acceptance probability ρ(t, s) is a function
of the likelihood ratio f(x, s)/f(x, t), and for which the probability density function q(· | t) has
covariance matrix 2δIp for all t ∈ Θ.
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29K Stochastic Financial Models
(a) Let (Bt)t>0 be a real-valued random process.

(i) What does it mean to say that (Bt)t>0 is a Brownian motion?

(ii) State the reflection principle for Brownian motion.

(b) Suppose that (Bt)t>0 is a Brownian motion and set Mt = sups6tBs and Zt = Mt−Bt.
(i) Find the joint distribution function of Bt and Mt.

(ii) Show that (Mt, Zt) has a joint density function on [0,∞)2 given by

P(Mt ∈ dy and Zt ∈ dz) =
2√
2πt

(y + z)

t
e−(y+z)2/(2t)dydz.

(iii) You are given that two of the three processes (|Bt|)t>0, (Mt)t>0 and (Zt)t>0 have the
same distribution. Identify which two, justifying your answer.

30D Asymptotic Methods
(a) Find the leading order term of the asymptotic expansion, as x→∞, of the integral

I(x) =

∫ 3π

0

e(t+x cos t) dt .

(b) Find the first two leading nonzero terms of the asymptotic expansion, as x→∞, of the
integral

J(x) =

∫ π

0

(1− cos t)e−x ln(1+t) dt .
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31E Dynamical Systems
(a) A dynamical system ẋ = f(x) has a fixed point at the origin. Define the terms asymptotic

stability, Lyapunov function and domain of stability of the fixed point x = 0. State and prove
Lyapunov’s first theorem and state (without proof) La Salle’s invariance principle.

(b) Consider the system

ẋ = −2x+ x3 + sin(2y) ,

ẏ = −x− y3.

(i) Show that trajectories cannot leave the square S = {(x, y) : |x| < 1, |y| < 1}. Show also
that there are no fixed points in S other than the origin. Is this enough to deduce that S is in the
domain of stability of the origin?

(ii) Construct a Lyapunov function of the form V = x2/2 + g(y). Deduce that the origin is
asymptotically stable.

(iii) Find the largest rectangle of the form |x| < x0, |y| < y0 on which V is a strict Lyapunov
function. Is this enough to deduce that this region is in the domain of stability of the origin?

(iv) Purely from using the Lyapunov function V , what is the most that can be deduced
about the domain of stability of the origin?
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32C Integrable Systems
(a) Given a smooth vector field

V = V1(x, u)
∂

∂x
+ φ(x, u)

∂

∂u

on R2 define the prolongation of V of arbitrary order N .

Calculate the prolongation of order two for the group SO(2) of transformations of R2 given
for s ∈ R by

gs
(
u
x

)
=

(
u cos s− x sin s
u sin s+ x cos s

)
,

and hence, or otherwise, calculate the prolongation of order two of the vector field V = −x∂u+u∂x.
Show that both of the equations uxx = 0 and uxx = (1 + u2x)

3
2 are invariant under this action of

SO(2), and interpret this geometrically.

(b) Show that the sine-Gordon equation

∂2u

∂X∂T
= sinu

admits the group {gs}s∈R, where

gs :



X
T
u


 7→



esX
e−sT
u




as a group of Lie point symmetries. Show that there is a group invariant solution of the form
u(X,T ) = F (z) where z is an invariant formed from the independent variables, and hence obtain
a second order equation for w = w(z) where exp[iF ] = w.

33A Principles of Quantum Mechanics
Explain what is meant by the terms boson and fermion.

Three distinguishable spin-1 particles are governed by the Hamiltonian

H =
2λ

~2
(S1 · S2 + S2 · S3 + S3 · S1) ,

where Si is the spin operator of particle i and λ is a positive constant. How many spin states
are possible altogether? By considering the total spin operator, determine the eigenvalues and
corresponding degeneracies of the Hamiltonian.

Now consider the case that all three particles are indistinguishable and all have the same
spatial wavefunction. What are the degeneracies of the Hamiltonian in this case?
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34C Applications of Quantum Mechanics
(a) For the quantum scattering of a beam of particles in three dimensions off a spherically

symmetric potential V (r) that vanishes at large r, discuss the boundary conditions satisfied by the
wavefunction ψ and define the scattering amplitude f(θ). Assuming the asymptotic form

ψ =

∞∑

l=0

2l + 1

2ik

[
(−1)l+1 e

−ikr

r
+ (1 + 2ifl)

eikr

r

]
Pl(cos θ) ,

state the constraints on fl imposed by the unitarity of the S-matrix and define the phase shifts δl.

(b) For V0 > 0, consider the specific potential

V (r) =




∞ , r 6 a ,
−V0 , a < r 6 2a ,
0 , r > 2a .

(i) Show that the s-wave phase shift δ0 obeys

tan(δ0) =
k cos(2ka)− κ cot(κa) sin(2ka)

k sin(2ka) + κ cot(κa) cos(2ka)
,

where κ2 = k2 + 2mV0/~2.

(ii) Compute the scattering length as and find for which values of κ it diverges. Discuss
briefly the physical interpretation of the divergences. [Hint: you may find this trigonometric
identity useful

tan(A+B) =
tanA+ tanB

1− tanA tanB
. ]

35A Statistical Physics
Starting with the density of electromagnetic radiation modes in k-space, determine the

energy E of black-body radiation in a box of volume V at temperature T .

Using the first law of thermodynamics show that

∂E

∂V

∣∣∣∣
T

= T
∂P

∂T

∣∣∣∣
V

− P.

By using this relation determine the pressure P of the black-body radiation.

[You are given the following:

(i) The mean number of photons in a radiation mode of frequency ω is
1

e~ω/T − 1
,

(ii) 1 +
1

24
+

1

34
+ · · · = π4

90
,

(iii) You may assume P vanishes with T more rapidly than linearly, as T → 0. ]
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36D Electrodynamics
The Maxwell stress tensor σ of the electromagnetic fields is a two-index Cartesian tensor

with components

σij = −ε0
(
EiEj −

1

2
|E|2δij

)
− 1

µ0

(
BiBj −

1

2
|B|2δij

)
,

where i, j = 1, 2, 3, and Ei and Bi denote the Cartesian components of the electric and magnetic
fields E(x, t) and B(x, t) respectively.

(i) Consider an electromagnetic field sourced by charge and current densities denoted by
ρ(x, t) and J(x, t) respectively. Using Maxwell’s equations and the Lorentz force law, show that
the components of σ obey the equation

3∑

j=1

∂σij
∂xj

+
∂gi
∂t

= − (ρE + J×B)i ,

where gi, for i = 1, 2, 3, are the components of a vector field g(x, t) which you should give explicitly
in terms of E and B. Explain the physical interpretation of this equation and of the quantities σ
and g.

(ii) A localised source near the origin, x = 0, emits electromagnetic radiation. Far from the
source, the resulting electric and magnetic fields can be approximated as

B(x, t) ' B0(x) sin (ωt− k · x) , E(x, t) ' E0(x) sin (ωt− k · x) ,

where B0(x) =
µ0ω

2

4πrc
x̂× p0 and E0(x) = −cx̂×B0(x) with r = |x| and x̂ = x/r. Here,

k = (ω/c)x̂ and p0 is a constant vector.

Calculate the pressure exerted by these fields on a spherical shell of very large radius R
centred on the origin. [You may assume that E and B vanish for r > R and that the shell material
is absorbant, i.e. no reflected wave is generated.]
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37D General Relativity
(a) Let (M, g) be a four-dimensional spacetime and let T denote the rank

(
1
1

)
tensor defined

by
T : T ∗

p (M)× Tp(M)→ R , (η,V ) 7→ η(V ) , ∀ η ∈ T ∗
p (M), V ∈ Tp(M) .

Determine the components of the tensor T and use the general law for the transformation of tensor
components under a change of coordinates to show that the components of T are the same in any
coordinate system.

(b) In Cartesian coordinates (t, x, y, z) the Minkowski metric is given by

ds2 = −dt2 + dx2 + dy2 + dz2 .

Spheroidal coordinates (r, θ, φ) are defined through

x =
√
r2 + a2 sin θ cosφ ,

y =
√
r2 + a2 sin θ sinφ ,

z = r cos θ ,

where a > 0 is a real constant.

(i) Show that the Minkowski metric in coordinates (t, r, θ, φ) is given by

ds2 = −dt2 +
r2 + a2 cos2 θ

r2 + a2
dr2 + (r2 + a2 cos2 θ)dθ2 + (r2 + a2) sin2 θdφ2 . (†)

(ii) Transform the metric (†) to null coordinates given by u = t − r, R = r and show that
∂/∂R is not a null vector field for a > 0.

(iii) Determine a new azimuthal angle ϕ = φ−F (R) such that in the new coordinate system
(u,R, θ, ϕ), the vector field ∂/∂R is null for any a > 0. Write down the Minkowski metric in this
new coordinate system.
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38B Fluid Dynamics II
(a) Briefly outline the derivation of the boundary layer equation

uux + vuy = UdU/dx+ νuyy

explaining the significance of the symbols used and what sets the x-direction.

(b) Viscous fluid occupies the sector 0 < θ < α in cylindrical coordinates which is bounded
by rigid walls and there is a line sink at the origin of strength αQ with Q/ν � 1. Assume that
vorticity is confined to boundary layers along the rigid walls θ = 0 (x > 0, y = 0) and θ = α.

(i) Find the flow outside the boundary layers and clarify why boundary layers exist at all.

(ii) Show that the boundary layer thickness along the wall y = 0 is proportional to

δ :=

(
ν

Q

)1/2

x .

(iii) Show that the boundary layer equation admits a similarity solution for the streamfunc-
tion ψ(x, y) of the form

ψ = (νQ)1/2f(η) ,

where η = y/δ. You should find the equation and boundary conditions satisfied by f .

(iv) Verify that

df

dη
=

5− cosh(
√

2η + c)

1 + cosh(
√

2η + c)

yields a solution provided the constant c has one of two possible values. Which is the likely physical
choice?
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39B Waves
The dispersion relation for capillary waves on the surface of deep water is

ω2 = S2|k|3 ,

where S = (T/ρ)1/2, ρ is the density and T is the coefficient of surface tension. The free surface
z = η(x, t) is undisturbed for t < 0, when it is suddenly impacted by an object, giving the initial
conditions at time t = 0:

η = 0 and
∂η

∂t
=

{
−W , |x| < ε ,

0 , |x| > ε ,

where W is a constant.

(i) Use Fourier analysis to find an integral expression for η(x, t) when t > 0.

(ii) Use the method of stationary phase to find the asymptotic behaviour of η(V t, t) for
fixed V > 0 as t→∞, for the case V � ε−1/2S. Show that the result can be written in the form

η(x, t) ∼ WεS t2

x5/2
F

(
x3

S2t2

)
,

and determine the function F .

(iii) Give a brief physical interpretation of the link between the condition εV 2/S2 � 1 and
the simple dependence on the product Wε.

[You are given that

∫ ∞

−∞
e±iau

2

du = (π/a)1/2 e±iπ/4 for a > 0. ]
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40E Numerical Analysis
(a) Give the definition of a normal matrix. Prove that if A is normal, then the (Euclidean)

matrix `2-norm of A is equal to its spectral radius, i.e., ‖A‖2 = ρ(A).

(b) The advection equation

ut = ux , 0 6 x 6 1, 0 6 t <∞,

is discretized by the Crank–Nicolson scheme

un+1
m − unm = 1

4
µ(un+1

m+1 − un+1
m−1) + 1

4
µ(unm+1 − unm−1), m = 1, 2, . . . ,M , n ∈ Z+ .

Here, µ = k
h is the Courant number, with k = ∆t, h = ∆x = 1

M+1 , and unm is an approximation
to u(mh, nk).

Using the eigenvalue analysis and carefully justifying each step, determine conditions on
µ > 0 for which the method is stable. [Hint: All M×M Toeplitz anti-symmetric tridiagonal (TAT)
matrices have the same set of orthogonal eigenvectors, and a TAT matrix with the elements aj,j = a
and aj,j+1 = −aj,j−1 = b has the eigenvalues λk = a+ 2ib cos πk

M+1 where i =
√
−1. ]

(c) Consider the same advection equation for the Cauchy problem (x ∈ R, 0 6 t 6 T ). Now
it is discretized by the two-step leapfrog scheme

un+1
m = µ (unm+1 − unm−1) + un−1

m .

Applying the Fourier technique, find the range of µ > 0 for which the method is stable.

END OF PAPER
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