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SECTION I

1H Number Theory
Let θ ∈ R.

For each integer n > −1, define the convergents pn/qn of the continued fraction expansion
of θ. Show that for all n > 0, pnqn−1 − pn−1qn = (−1)n−1. Deduce that if q ∈ N and p ∈ Z satisfy

∣∣∣∣θ −
p

q

∣∣∣∣ <
∣∣∣∣θ −

pn
qn

∣∣∣∣ ,

then q > qn.

Compute the continued fraction expansion of
√

12. Hence or otherwise find a solution in
positive integers x and y to the equation x2 − 12y2 = 1.

2H Topics in Analysis
Show that every Legendre polynomial pn has n distinct roots in [−1, 1], where n is the

degree of pn.

Let x1, . . . , xn be distinct numbers in [−1, 1]. Show that there are unique real numbers
A1, . . . , An such that the formula

∫ 1

−1

P (t)dt =

n∑

i=1

AiP (xi)

holds for every polynomial P of degree less than n.

Now suppose that the above formula in fact holds for every polynomial P of degree less
than 2n. Show that then x1, . . . , xn are the roots of pn. Show also that

∑n
i=1Ai = 2 and that all

Ai are positive.

3I Coding and Cryptography
(a) Define the information capacity of a discrete memoryless channel (DMC).

(b) Consider a DMC where there are two input symbols, A and B, and three output symbols,
A, B and ?. Suppose each input symbol is left intact with probability 1/2, and transformed into
a ? with probability 1/2.

(i) Write down the channel matrix, and calculate the information capacity.

(ii) Now suppose the output is further processed by someone who cannot distinguish between
A and ?, so that the channel matrix becomes

(
1 0

1/2 1/2

)
.

Calculate the new information capacity.

Part II, Paper 2
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4F Automata and Formal Languages
Assuming the definition of a partial recursive function from N to N, what is a recursive

subset of N? What is a recursively enumerable subset of N?

Show that a subset E ⊆ N is recursive if and only if E and N\E are recursively enumerable.

Are the following subsets of N recursive?

(i) K := {n |n codes a program and fn,1(n) halts at some stage}.

(ii) K100 := {n |n codes a program and fn,1(n) halts within 100 steps}.

5J Statistical Modelling
The data frame WCG contains data from a study started in 1960 about heart disease. The

study used 3154 adult men, all free of heart disease at the start, and eight and a half years later
it recorded into variable chd whether they suffered from heart disease (1 if the respective man
did and 0 otherwise) along with their height and average number of cigarettes smoked per day.
Consider the R code below and its abbreviated output.

> data.glm <- glm(chd~height+cigs, family = binomial, data = WCG)

> summary(data.glm)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.50161 1.84186 -2.444 0.0145

height 0.02521 0.02633 0.957 0.3383

cigs 0.02313 0.00404 5.724 1.04e-08

...

(a) Write down the model fitted by the code above.

(b) Interpret the effect on heart disease of a man smoking an average of two packs of
cigarettes per day if each pack contains 20 cigarettes.

(c) Give an alternative latent logistic-variable representation of the model. [Hint: if F is
the cumulative distribution function of a logistic random variable, its inverse function is the logit
function.]

Part II, Paper 2 [TURN OVER]
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6B Mathematical Biology
Consider the system of predator-prey equations

dN1

dt
= −ε1N1 + αN1N2 ,

dN2

dt
= ε2N2 − αN1N2 ,

where ε1, ε2 and α are positive constants.

(i) Determine the non-zero fixed point (N∗
1 , N

∗
2 ) of this system.

(ii) Show that the system can be written in the form

dxi
dt

=

2∑

j=1

Kij
∂H

∂xj
, i = 1, 2 ,

where xi = log(Ni/N
∗
i ) and a suitable 2×2 antisymmetric matrix Kij and scalar function H(x1, x2)

are to be identified.

(iii) Hence, or otherwise, show that H is constant on solutions of the predator-prey
equations.

7E Further Complex Methods
Evaluate ∫

C

dz

sin3 z
,

where C is the circle |z| = 4 traversed in the counter-clockwise direction.

8B Classical Dynamics
A particle of mass m has position vector r(t) in a frame of reference that rotates with

angular velocity ω(t). The particle moves under the gravitational influence of masses that are
fixed in the rotating frame. Explain why the Lagrangian of the particle is of the form

L =
1

2
m(ṙ + ω×r)2 − V (r) .

Show that Lagrange’s equations of motion are equivalent to

m (r̈ + 2ω×ṙ + ω̇×r + ω×(ω×r)) = −∇V .

Identify the canonical momentum p conjugate to r. Obtain the Hamiltonian H(r,p) and
Hamilton’s equations for this system.

Part II, Paper 2
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9D Cosmology
During inflation, the expansion of the universe is governed by the Friedmann equation,

H2 =
8πG

3c2

(
1

2
φ̇2 + V (φ)

)
,

and the equation of motion for the inflaton field φ,

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 .

The slow-roll conditions are φ̇2 � V (φ) and φ̈� Hφ̇. Under these assumptions, solve for φ(t) and
a(t) for the potentials:

(i) V (φ) = 1
2m

2φ2 and

(ii) V (φ) = 1
4λφ

4, (λ > 0).

10C Quantum Information and Computation
Consider the set of states

|βzx〉 :=
1√
2
[|0x〉+ (−1)z |1x〉],

where x, z ∈ {0, 1} and x = x⊕ 1 (addition modulo 2).

(i) Show that
(H ⊗ I) ◦ CX |βzx〉 = |zx〉 ∀ z, x ∈ {0, 1},

where H denotes the Hadamard gate and CX denotes the controlled-X gate.

(ii) Show that for any z, x ∈ {0, 1},

(ZzXx ⊗ I) |β00〉 = |βzx〉 . (∗)

[Hint: For any unitary operator U , we have (U ⊗ I) |β00〉 = (I⊗ UT ) |β00〉 ,
where UT denotes the transpose of U with respect to the computational basis.]

(iii) Suppose Alice and Bob initially share the state |β00〉. Show using (∗) how Alice can
communicate two classical bits to Bob by sending him only a single qubit.
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SECTION II

11H Topics in Analysis
Let T be a (closed) triangle in R2 with edges I, J,K. Let A,B,C, be closed subsets of T ,

such that I ⊂ A, J ⊂ B, K ⊂ C and T = A ∪B ∪ C. Prove that A ∩B ∩ C is non-empty.

Deduce that there is no continuous map f : D → ∂D such that f(p) = p for all p ∈ ∂D,
where D = {(x, y) ∈ R2 : x2 + y2 6 1} is the closed unit disc and ∂D = {(x, y) ∈ R2 : x2 + y2 = 1}
is its boundary.

Let now α, β, γ ⊂ ∂D be three closed arcs, each arc making an angle of 2π/3 (in radians)
in ∂D and α ∪ β ∪ γ = ∂D. Let P , Q and R be open subsets of D, such that α ⊂ P , β ⊂ Q and
γ ⊂ R. Suppose that P ∪Q ∪R = D. Show that P ∩Q ∩R is non-empty. [You may assume that
for each closed bounded subset K ⊂ R2, d(x,K) = min{‖x − y‖ : y ∈ K} defines a continuous
function on R2.]

12I Coding and Cryptography
Let C be the Hamming (n, n− d) code of weight 3, where n = 2d − 1, d > 1. Let H be the

parity-check matrix of C. Let ν(j) be the number of codewords of weight j in C.

(i) Show that for any two columns h1 and h2 of H there exists a unique third column h3
such that h3 = h2 + h1. Deduce that ν(3) = n(n− 1)/6.

(ii) Show that C contains a codeword of weight n.

(iii) Find formulae for ν(n− 1), ν(n− 2) and ν(n− 3). Justify your answer in each case.

13E Further Complex Methods
A semi-infinite elastic string is initially at rest on the x-axis with 0 6 x <∞. The transverse

displacement of the string, y(x, t), is governed by the partial differential equation

∂2y

∂t2
= c2

∂2y

∂x2
,

where c is a positive real constant. For t > 0 the string is subject to the boundary conditions
y(0, t) = f(t) and y(x, t) → 0 as x→ ∞.

(i) Show that the Laplace transform of y(x, t) takes the form

ŷ(x, p) = f̂(p) e−px/c .

(ii) For f(t) = sinωt, with ω ∈ R+, find f̂(p) and hence write ŷ(x, p) in terms of ω, c, p and
x. Obtain y(x, t) by performing the inverse Laplace transform using contour integration. Provide
a physical interpretation of the result.

Part II, Paper 2
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14B Classical Dynamics
A symmetric top of mass M rotates about a fixed point that is a distance l from the centre

of mass along the axis of symmetry; its principal moments of inertia about the fixed point are
I1 = I2 and I3. The Lagrangian of the top is

L =
1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3

(
ψ̇ + φ̇ cos θ

)2

−Mgl cos θ .

(i) Draw a diagram explaining the meaning of the Euler angles θ, φ and ψ.

(ii) Derive expressions for the three integrals of motion E, L3 and Lz.

(iii) Show that the nutational motion is governed by the equation

1

2
I1θ̇

2 + Veff(θ) = E′ ,

and derive expressions for the effective potential Veff(θ) and the modified energy E′ in terms of E,
L3 and Lz.

(iv) Suppose that

Lz = L3

(
1 − ε2

2

)
,

where ε is a small positive number. By expanding Veff to second order in ε and θ, show that
there is a stable equilibrium solution with θ = O(ε), provided that L2

3 > 4MglI1. Determine the
equilibrium value of θ and the precession rate φ̇, to the same level of approximation.
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8

15C Quantum Information and Computation
(a) Show how the n-qubit state

|ψn〉 :=
1√
2n

∑

x∈Bn

|x〉

can be generated from a computational basis state of Cn by the action of Hadamard gates.

(b) Prove that CZ = (I ⊗ H)CNOT12(I ⊗ H), where CZ denotes the controlled-Z gate.
Justify (without any explicit calculations) the following identity:

CNOT12 = (I ⊗H)CZ(I ⊗H).

(c) Consider the following two-qubit circuit:

What is its action on an arbitrary 2-qubit state |ψ〉 ⊗ |φ〉? In particular, for two given states |ψ〉
and |φ〉, find the states |α〉 and |β〉 such that

U(|ψ〉 ⊗ |φ〉) = |α〉 ⊗ |β〉 .

(d) Consider the following quantum circuit diagram

where the measurement is relative to the computational basis and U is the quantum gate from
part (c). Note that the second gate in the circuit performs the following controlled operation:

|0〉 |ψ〉 |φ〉 7→ |0〉 |ψ〉 |φ〉 ; |1〉 |ψ〉 |φ〉 7→ |1〉U (|ψ〉 |φ〉) .

(i) Give expressions for the joint state of the three qubits after the action of the first
Hadamard gate; after the action of the quantum gate U ; and after the action of the second
Hadamard gate.

(ii) Compute the probabilities p0 and p1 of getting outcome 0 and 1, respectively, in the
measurement.

(iii) How can the above circuit be used to determine (with high probability) whether the
two states |ψ〉 and |φ〉 are identical or not? [Assume that you are given arbitrarily many copies of
the three input states and that the quantum circuit can be used arbitrarily many times.]

Part II, Paper 2
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16H Logic and Set Theory
(a) This part of the question is concerned with propositional logic.

Let P be a set of primitive propositions. Let S ⊂ L(P ) be a consistent, deductively closed
set such that for every t ∈ L(P ) either t ∈ S or ¬t ∈ S. Show that S has a model.

(b) This part of the question is concerned with predicate logic.

(i) State Gödel’s completeness theorem for first-order logic. Deduce the compactness
theorem, which you should state precisely.

(ii) Let X be an infinite set. For each x ∈ X, let Lx be a subset of X. Suppose that for
any finite Y ⊆ X there exists a function fY : Y → {1, . . . , 100} such that for all x ∈ Y and all
y ∈ Y ∩ Lx, fY (x) 6= fY (y). Show that there exists a function F : X → {1, . . . , 100} such that for
all x ∈ X and all y ∈ Lx, F (x) 6= F (y).

17G Graph Theory
(i) Define the local connectivity κ(a, b;G) for two non-adjacent vertices a and b in a graph G.

Prove Menger’s theorem, that G contains a set of κ(a, b;G) vertex-disjoint a–b paths.

(ii) Recall that a subdivision TKr of Kr is any graph obtained from Kr by replacing its
edges by vertex-disjoint paths. Let G be a 3-connected graph. Show that G contains a TK3. Show
further that G contains a TK4. Must G contain a TK5?

18G Galois Theory
(a) Let K be a field and let L be the splitting field of a polynomial f(x) ∈ K[x]. Let ξN be

a primitive N th root of unity. Show that Aut(L(ξN )/K(ξN )) is a subgroup of Aut(L/K).

(b) Suppose that L/K is a Galois extension of fields with cyclic Galois group generated
by an element σ of order d, and that K contains a primitive dth root of unity ξd. Show that an
eigenvector α for σ on L with eigenvalue ξd generates L/K, that is, L = K(α). Show that αd ∈ K.

(c) Let G be a finite group. Define what it means for G to be solvable.

Determine whether

(i) G = S4; (ii) G = S5

are solvable.

(d) Let K = Q(a1, a2, a3, a4, a5) be the field of fractions of the polynomial ring
Q[a1, a2, a3, a4, a5]. Let f(x) = x5 − a1x

4 + a2x
3 − a3x

2 + a4x − a5 ∈ K[x]. Show that f is
not solvable by radicals. [You may use results from the course provided that you state them
clearly.]

19F Representation Theory
Let G be the unique non-abelian group of order 21 up to isomorphism. Compute the

character table of G.

[You may find it helpful to think of G as the group of 2× 2 matrices of the form

(
a b
0 a−1

)

with a, b ∈ F7 and a3 = 1. You may use any standard results from the course provided you state
them clearly.]

Part II, Paper 2 [TURN OVER]
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20G Number Fields
(a) Let K be a number field of degree n. Define the discriminant disc(α1, . . . , αn) of an

n-tuple of elements αi of K, and show that it is nonzero if and only if α1, . . . , αn is a Q-basis for
K.

(b) Let K = Q(α) where α has minimal polynomial

Tn +

n−1∑

j=0

ajT
j , aj ∈ Z

and assume that p is a prime such that, for every j, aj ≡ 0 (mod p), but a0 6≡ 0 (mod p2).

(i) Show that P = (p, α) is a prime ideal, that Pn = (p) and that α /∈ P 2. [Do not assume
that OK = Z[α].]

(ii) Show that the index of Z[α] in OK is prime to p.

(iii) If K = Q(α) with α3 + 3α + 3 = 0, show that OK = Z[α]. [You may assume without
proof that the discriminant of T 3 + aT + b is −4a3 − 27b2.]

21F Algebraic Topology
(a) Let f : X → Y be a map of spaces. We define the mapping cylinder Mf of f to be the

space
(([0, 1]×X) t Y )/ ∼

with (0, x) ∼ f(x). Show carefully that the canonical inclusion Y ↪→Mf is a homotopy equivalence.

(b) Using the Seifert–van Kampen theorem, show that if X is path-connected and α : S1 →
X is a map, and x0 = α(θ0) for some point θ0 ∈ S1, then

π1(X ∪α D2, x0) ∼= π1(X,x0)/〈〈[α]〉〉.

Use this fact to construct a connected space X with

π1(X) ∼= 〈a, b | a3 = b7〉.

(c) Using a covering space of S1∨S1, give explicit generators of a subgroup of F2 isomorphic
to F3. Here Fn denotes the free group on n generators.

Part II, Paper 2
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22I Linear Analysis
(a) State and prove the Baire Category theorem.

Let p > 1. Apply the Baire Category theorem to show that
⋃

16q<p lq 6= lp. Give an explicit
element of lp \

⋃
16q<p lq.

(b) Use the Baire Category theorem to prove that C([0, 1]) contains a function which is
nowhere differentiable.

(c) Let (X, ‖ · ‖) be a real Banach space. Verify that the map sending x to the function
ex : φ 7→ φ(x) is a continuous linear map of X into (X∗)∗ where X∗ denotes the dual space of
(X, ‖ · ‖). Taking for granted the fact that this map is an isometry regardless of the norm on X,
prove that if ‖ ·‖′ is another norm on the vector space X which is not equivalent to ‖ ·‖, then there
is a linear function ψ : X → R which is continuous with respect to one of the two norms ‖ · ‖, ‖ · ‖′
and not continuous with respect to the other.

23F Riemann Surfaces
Let f : C∞ → C∞ be a rational function. What does it mean for p ∈ C∞ to be a ramification

point? What does it mean for p ∈ C∞ to be a branch point?

Let B be the set of branch points of f , and let R be the set of ramification points. Show
that

f : C∞ \R→ C∞ \B
is a regular covering map.

State the monodromy theorem. For w ∈ C∞ \ B, explain how a closed curve based at w
defines a permutation of f−1(w).

For the rational function

f(z) =
z(2− z)
(1− z)4 ,

identify the group of all such permutations.

24F Algebraic Geometry
Let k be an algebraically closed field of characteristic not equal to 2 and let V ⊂ P3

k be a
nonsingular quadric surface.

(a) Prove that V is birational to P2
k.

(b) Prove that there exists a pair of disjoint lines on V .

(c) Prove that the affine variety W = V(xyz − 1) ⊂ A3
k does not contain any lines.
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25I Differential Geometry
(a) State the fundamental theorem for regular curves in R3.

(b) Let α : R → R3 be a regular curve, parameterised by arc length, such that its image
α(R) ⊂ R3 is a one-dimensional submanifold. Suppose that the set α(R) is preserved by a nontrivial
proper Euclidean motion φ : R3 → R3.

Show that there exists σ0 ∈ R corresponding to φ such that φ(α(s)) = α(±s + σ0) for all
s ∈ R, where the choice of ± sign is independent of s. Show also that the curvature k(s) and
torsion τ(s) of α satisfy

k(±s+ σ0) = k(s) and (1)

τ(±s+ σ0) = τ(s), (2)

with equation (2) valid only for s such that k(s) > 0. In the case where the sign is + and σ0 = 0,
show that α(R) is a straight line.

(c) Give an explicit example of a curve α satisfying the requirements of (b) such that
neither of k(s) and τ(s) is a constant function, and such that the curve α is closed, i.e. such that
α(s) = α(s+ s0) for some s0 > 0 and all s. [Here a drawing would suffice.]

(d) Suppose now that α : R→ R3 is an embedded regular curve parameterised by arc length
s. Suppose further that k(s) > 0 for all s and that k(s) and τ(s) satisfy (1) and (2) for some σ0,
where the choice ± is independent of s, and where σ0 6= 0 in the case of + sign. Show that there
exists a nontrivial proper Euclidean motion φ such that the set α(R) is preserved by φ. [You may
use the theorem of part (a) without proof.]

26K Probability and Measure
Let X be a set. Recall that a Boolean algebra B of subsets of X is a family of subsets

containing the empty set, which is stable under finite union and under taking complements. As
usual, let σ(B) be the σ-algebra generated by B.

(a) State the definitions of a σ-algebra, that of a measure on a measurable space, as well as
the definition of a probability measure.

(b) State Carathéodory’s extension theorem.

(c) Let (X,F , µ) be a probability measure space. Let B ⊂ F be a Boolean algebra of subsets
of X. Let C be the family of all A ∈ F with the property that for every ε > 0, there is B ∈ B such
that

µ(A4B) < ε,

where A4B denotes the symmetric difference of A and B, i.e., A4B = (A ∪B) \ (A ∩B).

(i) Show that σ(B) is contained in C. Show by example that this may fail if µ(X) = +∞.

(ii) Now assume that (X,F , µ) = ([0, 1],L[0,1],m), where L[0,1] is the σ-algebra of Lebesgue
measurable subsets of [0, 1] and m is the Lebesgue measure. Let B be the family of all finite unions
of sub-intervals. Is it true that C is equal to L[0,1] in this case? Justify your answer.
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27K Applied Probability
(i) Let X be a Markov chain in continuous time on the integers Z with generator G = (gi,j).

Define the corresponding jump chain Y .

Define the terms irreducibility and recurrence for X. If X is irreducible, show that X is
recurrent if and only if Y is recurrent.

(ii) Suppose

gi,i−1 = 3|i|, gi,i = −3|i|+1, gi,i+1 = 2 · 3|i|, i ∈ Z.

Show that X is transient, find an invariant distribution, and show that X is explosive. [Any general
results may be used without proof but should be stated clearly.]

28J Principles of Statistics
Consider X1, . . . , Xn from a N(µ, σ2) distribution with parameter θ = (µ, σ2) ∈ Θ =

R× (0,∞). Derive the likelihood ratio test statistic Λn(Θ,Θ0) for the composite hypothesis

H0 : σ2 = 1 vs. H1 : σ2 6= 1,

where Θ0 = {(µ, 1) : µ ∈ R} is the parameter space constrained by H0.

Prove carefully that
Λn(Θ,Θ0)→d χ2

1 as n→∞,
where χ2

1 is a Chi-Square distribution with one degree of freedom.

29K Stochastic Financial Models
Let (S0

n, Sn)06n6T be a discrete-time asset price model in Rd+1 with numéraire.

(i) What is meant by an arbitrage for such a model?

(ii) What does it mean to say that the model is complete?

Consider now the case where d = 1 and where

S0
n = (1 + r)n, Sn = S0

n∏

k=1

Zk

for some r > 0 and some independent positive random variables Z1, . . . , ZT with logZn ∼ N(µ, σ2)
for all n.

(iii) Find an equivalent probability measure P∗ such that the discounted asset price
(Sn/S

0
n)06n6T is a martingale.

(iv) Does this model have an arbitrage? Justify your answer.

(v) By considering the contingent claim (S1)2 or otherwise, show that this model is not
complete.
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30J Mathematics of Machine Learning
(a) Let F be a family of functions f : X → {0, 1}. What does it mean for x1:n ∈ Xn to be

shattered by F? Define the shattering coefficient s(F , n) and the VC dimension VC(F) of F .

Let

A =
{ d∏

j=1

(−∞, aj ] : a1, . . . , ad ∈ R
}

and set F = {1A : A ∈ A}. Compute VC(F).

(b) State the Sauer–Shelah lemma.

(c) Let F1, . . . ,Fr be families of functions f : X → {0, 1} with finite VC dimension v > 1.
Now suppose x1:n is shattered by ∪rk=1Fk. Show that

2n 6 r(n+ 1)v.

Conclude that for v > 3,
VC(∪rk=1Fk) 6 4v log2(2v) + 2 log2(r).

[You may use without proof the fact that if x 6 α + β log2(x + 1) with α > 0 and β > 3, then
x 6 4β log2(2β) + 2α for x > 1.]

(d) Now let B be the collection of subsets of Rp of the form of a product
∏p

j=1Aj of intervals
Aj , where exactly d ∈ {1, . . . , p} of the Aj are of the form (−∞, aj ] for aj ∈ R and the remaining
p− d intervals are R. Set G = {1B : B ∈ B}. Show that when d > 3,

VC(G) 6 2d[2 log2(2d) + log2(p)].

31D Asymptotic Methods
(a) Let δ > 0 and x0 ∈ R. Let {φn(x)}∞n=0 be a sequence of (real) functions that are nonzero

for all x with 0 < |x− x0| < δ, and let {an}∞n=0 be a sequence of nonzero real numbers. For every
N = 0, 1, 2, . . . , the function f(x) satisfies

f(x)−
N∑

n=0

anφn(x) = o(φN (x)) , as x→ x0.

(i) Show that φn+1(x) = o(φn(x)), for all n = 0, 1, 2, . . . ; i.e., {φn(x)}∞n=0 is an asymptotic
sequence.

(ii) Show that for any N = 0, 1, 2, . . . , the functions φ0(x), φ1(x), . . . , φN (x) are linearly
independent on their domain of definition.

(b) Let

I(ε) =

∫ ∞

0

(1 + εt)−2e−(1+ε)t dt , for ε > 0 .

(i) Find an asymptotic expansion (not necessarily a power series) of I(ε), as ε→ 0+.

(ii) Find the first four terms of the expansion of I(ε) into an asymptotic power series of ε,
that is, with error o(ε3) as ε→ 0+.
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32E Dynamical Systems
(a) State and prove Dulac’s criterion. State clearly the Poincaré–Bendixson theorem.

(b) For (x, y) ∈ R2 and k > 0, consider the dynamical system

ẋ = kx− 5y − (3x+ y)(5x2 − 6xy + 5y2) ,

ẏ = 5x+ (k − 6)y − (x+ 3y)(5x2 − 6xy + 5y2).

(i) Use Dulac’s criterion to find a range of k for which this system does not have any periodic
orbit.

(ii) Find a suitable f(k) > 0 such that trajectories enter the disc x2 + y2 6 f(k) and do not
leave it.

(iii) Given that the system has no fixed points apart from the origin for k < 10, give a range
of k for which there will exist at least one periodic orbit.

33C Integrable Systems
(i) Explain how the inverse scattering method can be used to solve the initial value problem

for the KdV equation
ut + uxxx − 6uux = 0 , u(x, 0) = u0(x) ,

including a description of the scattering data associated to the operator Lu = −∂2x + u(x, t), its
time dependence, and the reconstruction of u via the inverse scattering problem.

(ii) Solve the inverse scattering problem for the reflectionless case, in which the reflection
coefficient R(k) is identically zero and the discrete scattering data consists of a single bound state,
and hence derive the 1-soliton solution of KdV.

(iii) Consider the direct and inverse scattering problems in the case of a small potential
u(x) = εq(x), with ε arbitrarily small: 0 < ε� 1. Show that the reflection coefficient is given by

R(k) = ε

∫ ∞

−∞

e−2ikz

2ik
q(z) dz +O(ε2)

and verify that the solution of the inverse scattering problem applied to this reflection coefficient
does indeed lead back to the potential u = εq when calculated to first order in ε. [Hint: you may
make use of the Fourier inversion theorem.]
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34A Principles of Quantum Mechanics
(a) Consider the Hamiltonian H(t) = H0 + δH(t), where H0 is time-independent and non-

degenerate. The system is prepared to be in some state |ψ〉 =
∑

r ar|r〉 at time t = 0, where {|r〉}
is an orthonormal basis of eigenstates of H0. Derive an expression for the state at time t, correct
to first order in δH(t), giving your answer in the interaction picture.

(b) An atom is modelled as a two–state system, where the excited state |e〉 has energy ~Ω
above that of the ground state |g〉. The atom interacts with an electromagnetic field, modelled as
a harmonic oscillator of frequency ω. The Hamiltonian is H(t) = H0 + δH(t), where

H0 =
~Ω

2

(
|e〉〈e| − |g〉〈g|

)
⊗ 1field + 1atom ⊗ ~ω

(
A†A+

1

2

)

is the Hamiltonian in the absence of interactions and

δH(t) =





0 , t 6 0 ,

1
2~(Ω− ω)

(
|e〉〈g| ⊗A+ β |g〉〈e| ⊗A†

)
, t > 0 ,

describes the coupling between the atom and the field.

(i) Interpret each of the two terms in δH(t). What value must the constant β take for time
evolution to be unitary?

(ii) At t = 0 the atom is in state (|e〉+|g〉)/
√

2 while the field is described by the (normalized)

state e−1/2 e−A
† |0〉 of the oscillator. Calculate the probability that at time t the atom will be in

its excited state and the field will be described by the nth excited state of the oscillator. Give your
answer to first non-trivial order in perturbation theory. Show that this probability vanishes when
t = π/(Ω− ω).

35C Applications of Quantum Mechanics

a) Consider a particle moving in one dimension subject to a periodic potential, V (x) = V (x+a).
Define the Brillouin zone. State and prove Bloch’s theorem.

b) Consider now the following periodic potential

V = V0
(

cos(x) − cos(2x)
)
,

with positive constant V0.

i) For very small V0, use the nearly-free electron model to compute explicitly the lowest-
energy band gap to leading order in degenerate perturbation theory.

ii) For very large V0, the electron is localised very close to a minimum of the potential.
Estimate the two lowest energies for such localised eigenstates and use the tight-
binding model to estimate the lowest-energy band gap.
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36A Statistical Physics
Using the Gibbs free energy G(T, P ) = E − TS + PV , derive the Maxwell relation

∂S

∂P

∣∣∣∣
T

= −∂V
∂T

∣∣∣∣
P

.

Define the notions of heat capacity at constant volume, CV , and heat capacity at constant
pressure, CP . Show that

CP − CV = T
∂V

∂T

∣∣∣∣
P

∂P

∂T

∣∣∣∣
V

.

Derive the Clausius-Clapeyron relation for dP
dT along the first-order phase transition curve

between a liquid and a gas. Find the simplified form of this relation, assuming the gas has much
larger volume than the liquid and that the gas is ideal. Assuming further that the latent heat is a
constant, determine the form of P as a function of T along the phase transition curve. [You may
assume there is no discontinuity in the Gibbs free energy across the phase transition curve.]
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37D General Relativity
The Schwarzschild metric is given by

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θ dφ2 .

(i) Show that geodesics in the Schwarzschild spacetime obey the equation

1

2
ṙ2 + V (r) =

1

2
E2 , where V (r) =

1

2

(
1− 2M

r

)(
L2

r2
−Q

)
,

where E, L, Q are constants and the dot denotes differentiation with respect to a suitably chosen
affine parameter λ.

(ii) Consider the following three observers located in one and the same plane in the
Schwarzschild spacetime which also passes through the centre of the black hole:

• Observer O1 is on board a spacecraft (to be modeled as a pointlike object moving on a
geodesic) on a circular orbit of radius r > 3M around the central mass M .

• Observer O2 starts at the same position as O1 but, instead of orbiting, stays fixed at the
initial coordinate position by using rocket propulsion to counteract the gravitational pull.

• Observer O3 is also located at a fixed position but at large distance r →∞ from the central
mass and is assumed to be able to see O1 whenever the two are at the same azimuthal angle
φ.

Show that the proper time intervals ∆τ1, ∆τ2, ∆τ3, that are measured by the three observers
during the completion of one full orbit of observer O1, are given by

∆τi = 2π

√
r2(r − αiM)

M
, i = 1, 2, 3 ,

where α1, α2 and α3 are numerical constants that you should determine.

(iii) Briefly interpret the result by arranging the ∆τi in ascending order.
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38B Fluid Dynamics II
Consider a two-dimensional flow of a viscous fluid down a plane inclined at an angle α to

the horizontal. Initially, the fluid, which has a volume V , occupies a region 0 6 x 6 x∗ with x
increasing down the slope. At large times the flow becomes thin-layer flow.

(i) Write down the two-dimensional Navier-Stokes equations and simplify them using the
lubrication approximation. Show that the governing equation for the height of the film, h = h(x, t),
is

∂h

∂t
+

∂

∂x

(
gh3 sinα

3ν

)
= 0 , (†)

where ν is the kinematic viscosity of the fluid and g is the acceleration due to gravity, being careful
to justify why the streamwise pressure gradient has been ignored compared to the gravitational
body force.

(ii) Develop a similarity solution to (†) and, using the fact that the volume of fluid is
conserved over time, derive an expression for the position and height of the head of the current
downstream.

(iii) Fluid is now continuously supplied at x = 0. By using scaling analysis, estimate the
rate at which fluid would have to be supplied for the head height to asymptote to a constant value
at large times.

39B Waves
Small displacements u(x, t) in a homogeneous elastic medium are governed by the equation

ρ
∂2u

∂t2
= (λ+ 2µ)∇(∇ · u)− µ∇ ∧ (∇ ∧ u) ,

where ρ is the density, and λ and µ are the Lamé constants.

(a) Show that the equation supports two types of harmonic plane-wave solutions, u =
A exp[i(k · x− ωt)], with distinct wavespeeds, cP and cS , and distinct polarizations. Write down
the direction of the displacement vector A for a P -wave, an SV -wave and an SH-wave, in each
case for the wavevector (k, 0,m).

(b) Given k and c, with c > cP (> cS), explain how to construct a superposition of P -waves
with wavenumbers (k, 0,mP ) and (k, 0,−mP ), such that

u(x, z, t) = eik(x−ct)
(
f1(z), 0, if3(z)

)
, (∗)

where f1(z) is an even function, and f1 and f3 are both real functions, to be determined. Similarly,
find a superposition of SV -waves with u again in the form (∗).

(c) An elastic waveguide consists of an elastic medium in −H < z < H with rigid boundaries
at z = ±H. Using your answers to part (b), show that the waveguide supports propagating
eigenmodes that are a mixture of P - and SV -waves, and have dispersion relation c(k) given by

a tan(akH) = − tan(bkH)

b
, where a =

(
c2

c2P
− 1

)1/2

and b =

(
c2

c2S
− 1

)1/2

.

Sketch the two sides of the dispersion relationship as functions of c. Explain briefly why there are
infinitely many solutions.
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40E Numerical Analysis
(a) For A ∈ Rn×n and nonzero v ∈ Rn, define the m-th Krylov subspace Km(A,v) of Rn.

Prove that if A has n linearly independent eigenvectors with at most s distinct eigenvalues, then

dimKm(A,v) 6 s ∀m.

(b) Define the term residual in the conjugate gradient (CG) method for solving a system
Ax = b with a symmetric positive definite A. State two properties of the method regarding
residuals and their connection to certain Krylov subspaces, and hence show that, for any right-
hand side b, the method finds the exact solution after at most s iterations, where s is the number
of distinct eigenvalues of A.

(c) The preconditioned CG-method PAPT x̂ = Pb is applied for solving Ax = b, with

A =




2 1

1 2
. . .

. . .
. . . 1

1 2


 , P−1 = Q =




1

1 1
. . .

. . .

1 1


 .

Prove that the method finds the exact solution after two iterations at most.

(d) Prove that, for any symmetric positive definite A, we can find a preconditioner P such
that the preconditioned CG-method for solving Ax = b would require only one step. Explain why
this preconditioning is of hardly any use.

END OF PAPER
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