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SECTION I

1H Number Theory
What does it mean to say that a positive definite binary quadratic form is reduced?

Find all reduced binary quadratic forms of discriminant −20.

Prove that if a prime p 6= 5 is represented by x2 + 5y2, then p ≡ 1, 3, 7 or 9 mod 20.

2H Topics in Analysis
Let γ : [0, 1] → C be a continuous map never taking the value 0 and satisfying γ(0) = γ(1).

Define the degree (or winding number) w(γ; 0) of γ about 0. Prove the following.

(i) If δ : [0, 1] → C\{0} is a continuous map satisfying δ(0) = δ(1), then the winding number
of the product γδ is given by w(γδ; 0) = w(γ; 0) + w(δ; 0).

(ii) If σ : [0, 1] → C is continuous, σ(0) = σ(1) and |σ(t)| < |γ(t)| for each 0 6 t 6 1, then
w(γ + σ; 0) = w(γ; 0).

(iii) Let D = {z ∈ C : |z| 6 1} and let f : D → C be a continuous function with f(z) 6= 0
whenever |z| = 1. Define α : [0, 1] → C by α(t) = f(e2πit). Then if w(α; 0) 6= 0, there must exist
some z ∈ D, such that f(z) = 0. [It may help to define F (s, t) := f(se2πit). Homotopy invariance
of the winding number may be assumed.]

3I Coding and Cryptography
(a) Briefly describe the methods of Shannon–Fano and of Huffman for the construction of

prefix-free binary codes.

(b) In this part you are given that − log2(1/10) ≈ 3.32, − log2(2/10) ≈ 2.32, − log2(3/10) ≈
1.74 and − log2(4/10) ≈ 1.32.

Let A = {1, 2, 3, 4}. For k ∈ A, suppose that the probability of choosing k is k/10.

(i) Find a Shannon–Fano code for this system and the expected word length.

(ii) Find a Huffman code for this system and the expected word length.

(iii) Verify that Shannon’s noiseless coding theorem is satisfied in each case.

4F Automata and Formal Languages
Define an alphabet Σ, a word over Σ and a language over Σ.

What is a regular expression R and how does this give rise to a language L(R)?

Given any alphabet Σ, show that there exist languages L over Σ which are not equal to
L(R) for any regular expression R. [You are not required to exhibit a specific L.]

Part II, Paper 1
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5J Statistical Modelling
Consider a generalised linear model with full column rank design matrix X ∈ Rn×p, output

variables Y = (Y1, . . . , Yn) ∈ Rn, link function g, mean parameters µ = (µ1, . . . , µn) and known
dispersion parameters σ2

i = aiσ
2, i = 1, . . . , n. Denote its variance function by V and recall that

g(µi) = xTi β, i = 1, . . . , n, where β ∈ Rp and xTi is the ith row of X.

(a) Define the score function in terms of the log-likelihood function and the Fisher
information matrix, and define the update of the Fisher scoring algorithm.

(b) Let W ∈ Rn×n be a diagonal matrix with positive entries. Note that XTWX is
invertible. Show that

argminb∈Rp

{
n∑

i=1

Wii(Yi − xTi b)2
}

= (XTWX)−1XTWY.

[Hint: you may use that argminb∈Rp

{
‖Y −XT b‖2

}
= (XTX)−1XTY.]

(c) Recall that the score function and the Fisher information matrix have entries

Uj(β) =

n∑

i=1

(Yi − µi)Xij

aiσ2V (µi)g′(µi)
j = 1, . . . , p,

ijk(β) =

n∑

i=1

XijXik

aiσ2V (µi){g′(µi)}2
j, k = 1, . . . , p.

Justify, performing the necessary calculations and using part (b), why the Fisher scoring algorithm
is also known as the iterative reweighted least squares algorithm.

6B Mathematical Biology
Consider a bivariate diffusion process with drift vector Ai(x) = aijxj and diffusion matrix

bij where

aij =

(
−1 1
−2 −1

)
, bij =

(
1 0
0 1

)
,

x = (x1, x2) and i, j = 1, 2.

(i) Write down the Fokker–Planck equation for the probability P (x1, x2, t).

(ii) Plot the drift vector as a vector field around the origin in the region |x1| < 1, |x2| < 1.

(iii) Obtain the stationary covariances Cij = 〈xixj〉 in terms of the matrices aij and bij and
hence compute their explicit values.

Part II, Paper 1 [TURN OVER]
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7E Further Complex Methods
The function I(z), defined by

I(z) =

∫ ∞

0

tz−1e−tdt ,

is analytic for Re z > 0.

(i) Show that I(z + 1) = zI(z).

(ii) Use part (i) to construct an analytic continuation of I(z) into Re z 6 0, except at
isolated singular points, which you need to identify.

8B Classical Dynamics
A linear molecule is modelled as four equal masses connected by three equal springs. Using

the Cartesian coordinates x1, x2, x3, x4 of the centres of the four masses, and neglecting any
forces other than those due to the springs, write down the Lagrangian of the system describing
longitudinal motions of the molecule.

Rewrite and simplify the Lagrangian in terms of the generalized coordinates

q1 =
x1 + x4

2
, q2 =

x2 + x3
2

, q3 =
x1 − x4

2
, q4 =

x2 − x3
2

.

Deduce Lagrange’s equations for q1, q2, q3, q4. Hence find the normal modes of the system and their
angular frequencies, treating separately the symmetric and antisymmetric modes of oscillation.

9D Cosmology
The Friedmann equation is

H2 =
8πG

3c2

(
ρ− kc2

R2a2

)
.

Briefly explain the meaning of H, ρ, k and R.

Derive the Raychaudhuri equation,

ä

a
= −4πG

3c2
(ρ+ 3P ) ,

where P is the pressure, stating clearly any results that are required.

Assume that the strong energy condition ρ+3P > 0 holds. Show that there was necessarily
a Big Bang singularity at time tBB such that

t0 − tBB 6 H−1
0 ,

where H0 = H(t0) and t0 is the time today.

Part II, Paper 1
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10C Quantum Information and Computation
Suppose we measure an observable A = n̂ · ~σ on a qubit, where n̂ = (nx, ny, nz) ∈ R3 is a

unit vector and ~σ = (σx, σy, σz) is the vector of Pauli operators.

(i) Express A as a 2× 2 matrix in terms of the components of n̂.

(ii) Representing n̂ in terms of spherical polar coordinates as n̂ = (1, θ, φ), rewrite the above
matrix in terms of the angles θ and φ.

(iii) What are the possible outcomes of the above measurement?

(iv) Suppose the qubit is initially in a state |1〉. What is the probability of getting an
outcome 1?

(v) Consider the three-qubit state

|ψ〉 = a |000〉+ b |010〉+ c |110〉+ d |111〉+ e |100〉 .

Suppose the second qubit is measured relative to the computational basis. What is the probability
of getting an outcome 1? State the rule that you are using.

Part II, Paper 1 [TURN OVER]
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SECTION II

11I Coding and Cryptography
(a) What does it mean to say that a binary code has length n, sizeM and minimum distance

d?

Let A(n, d) be the largest value of M for which there exists a binary [n,M, d]-code.

(i) Show that A(n, 1) = 2n.

(ii) Suppose that n, d > 1. Show that if a binary [n,M, d]-code exists, then a binary
[n− 1,M, d− 1]-code exists. Deduce that A(n, d) 6 A(n− 1, d− 1).

(iii) Suppose that n, d > 1. Show that A(n, d) 6 2n−d+1.

(b) (i) For integers M and N with 0 6 N 6M, show that

N(M −N) 6
{

M2/4, if M is even,
(M2 − 1)/4, if M is odd.

For the remainder of this question, suppose that C is a binary [n,M, d]-code. For codewords
x = (x1 . . . xn), y = (y1 . . . yn) ∈ C of length n, we define x+y to be the word ((x1+y1) . . . (xn+yn))
with addition modulo 2.

(ii) Explain why the Hamming distance d(x, y) is the number of 1s in x+ y.

(iii) Now we construct an
(
M
2

)
× n array A whose rows are all the words x+ y for pairs of

distinct codewords x, y. Show that the number of 1s in A is at most

{
nM2/4, if M is even,
n(M2 − 1)/4, if M is odd.

Show also that the number of 1s in A is at least d
(
M
2

)
.

(iv) Using the inequalities derived in part(b)(iii), deduce that if d is even and n < 2d then

A(n, d) 6 2

⌊
d

2d− n

⌋
.

12F Automata and Formal Languages
(a) Define a register machine, a sequence of instructions for a register machine and a partial

computable function. How do we encode a register machine?

(b) What is a partial recursive function? Show that a partial computable function is partial
recursive. [You may assume that for a given machine with a given number of inputs, the function
outputting its state in terms of the inputs and the time t is recursive.]

(c) (i) Let g : N → N be the partial function defined as follows: if n codes a register machine
and the ensuing partial function fn,1 is defined at n, set g(n) = fn,1(n)+1. Otherwise set g(n) = 0.
Is g a partial computable function?

(ii) Let h : N → N be the partial function defined as follows: if n codes a register machine
and the ensuing partial function fn,1 is defined at n, set h(n) = fn,1(n)+1. Otherwise, set h(n) = 0
if n is odd and let h(n) be undefined if n is even. Is h a partial computable function?

Part II, Paper 1
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13J Statistical Modelling
We consider a subset of the data on car insurance claims from Hallin and Ingenbleek (1983).

For each customer, the dataset includes total payments made per policy-year, the amount of
kilometres driven, the bonus from not having made previous claims, and the brand of the car. The
amount of kilometres driven is a factor taking values 1, 2, 3, 4, or 5, where a car in level i + 1 has
driven a larger number of kilometres than a car in level i for any i = 1, 2, 3, 4. A statistician from
an insurance company fits the following model on R.

> model1 <- lm(Paymentperpolicyyr ~ as.numeric(Kilometres) + Brand + Bonus)

(i) Why do you think the statistician transformed variable Kilometres from a factor to a
numerical variable?

(ii) To check the quality of the model, the statistician applies a function to model1 which
returns the following figure:
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 95%

What does the plot represent? Does it suggest that model1 is a good model? Explain. If
not, write down a model which the plot suggests could be better.

[QUESTION CONTINUES ON THE NEXT PAGE]

Part II, Paper 1 [TURN OVER]



8

(iii) The statistician fits the model suggested by the graph and calls it model2. Consider
the following abbreviated output:

> summary(model2)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.514035 0.186339 34.958 < 2e-16 ***

as.numeric(Kilometres) 0.057132 0.032654 1.750 0.08126 .

Brand2 0.363869 0.186857 1.947 0.05248 .

...

Brand9 0.125446 0.186857 0.671 0.50254

Bonus -0.178061 0.022540 -7.900 6.17e-14 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7817 on 284 degrees of freedom

...

Using the output, write down a 95% prediction interval for the ratio between the total
payments per policy year for two cars of the same brand and with the same value of Bonus, one
of which has a Kilometres value one higher than the other. You may express your answer as a
function of quantiles of a common distribution, which you should specify.

(iv) Write down a generalised linear model for Paymentperpolicyyr which may be a better
model than model1 and give two reasons. You must specify the link function.
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14E Further Complex Methods
Use the change of variable z = sin2 x, to rewrite the equation

d2y

dx2
+ k2y = 0, (†)

where k is a real non-zero number, as the hypergeometric equation

d2w

dz2
+

(
C

z
+

1 +A+B − C
z − 1

)
dw

dz
+

AB

z(z − 1)
w = 0, (‡)

where y(x) = w(z), and A,B and C should be determined explicitly.

(i) Show that (‡) is a Papperitz equation, with 0, 1 and ∞ as its regular singular points.
Hence, write the corresponding Papperitz symbol,

P





0 1 ∞
0 0 A z

1− C C −A−B B



 ,

in terms of k.

(ii) By solving (†) directly or otherwise, find the hypergeometric function F (A,B;C; z) that
is the solution to (‡) and is analytic at z = 0 corresponding to the exponent 0 at z = 0, and satisfies
F (A,B;C; 0) = 1 ; moreover, write it in terms of k and x.

(iii) By performing a suitable exponential shifting find the second solution, independent of
F (A,B;C; z), which corresponds to the exponent 1−C, and hence write F ( 1+k

2 , 1−k2 ; 3
2 ; z) in terms

of k and x.

15D Cosmology
A fluid with pressure P sits in a volume V . The change in energy due to a change in volume

is given by dE = −PdV . Use this in a cosmological context to derive the continuity equation,

ρ̇ = −3H(ρ+ P ) ,

with ρ the energy density, H = ȧ/a the Hubble parameter, and a the scale factor.

In a flat universe, the Friedmann equation is given by

H2 =
8πG

3c2
ρ .

Given a universe dominated by a fluid with equation of state P = wρ, where w is a constant,
determine how the scale factor a(t) evolves.

Define conformal time τ . Assume that the early universe consists of two fluids: radiation
with w = 1/3 and a network of cosmic strings with w = −1/3. Show that the Friedmann equation
can be written as (

da

dτ

)2

= Bρeq(a2 + a2eq) ,

where ρeq is the energy density in radiation, and aeq is the scale factor, both evaluated at radiation-
string equality. Here, B is a constant that you should determine. Find the solution a(τ).
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16H Logic and Set Theory
[Throughout this question, assume the axiom of choice.]

Let κ, λ and µ be cardinals. Define κ + λ, κλ and κλ. What does it mean to say κ 6 λ?
Show that (κλ)µ = κλµ. Show also that 2κ > κ.

Assume now that κ and λ are infinite. Show that κκ = κ. Deduce that κ + λ = κλ =
max{κ, λ}. Which of the following are always true and which can be false? Give proofs or
counterexamples as appropriate.

(i) κλ = 2λ;

(ii) κ 6 λ =⇒ κλ = 2λ;

(iii) κλ = λκ.

17G Graph Theory
(a) The complement of a graph is defined as having the same vertex set as the graph, with

vertices being adjacent in the complement if and only if they are not adjacent in the graph.

Show that no planar graph of order greater than 10 has a planar complement.

What is the maximum order of a bipartite graph that has a bipartite complement?

(b) For the remainder of this question, let G be a connected bridgeless planar graph with
n > 4 vertices, e edges, and containing no circuit of length 4. Suppose that it is drawn with f
faces, of which t are 3-sided.

Show that 2e > 3t+ 5(f − t). Show further that e > 3t, and hence f 6 8e/15.

Deduce that e 6 15(n− 2)/7. Is there some n and some G for which equality holds? [Hint:
consider “slicing the corners off” a dodecahedron.]

18G Galois Theory
(a) State and prove the tower law.

(b) Let K be a field and let f(x) ∈ K[x].

(i) Define what it means for an extension L/K to be a splitting field for f .

(ii) Suppose f is irreducible in K[x], and charK = 0. Let M/K be an extension of fields.
Show that the roots of f in M are distinct.

(iii) Let h(x) = xq
n − x ∈ K[x], where K = Fq is the finite field with q elements. Let L be

a splitting field for h. Show that the roots of h in L are distinct. Show that [L : K] = n. Show
that if f(x) ∈ K[x] is irreducible, and deg f = n, then f divides xq

n − x.

(iv) For each prime p, give an example of a field K, and a polynomial f(x) ∈ K[x] of degree
p, so that f has at most one root in any extension L of K, with multiplicity p.
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19F Representation Theory
State and prove Maschke’s theorem.

Let G be the group of isometries of Z. Recall that G is generated by the elements t, s where
t(n) = n+ 1 and s(n) = −n for n ∈ Z.

Show that every non-faithful finite-dimensional complex representation of G is a direct sum
of subrepresentations of dimension at most two.

Write down a finite-dimensional complex representation of the group (Z,+) that is not a
direct sum of one-dimensional subrepresentations. Hence, or otherwise, find a finite-dimensional
complex representation of G that is not a direct sum of subrepresentations of dimension at most
two. Briefly justify your answer.

[Hint: You may assume that any non-trivial normal subgroup of G contains an element of
the form tm for some m > 0.]

20G Number Fields
State Minkowski’s theorem.

Let K = Q(
√
−d), where d is a square-free positive integer, not congruent to 3 (mod 4).

Show that every nonzero ideal I ⊂ OK contains an element α with

0 <
∣∣NK/Q(α)

∣∣ 6 4
√
d

π
N(I).

Deduce the finiteness of the class group of K.

Compute the class group of Q(
√
−22). Hence show that the equation y3 = x2 + 22 has no

integer solutions.
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21F Algebraic Topology
Let p : R2 → S1 × S1 =: X be the map given by

p(r1, r2) =
(
e2πir1 , e2πir2

)
,

where S1 is identified with the unit circle in C. [You may take as given that p is a covering map.]

(a) Using the covering map p, show that π1(X,x0) is isomorphic to Z2 as a group, where
x0 = (1, 1) ∈ X.

(b) Let GL2(Z) denote the group of 2 × 2 matrices A with integer entries such that
detA = ±1. If A ∈ GL2(Z), we obtain a linear transformation A : R2 → R2. Show that this
linear transformation induces a homeomorphism fA : X → X with fA(x0) = x0 and such that
fA∗ : π1(X,x0)→ π1(X,x0) agrees with A as a map Z2 → Z2.

(c) Let pi : X̂i → X for i = 1, 2 be connected covering maps of degree 2. Show that there

exist homeomorphisms φ : X̂1 → X̂2 and ψ : X → X so that the diagram

X̂1
φ //

p1

��

X̂2

p2

��
X

ψ
// X

is commutative.

22I Linear Analysis
(a) Define the dual space X∗ of a (real) normed space (X, ‖ · ‖). Define what it means for

two normed spaces to be isometrically isomorphic. Prove that (l1)∗ is isometrically isomorphic to
l∞.

(b) Let p ∈ (1,∞). [In this question, you may use without proof the fact that (lp)
∗ is

isometrically isomorphic to lq where 1
p + 1

q = 1.]

(i) Show that if {φm}∞m=1 is a countable dense subset of (lp)
∗, then the function

d(x, y) :=

∞∑

m=1

2−m
|φm(x− y)|

1 + |φm(x− y)|

defines a metric on the closed unit ball B ⊂ lp. Show further that for a sequence {x(n)}∞n=1 of
elements x(n) ∈ B, we have

φ(x(n))→ φ(x) ∀ φ ∈ (lp)
∗ ⇔ d(x(n), x)→ 0.

Deduce that (B, d) is a compact metric space.

(ii) Give an example to show that for a sequence {x(n)}∞n=1 of elements x(n) ∈ B and x ∈ B,

φ(x(n))→ φ(x) ∀ φ ∈ (lp)
∗ 6⇒

∥∥x(n) − x
∥∥
lp
→ 0.
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23I Analysis of Functions
Let Rn be equipped with the σ-algebra of Lebesgue measurable sets, and Lebesgue measure.

(a) Given f ∈ L∞(Rn), g ∈ L1(Rn), define the convolution f ? g, and show that it is a
bounded, continuous function. [You may use without proof continuity of translation on Lp(Rn)
for 1 6 p <∞.]

Suppose A ⊂ Rn is a measurable set with 0 < |A| < ∞ where |A| denotes the Lebesgue
measure of A. By considering the convolution of f(x) = 1A(x) and g(x) = 1A(−x), or otherwise,
show that the set A−A = {x− y : x, y ∈ A} contains an open neighbourhood of 0. Does this still
hold if |A| =∞?

(b) Suppose that f : Rn → Rm is a measurable function satisfying

f(x+ y) = f(x) + f(y), for all x, y ∈ Rn.

Let Br = {y ∈ Rm : |y| < r}. Show that for any ε > 0:

(i) f−1(Bε)− f−1(Bε) ⊂ f−1(B2ε),

(ii) f−1(Bkε) = kf−1(Bε) for all k ∈ N, where for λ > 0 and A ⊂ Rn, λA denotes the set
{λx : x ∈ A}.

Show that f is continuous at 0 and hence deduce that f is continuous everywhere.

24F Riemann Surfaces
Assuming any facts about triangulations that you need, prove the Riemann–Hurwitz

theorem.

Use the Riemann–Hurwitz theorem to prove that, for any cubic polynomial f : C → C,
there are affine transformations g(z) = az + b and h(z) = cz + d such that k(z) = g ◦ f ◦ h(z) is of
one of the following two forms:

k(z) = z3 or k(z) = z(z2/3− 1).

25F Algebraic Geometry
Let k be an algebraically closed field of characteristic zero. Prove that an affine variety

V ⊂ Ank is irreducible if and only if the associated ideal I(V ) of polynomials that vanish on V is
prime.

Prove that the variety V(y2 − x3) ⊂ A2
k is irreducible.

State what it means for an affine variety over k to be smooth and determine whether or not
V(y2 − x3) is smooth.
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26I Differential Geometry
(a) Let X ⊂ RN be a manifold. Give the definition of the tangent space TpX of X at a

point p ∈ X.

(b) Show that X := {−x20 +x21 +x22 +x23 = −1}∩{x0 > 0} defines a submanifold of R4 and
identify explicitly its tangent space TxX for any x ∈ X.

(c) Consider the matrix group O(1, 3) ⊂ R42 consisting of all 4× 4 matrices A satisfying

AtMA = M

where M is the diagonal 4× 4 matrix M = diag(−1, 1, 1, 1).

(i) Show that O(1, 3) forms a group under matrix multiplication, i.e. it is closed under
multiplication and every element in O(1, 3) has an inverse in O(1, 3).

(ii) Show that O(1, 3) defines a 6-dimensional manifold. Identify the tangent space TAO(1, 3)

for any A ∈ O(1, 3) as a set {AY }Y ∈S where Y ranges over a linear subspace S ⊂ R42 which you
should identify explicitly.

(iii) Let X be as defined in (b) above. Show that O+(1, 3) ⊂ O(1, 3) defined as the set of
all A ∈ O(1, 3) such that Ax ∈ X for all x ∈ X is both a subgroup and a submanifold of full
dimension.

[You may use without proof standard theorems from the course concerning regular values and
transversality.]

27K Probability and Measure
(a) Let (X,F , ν) be a probability space. State the definition of the space L2(X,F , ν). Show

that it is a Hilbert space.

(b) Give an example of two real random variables Z1, Z2 that are not independent and yet
have the same law.

(c) Let Z1, . . . , Zn be n random variables distributed uniformly on [0, 1]. Let λ be the
Lebesgue measure on the interval [0, 1], and let B be the Borel σ-algebra. Consider the expression

D(f) := Var
[ 1

n
(f(Z1) + . . .+ f(Zn))−

∫

[0,1]

fdλ
]

where Var denotes the variance and f ∈ L2([0, 1],B, λ).

Assume that Z1, . . . , Zn are pairwise independent. Compute D(f) in terms of the variance
Var(f) := Var(f(Z1)).

(d) Now we no longer assume that Z1, . . . , Zn are pairwise independent. Show that

supD(f) > 1

n
,

where the supremum ranges over functions f ∈ L2([0, 1],B, λ) such that ‖f‖2 = 1 and
∫
[0,1]

fdλ = 0.

[Hint: you may wish to compute D(fp,q) for the family of functions fp,q =
√

k
2

(
1Ip − 1Iq

)
where

1 6 p, q 6 k, Ij = [ jk ,
j+1
k ) and 1A denotes the indicator function of the subset A.]
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28K Applied Probability
(a) What is meant by a birth process N = (N(t) : t > 0) with strictly positive rates

λ0, λ1, . . . ? Explain what is meant by saying that N is non-explosive.

(b) Show that N is non-explosive if and only if

∞∑

n=0

1

λn
=∞.

(c) Suppose N(0) = 0, and λn = αn+ β where α, β > 0. Show that

E(N(t)) =
β

α
(eαt − 1).

29J Principles of Statistics
State and prove the Cramér–Rao inequality for a real-valued parameter θ. [Necessary

regularity conditions need not be stated.]

In a general decision problem, define what it means for a decision rule to be minimax.

Let X1, . . . , Xn be i.i.d. from a N(θ, 1) distribution, where θ ∈ Θ = [0,∞). Prove carefully
that Xn = 1

n

∑n
i=1Xi is minimax for quadratic risk on Θ.

30K Stochastic Financial Models
Consider a single-period asset price model (S̄0, S̄1) in Rd+1 where, for n = 0, 1,

S̄n = (S0
n, Sn) = (S0

n, S
1
n, . . . , S

d
n)

with S0 a non-random vector in Rd and

S0
0 = 1, S0

1 = 1 + r, S1 ∼ N(µ, V ).

Assume that V is invertible. An investor has initial wealth w0 which is invested in the market at
time 0, to hold θ0 units of the riskless asset S0 and θi units of risky asset i, for i = 1, . . . , d.

(a) Show that in order to minimize the variance of the wealth θ̄.S̄1 held at time 1, subject to
the constraint

E(θ̄.S̄1) = w1

with w1 given, the investor should choose a portfolio of the form

θ = λθm, θm = V −1(µ− (1 + r)S0)

where λ is to be determined.

(b) Show that the same portfolio is optimal for a utility-maximizing investor with CARA utility
function

U(x) = − exp{−γx}
for a unique choice of γ, also to be determined.
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31J Mathematics of Machine Learning
(a) Let Z1, . . . , Zn be i.i.d. random elements taking values in a set Z and let F be a class

of functions f : Z → R. Define the Rademacher complexity Rn(F). Write down an inequality
relating the Rademacher complexity and

E
(

sup
f∈F

1

n

n∑

i=1

(f(Zi)− Ef(Zi))
)
.

State the bounded differences inequality.

(b) Now given i.i.d. input–output pairs (X1, Y1), . . . , (Xn, Yn) ∈ X × {−1, 1} consider
performing empirical risk minimisation with misclassification loss over the class H of classifiers
h : X → {−1, 1}. Denote by ĥ the empirical risk minimiser [which you may assume exists]. For
any classifier h, let R(h) be its misclassification risk and suppose this is minimised over H by
h∗ ∈ H. Prove that with probability at least 1− δ,

R(ĥ)−R(h∗) 6 2Rn(F) +

√
2 log(2/δ)

n

for δ ∈ (0, 1], where F is a class of functions f : X ×{−1, 1} → {0, 1} related to H that you should
specify.

(c) Let Zi = (Xi, Yi) for i = 1, . . . , n. Define the empirical Rademacher complexity
R̂(F(Z1:n)). Show that with probability at least 1− δ,

R(ĥ)−R(h∗) 6 2R̂(F(Z1:n)) + 2

√
2 log(3/δ)

n
.

32E Dynamical Systems
(i) For the dynamical system

ẋ = −x(x2 − 2µ)(x2 − µ+ a) , (†)

sketch the bifurcation diagram in the (µ, x) plane for the three cases a < 0, a = 0 and a > 0.
Describe the bifurcation points that occur in each case.

(ii) For the case when a < 0 only, confirm the types of bifurcation by finding the system to
leading order near each of the bifurcations.

(iii) Explore the structural stability of these bifurcations by adding a small positive constant
ε to the right-hand side of (†) and by sketching the bifurcation diagrams, for the three cases a < 0,
a = 0 and a > 0. Which of the original bifurcations are structurally stable?
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33C Integrable Systems
(a) Show that if L is a symmetric matrix (L = LT ) and B is skew-symmetric (B = −BT )

then [B,L] = BL− LB is symmetric.

(b) Consider the real n× n symmetric matrix

L =




0 a1 0 0 . . . . . . . . . 0
a1 0 a2 0 . . . . . . . . . 0
0 a2 0 a3 . . . . . . . . . 0
0 0 a3 . . . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . an−2 0
0 . . . . . . . . . . . . an−2 0 an−1
0 . . . . . . . . . . . . 0 an−1 0




(i.e. Li,i+1 = Li+1,i = ai for 1 6 i 6 n − 1, all other entries being zero) and the real n × n
skew-symmetric matrix

B =




0 0 a1 a2 0 . . . . . . . . . 0
0 0 0 a2 a3 . . . . . . . . . 0

−a1 a2 0 0 0 . . . . . . . . . 0
0 −a2 a3 0 . . . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . 0 an−2 an−1
0 . . . . . . . . . . . . 0 0 0
0 . . . . . . . . . . . . −an−2 an−1 0 0




(i.e. Bi,i+2 = −Bi+2,i = ai ai+1 for 1 6 i 6 n− 2, all other entries being zero).

(i) Compute [B,L].

(ii) Assume that the aj are smooth functions of time t so the matrix L = L(t) also depends
smoothly on t. Show that the equation dL

dt = [B,L] implies that

daj
dt

= f(aj−1, aj , aj+1)

for some function f which you should find explicitly.

(iii) Using the transformation aj = 1
2 exp[ 12uj ] show that

duj
dt

=
1

2

(
euj+1 − euj−1

)
(†)

for j = 1, . . . n− 1. [Use the convention u0 = −∞, a0 = 0, un = −∞, an = 0.]

(iv) Deduce that given a solution of equation (†), there exist matrices {U(t)}t∈R depending
on time such that L(t) = U(t)L(0)U(t)−1, and explain how to obtain first integrals for (†) from
this.
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34A Principles of Quantum Mechanics
Let A = (mωX + iP )/

√
2m~ω be the lowering operator of a one dimensional quantum

harmonic oscillator of mass m and frequency ω, and let |0〉 be the ground state defined by A|0〉 = 0.

a) Evaluate the commutator [A,A†].

b) For γ ∈ R, let S(γ) be the unitary operator S(γ) = exp
(
−γ2 (A†A† −AA)

)
and define

A(γ) = S†(γ)AS(γ). By differentiating with respect to γ or otherwise, show that

A(γ) = A cosh γ −A† sinh γ .

c) The ground state of the harmonic oscillator saturates the uncertainty relation ∆X ∆P >
~/2. Compute ∆X ∆P when the oscillator is in the state |γ〉 = S(γ)|0〉.

35C Applications of Quantum Mechanics
Consider the quantum mechanical scattering of a particle of mass m in one dimension off

a parity-symmetric potential, V (x) = V (−x). State the constraints imposed by parity, unitarity
and their combination on the components of the S-matrix in the parity basis,

S =

(
S++ S+−
S−+ S−−

)
.

For the specific potential

V = ~2
U0

2m
[δD(x+ a) + δD(x− a)] ,

show that

S−− = e−i2ka
[

(2k − iU0)eika + iU0e
−ika

(2k + iU0)e−ika − iU0eika

]
.

For U0 < 0, derive the condition for the existence of an odd-parity bound state. For U0 > 0
and to leading order in U0a � 1, show that an odd-parity resonance exists and discuss how it
evolves in time.

36A Statistical Physics
Using the notion of entropy, show that two systems that can freely exchange energy reach

the same temperature. Show that the energy of a system increases with temperature.

A system consists of N distinguishable, non-interacting spin 1
2 atoms in a magnetic field,

where N is large. The energy of an atom is ε > 0 if the spin is up and −ε if the spin is down.
Find the entropy and energy if a fraction α of the atoms have spin up. Determine α as a function
of temperature, and deduce the allowed range of α. Verify that the energy of the system increases
with temperature in this range.
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37D Electrodynamics
A relativistic particle of rest mass m and electric charge q follows a worldline xµ(λ) in

Minkowski spacetime where λ = λ(τ) is an arbitrary parameter which increases monotonically
with the proper time τ . We consider the motion of the particle in a background electromagnetic
field with four-vector potential Aµ(x) between initial and final values of the proper time denoted
τi and τf respectively.

(i) Write down an action for the particle’s motion. Explain what is meant by a gauge trans-
formation of the electromagnetic field. How does the action change under a gauge transformation?

(ii) Derive an equation of motion for the particle by considering the variation of the action
with respect to the worldline xµ(λ). Setting λ = τ show that your equation of motion reduces to
the Lorentz force law,

m
duµ

dτ
= qFµνuν , (∗)

where uµ = dxµ/dτ is the particle’s four-velocity and Fµν = ∂µAν − ∂νAµ is the Maxwell field-
strength tensor.

(iii) Working in an inertial frame with spacetime coordinates xµ = (ct, x, y, z), consider the
case of a constant, homogeneous magnetic field of magnitude B, pointing in the z-direction, and
vanishing electric field. In a gauge where Aµ = (0, 0, Bx, 0), show that the equation of motion (∗)
is solved by circular motion in the x-y plane with proper angular frequency ω = qB/m.

(iv) Let v denote the speed of the particle in this inertial frame with Lorentz factor
γ(v) = 1/

√
1 − v2/c2. Find the radius R = R(v) of the circle as a function of v. Setting

τf = τi + 2π/ω, evaluate the action S = S(v) for a single period of the particle’s motion.

Part II, Paper 1 [TURN OVER]



20

38D General Relativity
Let (M, g) be a four-dimensional manifold with metric gαβ of Lorentzian signature. The

Riemann tensor R is defined through its action on three vector fields X, V , W by

R(X,V )W = ∇X∇V W −∇V∇XW −∇[X,V ]W ,

and the Ricci identity is given by

∇α∇βV γ −∇β∇αV γ = RγραβV
ρ .

(i) Show that for two arbitrary vector fields V , W , the commutator obeys

[V ,W ]α = V µ∇µWα −Wµ∇µV α .

(ii) Let γ : I × I ′ → M, I, I ′ ⊂ R, (s, t) 7→ γ(s, t) be a one-parameter family of affinely
parametrized geodesics. Let T be the tangent vector to the geodesic γ(s = const, t) and S be the
tangent vector to the curves γ(s, t = const). Derive the equation for geodesic deviation,

∇T∇TS = R(T ,S)T .

(iii) Let Xα be a unit timelike vector field (XµXµ = −1) that satisfies the geodesic equation
∇XX = 0 at every point of M. Define

Bαβ := ∇βXα , hαβ := gαβ +XαXβ ,

Θ := Bαβhαβ , σαβ := B(αβ) −
1

3
Θhαβ , ωαβ := B[αβ] .

Show that

BαβX
α = BαβX

β = hαβX
α = hαβX

β = 0 ,

Bαβ =
1

3
Θhαβ + σαβ + ωαβ , gαβσαβ = 0 .

(iv) Let S denote the geodesic deviation vector, as defined in (ii), of the family of geodesics
defined by the vector field Xα. Show that S satisfies

Xµ∇µSα = BαµS
µ .

(v) Show that
Xµ∇µBαβ = −BµβBαµ +Rµβα

νXµXν .
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39B Fluid Dynamics II
A viscous fluid is confined between an inner, impermeable cylinder of radius a with centre at

(x, y) = (0, a) and another outer, impermeable cylinder of radius 2a with centre at (0, 2a) (so they
touch at the origin and both have their axes in the z direction). The inner cylinder rotates about
its axis with angular velocity Ω and the outer cylinder rotates about its axis with angular velocity
−Ω/4. The fluid motion is two-dimensional and slow enough that the Stokes approximation is
appropriate.

(i) Show that the boundary of the inner cylinder is described by the relationship

r = 2a sin θ ,

where (r, θ) are the usual polar coordinates centred on (x, y) = (0, 0). Show also that on this
cylinder the boundary condition on the tangential velocity can be written as

ur cos θ + uθ sin θ = aΩ ,

where ur and uθ are the components of the velocity in the r and θ directions respectively. Explain
why the boundary condition ψ = 0 (where ψ is the streamfunction such that ur = 1

r
∂ψ
∂θ and

uθ = −∂ψ∂r ) can be imposed.

(ii) Write down the boundary conditions to be satisfied on the outer cylinder r = 4a sin θ,
explaining carefully why ψ = 0 can also be imposed on this cylinder as well.

(iii) It is given that the streamfunction is of the form

ψ = A sin2 θ +Br2 + Cr sin θ +D sin3 θ/r

where A,B,C and D are constants, which satisfies ∇4ψ = 0. Using the fact that B = 0 due to the
symmetry of the problem, show that the streamfunction is

ψ =
α sin θ

r
(r − 2a sin θ)(r − 4a sin θ) ,

where the constant α is to be found.

(iv) Sketch the streamline pattern between the cylinders and determine the (x, y) coordinates
of the stagnation point in the flow.
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40B Waves
(a) Write down the linearised equations governing motion of an inviscid compressible fluid

at uniform entropy. Assuming that the velocity is irrotational, show that the velocity potential
φ(x, t) satisfies the wave equation and identify the wave speed c0. Obtain from these linearised
equations the energy-conservation equation

∂E

∂t
+∇ · I = 0,

and give expressions for the acoustic-energy density E and the acoustic-energy flux, or intensity,
I.

(b) Inviscid compressible fluid with density ρ0 and sound speed c0 occupies the regions y < 0
and y > 0, which are separated by a thin elastic membrane at an undisturbed position y = 0. The
membrane has mass per unit area m and is under a constant tension T . Small displacements of
the membrane to y = η(x, t) are coupled to small acoustic disturbances in the fluid with velocity
potential φ(x, y, t).

(i) Write down the (linearised) kinematic and dynamic boundary conditions at the mem-
brane. [Hint: The elastic restoring force on the membrane is like that on a stretched string.]

(ii) Show that the dispersion relation for waves proportional to cos(kx − ωt) propagating
along the membrane with |φ| → 0 as y → ±∞ is given by

{
m+

2ρ0(
k2 − ω2/c20

)1/2

}
ω2 = Tk2 .

Interpret this equation by explaining physically why all disturbances propagate with phase speed
c less than (T/m)1/2 and why c(k)→ 0 as k → 0.

(iii) Show that in such a wave the component 〈Iy〉 of mean acoustic intensity perpendicular
to the membrane is zero.
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41E Numerical Analysis
Let A ∈ Rn×n be a real symmetric matrix with distinct eigenvalues λ1 < λ2 < · · · < λn

and a corresponding orthonormal basis of real eigenvectors {wi}ni=1. Given a unit norm vector
x(0) ∈ Rn, and a set of parameters sk ∈ R, consider the inverse iteration algorithm

(A− skI)y = x(k), x(k+1) = y/‖y‖, k > 0 .

(a) Let sk = s = const for all k. Assuming that x(0) =

n∑

i=1

ciwi with all ci 6= 0, prove that

s < λ1 ⇒ x(k) → w1 or x(k) → −w1 (k →∞) .

Explain briefly what happens to x(k) when λm < s < λm+1 for some m ∈ {1, 2, . . . , n − 1}, and
when λn < s.

(b) Let sk = (Ax(k),x(k)) for k > 0. Assuming that, for some k, some ai ∈ R and for a
small ε,

x(k) = c−1
(
w1 + ε

∑

i>2

aiwi

)
,

where c is the appropriate normalising constant. Show that sk = λ1 −Kε2 +O(ε4) and determine
the value of K. Hence show that

x(k+1) = c−1
1

(
w1 + ε3

∑

i>2

biwi +O(ε5)
)
,

where c1 is the appropriate normalising constant, and find expressions for bi.

END OF PAPER
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