
MATHEMATICAL TRIPOS Part II 2019

List of Courses

Algebraic Geometry

Algebraic Topology

Analysis of Functions

Applications of Quantum Mechanics

Applied Probability

Asymptotic Methods

Automata and Formal Languages

Classical Dynamics

Coding and Cryptography

Cosmology

Differential Geometry

Dynamical Systems

Electrodynamics

Fluid Dynamics

Further Complex Methods

Galois Theory

General Relativity

Graph Theory

Integrable Systems

Linear Analysis

Logic and Set Theory

Mathematical Biology

Number Fields

Number Theory

Numerical Analysis

Principles of Quantum Mechanics

Principles of Statistics

Probability and Measure

Quantum Information and Computation

Representation Theory

Part II, 2019 List of Questions [TURN OVER



2

Riemann Surfaces

Statistical Modelling

Statistical Physics

Stochastic Financial Models

Topics in Analysis

Waves

Part II, 2019 List of Questions



3

Paper 4, Section II

24F Algebraic Geometry
(a) Let X ⊆ P2 be a smooth projective plane curve, defined by a homogeneous

polynomial F (x, y, z) of degree d over the complex numbers C.

(i) Define the divisor [X ∩H], where H is a hyperplane in P2 not contained in
X, and prove that it has degree d.

(ii) Give (without proof) an expression for the degree of KX in terms of d.

(iii) Show that X does not have genus 2.

(b) Let X be a smooth projective curve of genus g over the complex numbers C.
For p ∈ X let

G(p) = {n ∈ N | there is no f ∈ k(X) with vp(f) = n, and vq(f) 6 0 for all q 6= p}.

(i) Define ℓ(D), for a divisor D.

(ii) Show that for all p ∈ X,

ℓ(np) =

{
ℓ((n− 1)p) for n ∈ G(p)
ℓ((n− 1)p) + 1 otherwise.

(iii) Show that G(p) has exactly g elements. [Hint: What happens for large n? ]

(iv) Now suppose thatX has genus 2. Show that G(p) = {1, 2} or G(p) = {1, 3}.

[In this question N denotes the set of positive integers.]
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Paper 3, Section II

24F Algebraic Geometry
Let W ⊆ A2 be the curve defined by the equation y3 = x4 + 1 over the complex

numbers C, and let X ⊆ P2 be its closure.

(a) Show X is smooth.

(b) Determine the ramification points of the map X → P1 defined by

(x : y : z) 7→ (x : z).

Using this, determine the Euler characteristic and genus of X, stating clearly any theorems
that you are using.

(c) Let ω = dx
y2

∈ KX . Compute νp(ω) for all p ∈ X, and determine a basis for

L(KX).

Paper 2, Section II

24F Algebraic Geometry
(a) Let A be a commutative algebra over a field k, and p : A → k a k-linear

homomorphism. Define Der(A, p), the derivations of A centered in p, and define the
tangent space TpA in terms of this.

Show directly from your definition that if f ∈ A is not a zero divisor and p(f) 6= 0,
then the natural map TpA[

1
f ] → TpA is an isomorphism.

(b) Suppose k is an algebraically closed field and λi ∈ k for 1 6 i 6 r. Let

X = {(x, y) ∈ A2 | x 6= 0, y 6= 0, y2 = (x− λ1) · · · (x− λr)}.

Find a surjective map X → A1. Justify your answer.
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Paper 1, Section II

25F Algebraic Geometry
(a) Let k be an algebraically closed field of characteristic 0. Consider the algebraic

variety V ⊂ A3 defined over k by the polynomials

xy, y2 − z3 + xz, and x(x+ y + 2z + 1).

Determine

(i) the irreducible components of V ,

(ii) the tangent space at each point of V ,

(iii) for each irreducible component, the smooth points of that component, and

(iv) the dimensions of the irreducible components.

(b) Let L ⊇ K be a finite extension of fields, and dimK L = n. Identify L with An

over K and show that
U = {α ∈ L | K[α] = L}

is the complement in An of the vanishing set of some polynomial. [You need not show
that U is non-empty. You may assume that K[α] = L if and only if 1, α, . . . , αn−1 form a
basis of L over K.]
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Paper 3, Section II

20F Algebraic Topology
Let K be a simplicial complex, and L a subcomplex. As usual, Ck(K) denotes the

group of k-chains of K, and Ck(L) denotes the group of k-chains of L.

(a) Let
Ck(K,L) = Ck(K)/Ck(L)

for each integer k. Prove that the boundary map of K descends to give C•(K,L) the
structure of a chain complex.

(b) The homology groups of K relative to L, denoted by Hk(K,L), are defined to
be the homology groups of the chain complex C•(K,L). Prove that there is a long exact
sequence that relates the homology groups of K relative to L to the homology groups of
K and the homology groups of L.

(c) Let Dn be the closed n-dimensional disc, and Sn−1 be the (n − 1)-dimensional
sphere. Exhibit simplicial complexes Kn and subcomplexes Ln−1 such that Dn

∼= |Kn| in
such a way that |Ln−1| is identified with Sn−1.

(d) Compute the relative homology groups Hk(Kn, Ln−1), for all integers k > 0 and
n > 2 where Kn and Ln−1 are as in (c).

Paper 4, Section II

21F Algebraic Topology
State the Lefschetz fixed point theorem.

Let n > 2 be an integer, and x0 ∈ S2 a choice of base point. Define a space

X := (S2 × Z/nZ)/ ∼

where Z/nZ is discrete and ∼ is the smallest equivalence relation such that (x0, i) ∼
(−x0, i + 1) for all i ∈ Z/nZ. Let φ : X → X be a homeomorphism without fixed points.
Use the Lefschetz fixed point theorem to prove the following facts.

(i) If φ3 = IdX then n is divisible by 3.

(ii) If φ2 = IdX then n is even.
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Paper 2, Section II

21F Algebraic Topology
Let T = S1 × S1, U = S1 ×D2 and V = D2 × S1. Let i : T → U , j : T → V be the

natural inclusion maps. Consider the space S := U ∪T V ; that is,

S := (U ⊔ V )/ ∼

where ∼ is the smallest equivalence relation such that i(x) ∼ j(x) for all x ∈ T .

(a) Prove that S is homeomorphic to the 3-sphere S3.

[Hint: It may help to think of S3 as contained in C2.]

(b) Identify T as a quotient of the square I×I in the usual way. Let K be the circle
in T given by the equation y = 2

3x mod 1. K is illustrated in the figure below.

Compute a presentation for π1(S −K), where S −K is the complement of K in S,
and deduce that π1(S −K) is non-abelian.

Paper 1, Section II

21F Algebraic Topology
In this question, X and Y are path-connected, locally simply connected spaces.

(a) Let f : Y → X be a continuous map, and X̂ a path-connected covering space of
X. State and prove a uniqueness statement for lifts of f to X̂.

(b) Let p : X̂ → X be a covering map. A covering transformation of p is a
homeomorphism φ : X̂ → X̂ such that p ◦ φ = p. For each integer n > 3, give an
example of a space X and an n-sheeted covering map pn : X̂n → X such that the only
covering transformation of pn is the identity map. Justify your answer. [Hint: Take X to
be a wedge of two circles.]

(c) Is there a space X and a 2-sheeted covering map p2 : X̂2 → X for which the
only covering transformation of p2 is the identity? Justify your answer briefly.
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Paper 3, Section II

22H Analysis of Functions
(a) Prove that in a finite-dimensional normed vector space the weak and strong

topologies coincide.

(b) Prove that in a normed vector space X, a weakly convergent sequence is
bounded. [Any form of the Banach–Steinhaus theorem may be used, as long as you
state it clearly.]

(c) Let ℓ1 be the space of real-valued absolutely summable sequences. Suppose (ak)
is a weakly convergent sequence in ℓ1 which does not converge strongly. Show there is a
constant ε > 0 and a sequence (xk) in ℓ1 which satisfies xk ⇀ 0 and ‖xk‖ℓ1 > ε for all
k > 1.

With (xk) as above, show there is some y ∈ ℓ∞ and a subsequence (xkn) of (xk) with
〈xkn , y〉 > ε/3 for all n. Deduce that every weakly convergent sequence in ℓ1 is strongly
convergent.

[Hint: Define y so that yi = sign xkni for bn−1 < i 6 bn, where the sequence of
integers bn should be defined inductively along with xkn.]

(d) Is the conclusion of part (c) still true if we replace ℓ1 by L1([0, 2π])?
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Paper 4, Section II

23H Analysis of Functions
(a) Let (H, 〈·, ·〉) be a real Hilbert space and let B : H×H → R be a bilinear map.

If B is continuous prove that there is an M > 0 such that |B(u, v)| 6 M‖u‖‖v‖ for all
u, v ∈ H. [You may use any form of the Banach–Steinhaus theorem as long as you state
it clearly.]

(b) Now suppose that B defined as above is bilinear and continuous, and assume
also that it is coercive: i.e. there is a C > 0 such that B(u, u) > C‖u‖2 for all u ∈ H.
Prove that for any f ∈ H, there exists a unique vf ∈ H such that B(u, vf ) = 〈u, f〉 for all
u ∈ H.

[Hint: show that there is a bounded invertible linear operator L with bounded
inverse so that B(u, v) = 〈u,Lv〉 for all u, v ∈ H. You may use any form of the Riesz
representation theorem as long as you state it clearly.]

(c) Define the Sobolev space H1
0 (Ω), where Ω ⊂ Rd is open and bounded.

(d) Suppose f ∈ L2(Ω) and A ∈ Rd with |A|2 < 2, where | · |2 is the Euclidean norm
on Rd. Consider the Dirichlet problem

−∆v + v +A · ∇v = f in Ω, v = 0 in ∂Ω.

Using the result of part (b), prove there is a unique weak solution v ∈ H1
0 (Ω).

(e) Now assume that Ω is the open unit disk in R2 and g is a smooth function on
S1. Sketch how you would solve the following variant:

−∆v + v +A · ∇v = 0 in Ω, v = g in ∂Ω.

[Hint: Reduce to the result of part (d).]
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Paper 1, Section II

23H Analysis of Functions
(a) Consider the topology T on the natural numbers N ⊂ R induced by the standard

topology on R. Prove it is the discrete topology; i.e. T = P(N) is the power set of N.

(b) Describe the corresponding Borel sets on N and prove that any function
f : N → R or f : N → [0,+∞] is measurable.

(c) Using Lebesgue integration theory, define
∑

n>1 f(n) ∈ [0,+∞] for a function
f : N → [0,+∞] and then

∑
n>1 f(n) ∈ C for f : N → C. State any condition needed for

the sum of the latter series to be defined. What is a simple function in this setting, and
which simple functions have finite sum?

(d) State and prove the Beppo Levi theorem (also known as the monotone conver-
gence theorem).

(e) Consider f : R×N → [0,+∞] such that for any n ∈ N, the function t 7→ f(t, n)
is non-decreasing. Prove that

lim
t→∞

∑

n>1

f(t, n) =
∑

n>1

lim
t→∞

f(t, n).

Show that this need not be the case if we drop the hypothesis that t 7→ f(t, n) is non-
decreasing, even if all the relevant limits exist.
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Paper 4, Section II

33B Applications of Quantum Mechanics
(a) A classical beam of particles scatters off a spherically symmetric potential V (r).

Draw a diagram to illustrate the differential cross-section dσ/dΩ, and use this to derive
an expression for dσ/dΩ in terms of the impact parameter b and the scattering angle θ.

A quantum beam of particles of mass m and momentum p = ~k is incident along the
z-axis and scatters off a spherically symmetric potential V (r). Write down the asymptotic
form of the wavefunction ψ in terms of the scattering amplitude f(θ). By considering
the probability current J = −i(~/2m) (ψ⋆∇ψ − (∇ψ⋆)ψ), derive an expression for the
differential cross-section dσ/dΩ in terms of f(θ).

(b) The solution ψ(r) of the radial Schrödinger equation for a particle of mass m
and wave number k moving in a spherically symmetric potential V (r) has the asymptotic
form

ψ(r) ∼
∞∑

l=0

[
Al(k)

sin
(
kr − lπ

2

)

kr
− Bl(k)

cos
(
kr − lπ

2

)

kr

]
Pl (cos θ) ,

valid for kr ≫ 1, where Al(k) and Bl(k) are constants and Pl denotes the l’th Legendre
polynomial. Define the S-matrix element Sl and the corresponding phase shift δl for
the partial wave of angular momentum l, in terms of Al(k) and Bl(k). Define also the
scattering length as for the potential V .

Outside some core region, r > r0, the Schrödinger equation for some such potential
is solved by the s-wave (i.e. l = 0) wavefunction ψ(r) = ψ(r) with,

ψ(r) =
e−ikr

r
+
k + iλ tanh(λr)

k − iλ

eikr

r

where λ > 0 is a constant. Extract the S-matrix element S0, the phase shift δ0 and the
scattering length as. Deduce that the potential V (r) has a bound state of zero angular
momentum and compute its energy. Give the form of the (un-normalised) bound state
wavefunction in the region r > r0.
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Paper 3, Section II

34B Applications of Quantum Mechanics
A Hamiltonian H is invariant under the discrete translational symmetry of a Bravais

lattice Λ. This means that there exists a unitary translation operator Tr such that
[H,Tr] = 0 for all r ∈ Λ. State and prove Bloch’s theorem for H.

Consider the two-dimensional Bravais lattice Λ defined by the basis vectors

a1 =
a

2
(
√
3, 1) , a2 =

a

2
(
√
3,−1) .

Find basis vectors b1 and b2 for the reciprocal lattice. Sketch the Brillouin zone. Explain
why the Brillouin zone has only two physically distinct corners. Show that the positions
of these corners may be taken to be K = 1

3(2b1 + b2) and K′ = 1
3(b1 + 2b2).

The dynamics of a single electron moving on the lattice Λ is described by a tight-
binding model with Hamiltonian

H =
∑

r∈Λ

[
E0|r〉〈r| − λ

(
|r〉〈r+ a1|+ |r〉〈r+ a2|+ |r+ a1〉〈r|+ |r+ a2〉〈r|

)]
,

where E0 and λ are real parameters. What is the energy spectrum as a function of the
wave vector k in the Brillouin zone? How does the energy vary along the boundary of the
Brillouin zone between K and K′? What is the width of the band?

In a real material, each site of the lattice Λ contains an atom with a certain valency.
Explain how the conducting properties of the material depend on the valency.

Suppose now that there is a second band, with minimum E = E0 + ∆. For what
values of ∆ and the valency is the material an insulator?

Paper 2, Section II

34B Applications of Quantum Mechanics
Give an account of the variational principle for establishing an upper bound on the

ground state energy of a Hamiltonian H.

A particle of mass m moves in one dimension and experiences the potential
V = A|x|n with n an integer. Use a variational argument to prove the virial theorem,

2〈T 〉0 = n〈V 〉0

where 〈·〉0 denotes the expectation value in the true ground state. Deduce that there is
no normalisable ground state for n 6 −3.

For the case n = 1, use the ansatz ψ(x) ∝ e−α
2x2 to find an estimate for the energy

of the ground state.
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Paper 1, Section II

34B Applications of Quantum Mechanics
A particle of mass m and charge q moving in a uniform magnetic field B = ∇×A =

(0, 0, B) and electric field E = −∇φ is described by the Hamiltonian

H =
1

2m
|p− qA|2 + qφ ,

where p is the canonical momentum.

[ In the following you may use without proof any results concerning the spectrum
of the harmonic oscillator as long as they are stated clearly.]

(a) Let E = 0. Choose a gauge which preserves translational symmetry in the y-
direction. Determine the spectrum of the system, restricted to states with pz = 0. The
system is further restricted to lie in a rectangle of area A = LxLy, with sides of length Lx
and Ly parallel to the x- and y-axes respectively. Assuming periodic boundary conditions
in the y-direction, estimate the degeneracy of each Landau level.

(b) Consider the introduction of an additional electric field E = (E , 0, 0). Choosing
a suitable gauge (with the same choice of vector potential A as in part (a)), write down
the resulting Hamiltonian. Find the energy spectrum for a particle on R3 again restricted
to states with pz = 0.

Define the group velocity of the electron and show that its y-component is given by
vy = −E/B.

When the system is further restricted to a rectangle of area A as above, show that
the previous degeneracy of the Landau levels is lifted and determine the resulting energy
gap ∆E between the ground-state and the first excited state.
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Paper 4, Section II

27K Applied Probability
(a) Let λ : Rd → [0,∞) be such that Λ(A) :=

∫
A λ(x) dx is finite for any bounded

measurable set A ⊆ Rd. State the properties which define a (non-homogeneous) Poisson
process Π on Rd with intensity function λ.

(b) Let Π be a Poisson process on Rd with intensity function λ, and let f : Rd → Rs

be a given function. Give a clear statement of the necessary conditions on the pair Λ, f
subject to which f(Π) is a Poisson process on Rs. When these conditions hold, express
the mean measure of f(Π) in terms of Λ and f .

(c) Let Π be a homogeneous Poisson process on R2 with constant intensity 1, and
let f : R2 → [0,∞) be given by f(x1, x2) = x21 + x22. Show that f(Π) is a homogeneous
Poisson process on [0,∞) with constant intensity π.

Let R1, R2, . . . be an increasing sequence of positive random variables such that the
points of f(Π) are R2

1, R
2
2, . . . . Show that Rk has density function

hk(r) =
1

(k − 1)!
2πr(πr2)k−1e−πr

2

, r > 0.

Paper 3, Section II

27K Applied Probability
(a) What does it mean to say that a continuous-time Markov chain X = (Xt : 0 6

t 6 T ) with state space S is reversible in equilibrium? State the detailed balance equations,
and show that any probability distribution on S satisfying them is invariant for the chain.

(b) Customers arrive in a shop in the manner of a Poisson process with rate λ > 0.
There are s servers, and capacity for up to N people waiting for service. Any customer
arriving when the shop is full (in that the total number of customers present is N+s) is not
admitted and never returns. Service times are exponentially distributed with parameter
µ > 0, and they are independent of one another and of the arrivals process. Describe the
number Xt of customers in the shop at time t as a Markov chain.

Calculate the invariant distribution π of X = (Xt : t > 0), and explain why π is the
unique invariant distribution. Show that X is reversible in equilibrium.

[Any general result from the course may be used without proof, but must be stated
clearly.]
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Paper 2, Section II

27K Applied Probability
Let X = (Xt : t > 0) be a Markov chain on the non-negative integers with generator

G = (gi,j) given by

gi,i+1 = λi, i > 0,

gi,0 = λiρi, i > 0,

gi,j = 0, j 6= 0, i, i + 1,

for a given collection of positive numbers λi, ρi.

(a) State the transition matrix of the jump chain Y of X.

(b) Why is X not reversible?

(c) Prove that X is transient if and only if
∏
i(1 + ρi) <∞.

(d) Assume that
∏
i(1 + ρi) < ∞. Derive a necessary and sufficient condition on

the parameters λi, ρi for X to be explosive.

(e) Derive a necessary and sufficient condition on the parameters λi, ρi for the
existence of an invariant measure for X.

[You may use any general results from the course concerning Markov chains and
pure birth processes so long as they are clearly stated.]
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Paper 1, Section II

28K Applied Probability
Let S be a countable set, and let P = (pi,j : i, j ∈ S) be a Markov transition matrix

with pi,i = 0 for all i. Let Y = (Yn : n = 0, 1, 2, . . . ) be a discrete-time Markov chain on
the state space S with transition matrix P .

The continuous-time process X = (Xt : t > 0) is constructed as follows. Let
(Um : m = 0, 1, 2, . . .) be independent, identically distributed random variables having the
exponential distribution with mean 1. Let g be a function on S such that ε < g(i) < 1

ε
for all i ∈ S and some constant ε > 0. Let Vm = Um/g(Ym) for m > 0. Let T0 = 0 and
Tn =

∑n−1
m=0 Vm for n > 1. Finally, let Xt = Yn for Tn 6 t < Tn+1.

(a) Explain briefly why X is a continuous-time Markov chain on S, and write down
its generator in terms of P and the vector g = (g(i) : i ∈ S).

(b) What does it mean to say that the chain X is irreducible? What does it mean
to say a state i ∈ S is (i) recurrent and (ii) positive recurrent?

(c) Show that

(i) X is irreducible if and only if Y is irreducible;

(ii) X is recurrent if and only if Y is recurrent.

(d) Suppose Y is irreducible and positive recurrent with invariant distribution π.
Express the invariant distribution of X in terms of π and g.
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Paper 4, Section II

30A Asymptotic Methods
Consider, for small ǫ, the equation

ǫ2
d2ψ

dx2
− q(x)ψ = 0. (∗)

Assume that (∗) has bounded solutions with two turning points a, b where b > a, q′(b) > 0
and q′(a) < 0.

(a) Use the WKB approximation to derive the relationship

1

ǫ

∫ b

a
|q(ξ)|1/2dξ =

(
n+

1

2

)
π with n = 0, 1, 2, · · · . (∗∗)

[You may quote without proof any standard results or formulae from WKB theory.]

(b) In suitable units, the radial Schrödinger equation for a spherically symmetric
potential given by V (r) = −V0/r, for constant V0, can be recast in the standard form (∗)
as:

~2

2m

d2ψ

dx2
+ e2x

[
λ− V (ex)− ~2

2m

(
l +

1

2

)2

e−2x

]
ψ = 0,

where r = ex and ǫ = ~/
√
2m is a small parameter.

Use result (∗∗) to show that the energies of the bound states (i.e λ = −|λ| < 0) are
approximated by the expression:

E = −|λ| = − m

2~2
V 2
0

(n+ l + 1)2
.

[You may use the result

∫ b

a

1

r

√
(r − a)(b− r) dr = (π/2)

[√
b−√

a
]2
. ]
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Paper 3, Section II

30A Asymptotic Methods
(a) State Watson’s lemma for the case when all the functions and variables involved

are real, and use it to calculate the asymptotic approximation as x → ∞ for the integral
I, where

I =

∫ ∞

0
e−xt sin(t2) dt.

(b) The Bessel function Jν(z) of the first kind of order ν has integral representation

Jν(z) =
1

Γ(ν + 1
2)
√
π

(z
2

)ν ∫ 1

−1
eizt(1− t2)ν−1/2 dt ,

where Γ is the Gamma function, Re(ν) > 1/2 and z is in general a complex variable. The
complex version of Watson’s lemma is obtained by replacing x with the complex variable
z, and is valid for |z| → ∞ and |arg(z)| 6 π/2−δ < π/2, for some δ such that 0 < δ < π/2.
Use this version to derive an asymptotic expansion for Jν(z) as |z| → ∞ . For what values
of arg(z) is this approximation valid?

[Hint: You may find the substitution t = 2τ − 1 useful. ]

Paper 2, Section II

30A Asymptotic Methods
(a) Define formally what it means for a real valued function f(x) to have an

asymptotic expansion about x0, given by

f(x) ∼
∞∑

n=0

fn(x− x0)
n as x→ x0 .

Use this definition to prove the following properties.

(i) If both f(x) and g(x) have asymptotic expansions about x0, then
h(x) = f(x) + g(x) also has an asymptotic expansion about x0.

(ii) If f(x) has an asymptotic expansion about x0 and is integrable, then

∫ x

x0

f(ξ) dξ ∼
∞∑

n=0

fn
n+ 1

(x− x0)
n+1 as x→ x0 .

(b) Obtain, with justification, the first three terms in the asymptotic expansion as
x→ ∞ of the complementary error function, erfc(x), defined as

erfc(x) :=
1√
2π

∫ ∞

x
e−t

2

dt.
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Paper 1, Section I

4H Automata and Formal Languages
(a) State the pumping lemma for context-free languages (CFLs).

(b) Which of the following are CFLs? Justify your answers.

(i) {wwR | w ∈ {a, b}∗}, where wR is the reverse of the word w.

(ii) {0p1p | p is a prime}.

(iii) {ambnckdl | 3m = 4l and 2n = 5k}.

(c) Let L and M be CFLs. Show that the concatenation LM is also a CFL.

Paper 4, Section I

4H Automata and Formal Languages
(a) Which of the following are regular languages? Justify your answers.

(i) {wn | w ∈ {a, b}∗, n > 2}.

(ii) {w ∈ {a, b, c}∗ | w contains an odd number of b’s and an even number of c’s}.

(iii) {w ∈ {0, 1}∗ | w contains no more than 7 consecutive 0’s}.

(b) Consider the language L over alphabet {a, b} defined via

L := {wabn | w ∈ {a, b}∗, n ∈ K} ∪ {b}∗.

Show that L satisfies the pumping lemma for regular languages but is not a regular
language itself.
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Paper 3, Section I

4H Automata and Formal Languages
(a) Define what it means for a context-free grammar (CFG) to be in Chomsky

normal form (CNF). Can a CFG in CNF ever define a language containing ǫ? If GChom

denotes the result of converting an arbitrary CFG G into one in CNF, state the relationship
between L(G) and L(GChom).

(b) Let G be a CFG in CNF. Give an algorithm that, on input of any word v on
the terminals of G, decides if v ∈ L(G) or not. Explain why your algorithm works.

(c) Convert the following CFG G into a grammar in CNF:

S → Sbb | aS | T

T → cc

Does L(G) = L(GChom) in this case? Justify your answer.

Paper 2, Section I

4H Automata and Formal Languages
(a) Define a recursive set and a recursively enumerable (r.e.) set. Prove that E ⊆ N0

is recursive if and only if both E and N0 \E are r.e. sets.

(b) Let E = {fn,k(m1, . . . ,mk) | (m1, . . . ,mk) ∈ Nk0} for some fixed k > 1 and some
fixed register machine code n. Show that E = {m ∈ N0 | fj,1(m) ↓} for some fixed register
machine code j. Hence show that E is an r.e. set.

(c) Show that the function f : N0 → N0 defined below is primitive recursive.

f(n) =

{
n− 1 if n > 0
0 if n = 0.

[Any use of Church’s thesis in your answers should be explicitly stated. In this question
N0 denotes the set of non-negative integers.]
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Paper 1, Section II

12H Automata and Formal Languages
Let D = (Q,Σ, δ, q0, F ) be a deterministic finite-state automaton (DFA). Define

what it means for two states of D to be equivalent. Define the minimal DFA D/ ∼ for D.

Let D be a DFA with no inaccessible states, and suppose that A is another DFA on
the same alphabet as D and for which L(D) = L(A). Show that A has at least as many
states as D/ ∼. [You may use results from the course as long as you state them clearly.]

Construct a minimal DFA (that is, one with the smallest possible number of states)
over the alphabet {0, 1} which accepts precisely the set of binary numbers which are
multiples of 7. You may have leading zeros in your inputs (e.g.: 00101). Prove that your
DFA is minimal by finding a distinguishing word for each pair of states.

Paper 3, Section II

12H Automata and Formal Languages
(a) State the s-m-n theorem and the recursion theorem.

(b) State and prove Rice’s theorem.

(c) Show that if g : N2
0 → N0 is partial recursive, then there is some e ∈ N0 such

that
fe,1(y) = g(e, y) ∀y ∈ N0.

(d) Show there exists some m ∈ N0 such that Wm has exactly m2 elements.

(e) Given n ∈ N0, is it possible to compute whether or not the number of elements
of Wn is a (finite) perfect square? Justify your answer.

[In this question N0 denotes the set of non-negative integers. Any use of Church’s thesis
in your answers should be explicitly stated.]
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Paper 4, Section I

8E Classical Dynamics
(a) The angular momentum of a rigid body about its centre of mass is conserved.

Derive Euler’s equations,

I1ω̇1 = (I2 − I3)ω2ω3 ,

I2ω̇2 = (I3 − I1)ω3ω1 ,

I3ω̇3 = (I1 − I2)ω1ω2 ,

explaining the meaning of the quantities appearing in the equations.

(b) Show that there are two independent conserved quantities that are quadratic
functions of ω = (ω1, ω2, ω3), and give a physical interpretation of them.

(c) Derive a linear approximation to Euler’s equations that applies when |ω1| ≪ |ω3|
and |ω2| ≪ |ω3|. Use this to determine the stability of rotation about each of the three
principal axes of an asymmetric top.

Paper 3, Section I

8E Classical Dynamics
A simple harmonic oscillator of mass m and spring constant k has the equation of

motion
mẍ = −kx .

(a) Describe the orbits of the system in phase space. State how the action I of
the oscillator is related to a geometrical property of the orbits in phase space. Derive
the action–angle variables (θ, I) and give the form of the Hamiltonian of the oscillator in
action–angle variables.

(b) Suppose now that the spring constant k varies in time. Under what conditions
does the theory of adiabatic invariance apply? Assuming that these conditions hold,
identify an adiabatic invariant and determine how the energy and amplitude of the
oscillator vary with k in this approximation.
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Paper 2, Section I

8E Classical Dynamics
(a) State Hamilton’s equations for a system with n degrees of freedom and Hamilto-

nian H(q,p, t), where (q,p) = (q1, . . . , qn, p1, . . . , pn) are canonical phase-space variables.

(b) Define the Poisson bracket {f, g} of two functions f(q,p, t) and g(q,p, t).

(c) State the canonical commutation relations of the variables q and p.

(d) Show that the time-evolution of any function f(q,p, t) is given by

df

dt
= {f,H}+ ∂f

∂t
.

(e) Show further that the Poisson bracket of any two conserved quantities is also a
conserved quantity.

[You may assume the Jacobi identity,

{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0 . ]

Paper 1, Section I

8E Classical Dynamics
(a) A mechanical system with n degrees of freedom has the Lagrangian L(q, q̇),

where q = (q1, . . . , qn) are the generalized coordinates and q̇ = dq/dt.

Suppose that L is invariant under the continuous symmetry transformation q(t) 7→
Q(s, t), where s is a real parameter and Q(0, t) = q(t). State and prove Noether’s theorem
for this system.

(b) A particle of mass m moves in a conservative force field with potential energy
V (r), where r is the position vector in three-dimensional space.

Let (r, φ, z) be cylindrical polar coordinates. V (r) is said to have helical symmetry
if it is of the form

V (r) = f(r, φ− kz) ,

for some constant k. Show that a particle moving in a potential with helical symmetry
has a conserved quantity that is a linear combination of angular and linear momenta.
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Paper 2, Section II

14E Classical Dynamics
The Lagrangian of a particle of mass m and charge q moving in an electromagnetic

field described by scalar and vector potentials φ(r, t) and A(r, t) is

L =
1

2
m|ṙ|2 + q(−φ+ ṙ ·A) ,

where r(t) is the position vector of the particle and ṙ = dr/dt.

(a) Show that Lagrange’s equations are equivalent to the equation of motion

mr̈ = q(E+ v×B) ,

where

E = −∇φ− ∂A

∂t
, B = ∇×A

are the electric and magnetic fields.

(b) Show that the related Hamiltonian is

H =
|p− qA|2

2m
+ qφ ,

where p = mṙ+ qA. Obtain Hamilton’s equations for this system.

(c) Verify that the electric and magnetic fields remain unchanged if the scalar and
vector potentials are transformed according to

φ 7→ φ̃ = φ− ∂f

∂t
,

A 7→ Ã = A+∇f ,

where f(r, t) is a scalar field. Show that the transformed Lagrangian L̃ differs from L by
the total time-derivative of a certain quantity. Why does this leave the form of Lagrange’s
equations invariant? Show that the transformed Hamiltonian H̃ and phase-space variables
(r, p̃) are related to H and (r,p) by a canonical transformation.

[Hint: In standard notation, the canonical transformation associated with the type-2
generating function F2(q,P, t) is given by

p =
∂F2

∂q
, Q =

∂F2

∂P
, K = H +

∂F2

∂t
. ]
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Paper 4, Section II

15E Classical Dynamics
(a) Explain what is meant by a Lagrange top. You may assume that such a top has

the Lagrangian

L =
1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3

(
ψ̇ + φ̇ cos θ

)2
−Mgl cos θ

in terms of the Euler angles (θ, φ, ψ). State the meaning of the quantities I1, I3, M and l
appearing in this expression.

Explain why the quantity

pψ =
∂L

∂ψ̇

is conserved, and give two other independent integrals of motion.

Show that steady precession, with a constant value of θ ∈ (0, π2 ), is possible if

p2ψ > 4MglI1 cos θ .

(b) A rigid body of mass M is of uniform density and its surface is defined by

x21 + x22 = x23 −
x33
h
,

where h is a positive constant and (x1, x2, x3) are Cartesian coordinates in the body frame.

Calculate the values of I1, I3 and l for this symmetric top, when it rotates about
the sharp point at the origin of this coordinate system.
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Paper 4, Section I

3G Coding and Cryptography
(a) Describe Diffie-Hellman key exchange. Why is it believed to be a secure system?

(b) Consider the following authentication procedure. Alice chooses public key N
for the Rabin–Williams cryptosystem. To be sure we are in communication with Alice we
send her a ‘random item’ r ≡ m2 mod N . On receiving r, Alice proceeds to decode using
her knowledge of the factorisation of N and finds a square root m1 of r. She returns m1

to us and we check r ≡ m2
1 mod N . Is this authentication procedure secure? Justify your

answer.

Paper 3, Section I

3G Coding and Cryptography
What does it mean to transmit reliably at rate R through a binary symmetric

channel (BSC) with error probability p?

Assuming Shannon’s second coding theorem (also known as Shannon’s noisy coding
theorem), compute the supremum of all possible reliable transmission rates of a BSC.
Describe qualitatively the behaviour of the capacity as p varies. Your answer should
address the following cases,

(i) p is small,

(ii) p = 1/2,

(iii) p > 1/2.

Paper 2, Section I

3G Coding and Cryptography
Define the binary Hamming code of length n = 2l − 1 for l > 3. Define a perfect

code. Show that a binary Hamming code is perfect.

What is the weight of the dual code of a binary Hamming code when l = 3?
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Paper 1, Section I

3G Coding and Cryptography
Let X and Y be discrete random variables taking finitely many values. Define the

conditional entropy H(X|Y ). Suppose Z is another discrete random variable taking values
in a finite alphabet, and prove that

H(X|Y ) 6 H(X|Y,Z) +H(Z).

[You may use the equality H(X,Y ) = H(X|Y ) + H(Y ) and the inequality H(X|Y ) 6

H(X).]

State and prove Fano’s inequality.

Paper 1, Section II

11G Coding and Cryptography
What does it mean to say that C is a binary linear code of length n, rank k and

minimum distance d? Let C be such a code.

(a) Prove that n > d+ k − 1.

Let x = (x1, . . . , xn) ∈ C be a codeword with exactly d non-zero digits.

(b) Prove that puncturing C on the non-zero digits of x produces a code C ′ of length
n− d, rank k − 1 and minimum distance d′ for some d′ > ⌈d2⌉.

(c) Deduce that n > d+
∑

16l6k−1⌈ d2l ⌉.
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Paper 2, Section II

12G Coding and Cryptography
Describe the Huffman coding scheme and prove that Huffman codes are optimal.

Are the following statements true or false? Justify your answers.

(i) Given m messages with probabilities p1 > p2 > · · · > pm a Huffman coding will
assign a unique set of word lengths.

(ii) An optimal code must be Huffman.

(iii) Suppose the m words of a Huffman code have word lengths s1, s2, . . . , sm. Then

m∑

i=1

2−si = 1.

[Throughout this question you may assume that a decipherable code with prescribed
word lengths exists if and only if there is a prefix-free code with the same word lengths.]
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Paper 3, Section I

9B Cosmology
Consider a spherically symmetric distribution of mass with density ρ(r) at distance

r from the centre. Derive the pressure support equation that the pressure P (r) has to
satisfy for the system to be in static equilibrium.

Assume now that the mass density obeys ρ(r) = Ar2P (r), for some positive constant
A. Determine whether or not the system has a stable solution corresponding to a star of
finite radius.

Paper 4, Section I

9B Cosmology
Derive the relation between the neutrino temperature Tν and the photon tempera-

ture Tγ at a time long after electrons and positrons have become non-relativistic.

[In this question you may work in units of the speed of light, so that c = 1. You may
also use without derivation the following formulae. The energy density ǫa and pressure Pa
for a single relativistic species a with a number ga of degenerate states at temperature T
are given by

ǫa =
4πga
h3

∫
p3dp

ep/(kBT ) ∓ 1
, Pa =

4πga
3h3

∫
p3dp

ep/(kBT ) ∓ 1
,

where kB is Boltzmann’s constant, h is Planck’s constant, and the minus or plus depends
on whether the particle is a boson or a fermion respectively. For each species a, the entropy
density sa at temperature Ta is given by,

sa =
ǫa + Pa
kBTa

.

The effective total number g∗ of relativistic species is defined in terms of the numbers of
bosonic and fermionic particles in the theory as,

g∗ =
∑

bosons

gbosons +
7

8

∑

fermions

gfermions ,

with the specific values gγ = ge+ = ge− = 2 for photons, positrons and electrons.]
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Paper 1, Section I

9B Cosmology
[You may work in units of the speed of light, so that c = 1.]

By considering a spherical distribution of matter with total mass M and radius R
and an infinitesimal mass δm located somewhere on its surface, derive the Friedmann
equation describing the evolution of the scale factor a(t) appearing in the relation
R(t) = R0a(t)/a(t0) for a spatially-flat FLRW spacetime.

Consider now a spatially-flat, contracting universe filled by a single component with
energy density ρ, which evolves with time as ρ(t) = ρ0[a(t)/a(t0)]

−4. Solve the Friedmann
equation for a(t) with a(t0) = 1.

Paper 2, Section I

9B Cosmology
[You may work in units of the speed of light, so that c = 1.]

(a) Combining the Friedmann and continuity equations

H2 =
8πG

3
ρ , ρ̇+ 3H(ρ+ P ) = 0 ,

derive the Raychaudhuri equation (also known as the acceleration equation) which expresses
ä/a in terms of the energy density ρ and the pressure P .

(b) Assuming an equation of state P = wρ with constant w, for what w is the
expansion of the universe accelerated or decelerated?

(c) Consider an expanding, spatially-flat FLRW universe with both a cosmological
constant and non-relativistic matter (also known as dust) with energy densities ρcc and
ρdust respectively. At some time corresponding to aeq, the energy densities of these two
components are equal ρcc(aeq) = ρdust(aeq). Is the expansion of the universe accelerated
or decelerated at this time?

(d) For what numerical value of a/aeq does the universe transition from deceleration
to acceleration?
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Paper 3, Section II

14B Cosmology
[You may work in units of the speed of light, so that c = 1.]

Consider the process where protons and electrons combine to form neutral hydrogen
atoms;

p+ + e− ↔ H0 + γ.

Let np, ne and nH denote the number densities for protons, electrons and hydrogen atoms
respectively. The ionization energy of hydrogen is denoted I. State and derive Saha’s
equation for the ratio nenp/nH , clearly describing the steps required.

[You may use without proof the following formula for the equilibrium number density
of a non-relativistic species a with ga degenerate states of mass m at temperature T such
that kBT ≪ m,

na = ga

(
2πmkBT

h2

)3/2

exp ([µ−m] /kBT ) ,

where µ is the chemical potential and kB and h are the Boltzmann and Planck constants
respectively.]

The photon number density nγ is given as

nγ =
16π

h3
ζ(3) (kBT )

3 ,

where ζ(3) ≃ 1.20. Consider now the fractional ionization Xe = ne/(ne + nH). In our
universe ne + nH = np + nH ≃ ηnγ where η is the baryon-to-photon number ratio. Find
an expression for the ratio

(1−Xe)

X2
e

in terms of kBT , η, I and the particle masses. One might expect neutral hydrogen to form
at a temperature given by kBT ∼ I ∼ 13 eV, but instead in our universe it forms at the
much lower temperature kBT ∼ 0.3 eV. Briefly explain why this happens. Estimate the
temperature at which neutral hydrogen would form in a hypothetical universe with η = 1.
Briefly explain your answer.
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Paper 1, Section II

15B Cosmology
[You may work in units of the speed of light, so that c = 1.]

Consider a spatially-flat FLRW universe with a single, canonical, homogeneous
scalar field φ(t) with a potential V (φ). Recall the Friedmann equation and the Ray-
chaudhuri equation (also known as the acceleration equation)

(
ȧ

a

)2

= H2 =
8πG

3

[
1

2
φ̇2 + V

]
,

ä

a
= −8πG

3

(
φ̇2 − V

)
.

(a) Assuming φ̇ 6= 0, derive the equations of motion for φ, i.e.

φ̈+ 3Hφ̇+ ∂φV = 0 .

(b) Assuming the special case V (φ) = λφ4, find φ(t), for some initial value φ(t0) = φ0
in the slow-roll approximation, i.e. assuming that φ̇2 ≪ 2V and φ̈≪ 3Hφ̇.

(c) The number N of efoldings is defined by dN = d ln a. Using the chain rule,
express dN first in terms of dt and then in terms of dφ. Write the resulting relation
between dN and dφ in terms of V and ∂φV only, using the slow-roll approximation.

(d) Compute the number N of efoldings of expansion between some initial value
φi < 0 and a final value φf < 0 (so that φ̇ > 0 throughout).

(e) Discuss qualitatively the horizon and flatness problems in the old hot big bang
model (i.e. without inflation) and how inflation addresses them.
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Paper 4, Section II

25H Differential Geometry
(a) Let γ : (a, b) → R2 be a regular curve without self-intersection given by

γ(v) = (f(v), g(v)) with f(v) > 0 for v ∈ (a, b) and let S be the surface of revolution
defined globally by the parametrisation

φ : (0, 2π) × (a, b) → R3,

where φ(u, v) = (f(v) cos u, f(v) sin u, g(v)), i.e. S = φ((0, 2π)× (a, b)). Compute its mean
curvature H and its Gaussian curvature K.

(b) Define what it means for a regular surface S ⊂ R3 to be minimal. Give an
example of a minimal surface which is not locally isometric to a cone, cylinder or plane.
Justify your answer.

(c) Let S be a regular surface such that K ≡ 1. Is it necessarily the case that given
any p ∈ S, there exists an open neighbourhood U ⊂ S of p such that U lies on some sphere
in R3? Justify your answer.

Part II, 2019 List of Questions [TURN OVER



34

Paper 3, Section II

25H Differential Geometry
(a) Let α : (a, b) → R2 be a regular curve without self intersection given by

α(v) = (f(v), g(v)) with f(v) > 0 for v ∈ (a, b).

Consider the local parametrisation given by

φ : (0, 2π) × (a, b) → R3,

where φ(u, v) = (f(v) cos u, f(v) sin u, g(v)).

(i) Show that the image φ((0, 2π) × (a, b)) defines a regular surface S in R3.

(ii) If γ(s) = φ(u(s), v(s)) is a geodesic in S parametrised by arc length, then show
that f(v(s))2u′(s) is constant in s. If θ(s) denotes the angle that the geodesic
makes with the parallel S ∩ {z = g(v(s))}, then show that f(v(s)) cos θ(s) is
constant in s.

(b) Now assume that α(v) = (f(v), g(v)) extends to a smooth curve α : [a, b] → R2

such that f(a) = 0, f(b) = 0, f ′(a) 6= 0, f ′(b) 6= 0. Let S be the closure of S in R3.

(i) State a necessary and sufficient condition on α(v) for S to be a compact regular
surface. Justify your answer.

(ii) If S is a compact regular surface, and γ : (−∞,∞) → S is a geodesic, show that
there exists a non-empty open subset U ⊂ S such that γ((−∞,∞)) ∩ U = ∅.
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Paper 2, Section II

25H Differential Geometry
(a) Let α : (a, b) → R3 be a smooth regular curve parametrised by arclength. For

s ∈ (a, b), define the curvature k(s) and (where defined) the torsion τ(s) of α. What
condition must be satisfied in order for the torsion to be defined? Derive the Frenet
equations.

(b) If τ(s) is defined and equal to 0 for all s ∈ (a, b), show that α lies in a plane.

(c) State the fundamental theorem for regular curves in R3, giving necessary and
sufficient conditions for when curves α(s) and α̃(s) are related by a proper Euclidean
motion.

(d) Now suppose that α̃ : (a, b) → R3 is another smooth regular curve parametrised
by arclength, and that k̃(s) and τ̃(s) are its curvature and torsion. Determine whether
the following statements are true or false. Justify your answer in each case.

(i) If τ(s) = 0 whenever it is defined, then α lies in a plane.

(ii) If τ(s) is defined and equal to 0 for all but one value of s in (a, b), then α lies
in a plane.

(iii) If k(s) = k̃(s) for all s, τ(s) and τ̃(s) are defined for all s 6= s0, and τ(s) = τ̃(s)
for all s 6= s0, then α and α̃ are related by a rigid motion.

Paper 1, Section II

26H Differential Geometry
Let n > 1 be an integer.

(a) Show that Sn = {x ∈ Rn+1 : x21+ · · ·+x2n+1 = 1} defines a submanifold of Rn+1

and identify explicitly its tangent space TxS
n for any x ∈ Sn.

(b) Show that the matrix group SO(n) ⊂ Rn
2

defines a submanifold. Identify
explicitly the tangent space TRSO(n) for any R ∈ SO(n).

(c) Given v ∈ Sn, show that the set Sv = {R ∈ SO(n + 1) : Rv = v} defines a
submanifold Sv ⊂ SO(n + 1) and compute its dimension. For v 6= w, is it ever the case
that Sv and Sw are transversal?

[You may use standard theorems from the course concerning regular values and
transversality.]
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Paper 4, Section II

31E Dynamical Systems
Consider the dynamical system

ẋ = x+ y2 − a ,

ẏ = y(4x− x2 − a) ,

for (x, y) ∈ R2, a ∈ R.

Find all fixed points of this system. Find the three different values of a at which
bifurcations appear. For each such value give the location (x, y) of all bifurcations. For
each of these, what types of bifurcation are suggested from this analysis?

Use centre manifold theory to analyse these bifurcations. In particular, for each
bifurcation derive an equation for the dynamics on the extended centre manifold and
hence classify the bifurcation.

Paper 3, Section II

31E Dynamical Systems
Consider a dynamical system of the form

ẋ = x(1− y + ax) ,

ẏ = ry(−1 + x− by) ,

on Λ = {(x, y) : x > 0 and y > 0}, where a, b and r are real constants and r > 0.

(a) For a = b = 0, by considering a function of the form V (x, y) = f(x)+g(y), show
that all trajectories in Λ are either periodic orbits or a fixed point.

(b) Using the same V , show that no periodic orbits in Λ persist for small a and b if
ab < 0 .

[Hint: for a = b = 0 on the periodic orbits with period T , show that
∫ T
0 (1−x)dt = 0

and hence that
∫ T
0 x(1− x)dt =

∫ T
0

[
−(1− x)2 + (1− x)

]
dt < 0.]

(c) By considering Dulac’s criterion with φ = 1/(xy), show that there are no periodic
orbits in Λ if ab < 0.

(d) Purely by consideration of the existence of fixed points in Λ and their Poincaré
indices, determine those (a, b) for which the possibility of periodic orbits can be excluded.

(e) Combining the results above, sketch the a-b plane showing where periodic orbits
in Λ might still be possible.
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Paper 2, Section II

31E Dynamical Systems
For a map F : Λ → Λ give the definitions of chaos according to (i) Devaney (D-

chaos) and (ii) Glendinning (G-chaos).

Consider the dynamical system

F (x) = ax (mod 1)

on Λ = [0, 1), for a > 1 (note that a is not necessarily an integer). For both definitions of
chaos, show that this system is chaotic.

Paper 1, Section II

31E Dynamical Systems
For a dynamical system of the form ẋ = f(x), give the definition of the alpha-limit

set α(x) and the omega-limit set ω(x) of a point x.

Consider the dynamical system

ẋ = x2 − 1 ,

ẏ = kxy ,

where x = (x, y) ∈ R2 and k is a real constant. Answer the following for all values of k,
taking care over boundary cases (both in k and in x).

(i) What symmetries does this system have?

(ii) Find and classify the fixed points of this system.

(iii) Does this system have any periodic orbits?

(iv) Give α(x) and ω(x) (considering all x ∈ R2).

(v) For x0 = (0, y0), give the orbit of x0 (considering all y0 ∈ R). You should give
your answer in the form y = y(x, y0, k), and specify the range of x.
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Paper 4, Section II

35E Electrodynamics
Consider a medium in which the electric displacement D(t,x) and magnetising

field H(t,x) are linearly related to the electric and magnetic fields respectively with
corresponding polarisation constants ε and µ;

D = εE, B = µH.

Write down Maxwell’s equations for E, B, D and H in the absence of free charges and
currents.

Consider EM waves of the form,

E(t,x) = E0 sin (k · x− ωt) ,

B(t,x) = B0 sin (k · x− ωt) .

Find conditions on the electric and magnetic polarisation vectors E0 andB0, wave-vector k
and angular frequency ω such that these fields satisfy Maxwell’s equations for the medium
described above. At what speed do the waves propagate?

Consider two media, filling the regions x < 0 and x > 0 in three dimensional space,
and having two different values ε− and ε+ of the electric polarisation constant. Suppose
an electromagnetic wave is incident from the region x < 0 resulting in a transmitted wave
in the region x > 0 and also a reflected wave for x < 0. The angles of incidence, reflection
and transmission are denoted θI , θR and θT respectively. By constructing a corresponding
solution of Maxwell’s equations, derive the law of reflection θI = θR and Snell’s law of
refraction, n− sin θI = n+ sin θT where n± = c

√
ε±µ are the indices of refraction of the

two media.

Consider the special case in which the electric polarisation vectors EI , ER and ET of
the incident, reflected and transmitted waves are all normal to the plane of incidence (i.e.
the plane containing the corresponding wave-vectors). By imposing appropriate boundary
conditions for E and H at x = 0, show that,

|ER|
|ET |

=
1

2

(
1− tan θR

tan θT

)
.
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36E Electrodynamics
A time-dependent charge distribution ρ(t,x) localised in some region of size a near

the origin varies periodically in time with characteristic angular frequency ω. Explain
briefly the circumstances under which the dipole approximation for the fields sourced by
the charge distribution is valid.

Far from the origin, for r = |x| ≫ a, the vector potential A(t,x) sourced by the
charge distribution ρ(t,x) is given by the approximate expression

A(t,x) ≃ µ0
4πr

∫
d3x′ J

(
t− r/c,x′),

where J(t,x) is the corresponding current density. Show that, in the dipole approximation,
the large-distance behaviour of the magnetic field is given by,

B(t,x) ≃ − µ0
4πrc

x̂× p̈ (t− r/c) ,

where p(t) is the electric dipole moment of the charge distribution. Assuming that, in the
same approximation, the corresponding electric field is given as E = −cx̂ × B, evaluate
the flux of energy through the surface element of a large sphere of radius R centred at the
origin. Hence show that the total power P (t) radiated by the charge distribution is given
by

P (t) =
µ0
6πc

|p̈ (t−R/c)|2 .

A particle of charge q and mass m undergoes simple harmonic motion in the x-direction
with time period T = 2π/ω and amplitude A such that

x(t) = A sin (ωt) ix . (⋆)

Here ix is a unit vector in the x-direction. Calculate the total power P (t) radiated through
a large sphere centred at the origin in the dipole approximation and determine its time
averaged value,

〈P 〉 =
1

T

∫ T

0
P (t) dt .

For what values of the parameters A and ω is the dipole approximation valid?

Now suppose that the energy of the particle with trajectory (⋆) is given by the usual
non-relativistic formula for a harmonic oscillator i.e. E = m|ẋ|2/2 +mω2|x|2/2, and that
the particle loses energy due to the emission of radiation at a rate corresponding to the
time-averaged power 〈P 〉. Work out the half-life of this system (i.e. the time t1/2 such
that E(t1/2) = E(0)/2). Explain why the non-relativistic approximation for the motion
of the particle is reliable as long as the dipole approximation is valid.
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36E Electrodynamics
A relativistic particle of charge q and massmmoves in a background electromagnetic

field. The four-velocity uµ(τ) of the particle at proper time τ is determined by the equation
of motion,

m
duµ

dτ
= qFµνu

ν .

Here Fµν = ηνρF
µρ, where Fµν is the electromagnetic field strength tensor and Lorentz

indices are raised and lowered with the metric tensor η = diag{−1,+1,+1,+1}. In the
case of a constant, homogeneous field, write down the solution of this equation giving
uµ(τ) in terms of its initial value uµ(0) .

[In the following you may use the relation, given below, between the components of
the field strength tensor Fµν , for µ, ν = 0, 1, 2, 3, and those of the electric and magnetic
fields E = (E1, E2, E3) and B = (B1, B2, B3),

Fi0 = −F0i =
1

c
Ei, Fij = εijkBk

for i, j = 1, 2, 3.]

Suppose that, in some inertial frame with spacetime coordinates x = (x, y, z) and
t, the electric and magnetic fields are parallel to the x-axis with magnitudes E and B
respectively. At time t = τ = 0 the 3-velocity v = dx/dt of the particle has initial value
v(0) = (0, v0, 0). Find the subsequent trajectory of the particle in this frame, giving
coordinates x, y, z and t as functions of the proper time τ .

Find the motion in the x-direction explicitly, giving x as a function of coordinate
time t. Comment on the form of the solution at early and late times. Show that, when
projected onto the y-z plane, the particle undergoes circular motion which is periodic in
proper time. Find the radius R of the circle and proper time period of the motion ∆τ in
terms of q, m, E, B and v0. The resulting trajectory therefore has the form of a helix
with varying pitch Pn := ∆xn/R where ∆xn is the distance in the x-direction travelled by
the particle during the n’th period of its motion in the y-z plane. Show that, for n≫ 1,

Pn ∼ A exp

(
2πEn

cB

)
,

where A is a constant which you should determine.
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37A Fluid Dynamics
(a) Show that the Stokes flow around a rigid moving sphere has the minimum viscous

dissipation rate of all incompressible flows which satisfy the no-slip boundary conditions
on the sphere.

(b) Let u = ∇(x ·Φ+χ)− 2Φ, where Φ and χ are solutions of Laplace’s equation,
i.e. ∇2Φ = 0 and ∇2χ = 0.

(i) Show that u is incompressible.

(ii) Show that u satisfies Stokes equation if the pressure p = 2µ∇ ·Φ.

(c) Consider a rigid sphere moving with velocity U . The Stokes flow around the
sphere is given by

Φ = α
U

r
and χ = βU ·∇

(
1

r

)
,

where the origin is chosen to be at the centre of the sphere. Find the values for α and β
which ensure no-slip conditions are satisfied on the sphere.
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37A Fluid Dynamics
A viscous fluid is contained in a channel between rigid planes y = −h and y = h.

The fluid in the upper region σ < y < h (with −h < σ < h) has dynamic viscosity µ−
while the fluid in the lower region −h < y < σ has dynamic viscosity µ+ > µ−. The plane
at y = h moves with velocity U− and the plane at y = −h moves with velocity U+, both
in the x direction. You may ignore the effect of gravity.

(a) Find the steady, unidirectional solution of the Navier-Stokes equations in which
the interface between the two fluids remains at y = σ.

(b) Using the solution from part (a):

(i) calculate the stress exerted by the fluids on the two boundaries;

(ii) calculate the total viscous dissipation rate in the fluids;

(iii) demonstrate that the rate of working by boundaries balances the viscous
dissipation rate in the fluids.

(c) Consider the situation where U+ + U− = 0. Defining the volume flux in the
upper region as Q− and the volume flux in the lower region as Q+, show that their ratio
is independent of σ and satisfies

Q−
Q+

= −µ−
µ+

.
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38A Fluid Dynamics
For a fluid with kinematic viscosity ν, the steady axisymmetric boundary-layer

equations for flow primarily in the z-direction are

u
∂w

∂r
+ w

∂w

∂z
=

ν

r

∂

∂r

(
r
∂w

∂r

)
,

1

r

∂(ru)

∂r
+
∂w

∂z
= 0,

where u is the fluid velocity in the r-direction and w is the fluid velocity in the z-direction.
A thin, steady, axisymmetric jet emerges from a point at the origin and flows along the
z-axis in a fluid which is at rest far from the z-axis.

(a) Show that the momentum flux

M :=

∫ ∞

0
rw2dr

is independent of the position z along the jet. Deduce that the thickness δ(z) of the jet
increases linearly with z. Determine the scaling dependence on z of the centre-line velocity
W (z). Hence show that the jet entrains fluid.

(b) A similarity solution for the streamfunction,

ψ(x, y, z) = νzg(η) with η := r/z,

exists if g satisfies the second order differential equation

ηg′′ − g′ + gg′ = 0.

Using appropriate boundary and normalisation conditions (which you should state clearly)
to solve this equation, show that

g(η) =
12Mη2

32ν2 + 3Mη2
.
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38A Fluid Dynamics
A disc of radius R and weight W hovers at a height h on a cushion of air above

a horizontal air table - a fine porous plate through which air of density ρ and dynamic
viscosity µ is pumped upward at constant speed V . You may assume that the air flow is
axisymmetric with no flow in the azimuthal direction, and that the effect of gravity on the
air may be ignored.

(a) Write down the relevant components of the Navier-Stokes equations. By esti-
mating the size of the individual terms, simplify these equations when ε := h/R ≪ 1 and
Re := ρV h/µ ≪ 1.

(b) Explain briefly why it is reasonable to expect that the vertical velocity of the
air below the disc is a function of distance above the air table alone, and thus find the
steady pressure distribution below the disc. Hence show that

W =
3πµV R

2ε3
.
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7A Further Complex Methods
A single-valued function Arcsin(z) can be defined, for 0 6 arg z < 2π, by means of

an integral as:

Arcsin(z) =

∫ z

0

dt

(1− t2)1/2
. (†)

(a) Choose a suitable branch-cut with the integrand taking a value +1 at the origin
on the upper side of the cut, i.e. at t = 0+, and describe suitable paths of integration in
the two cases 0 6 arg z 6 π and π < arg z < 2π.

(b) Construct the multivalued function arcsin(z) by analytic continuation.

(c) Express arcsin
(
e2πiz

)
in terms of Arcsin(z) and deduce the periodicity property

of sin(z).

Paper 3, Section I

7A Further Complex Methods
The equation

zw′′ + w = 0

has solutions of the form

w(z) =

∫

γ
eztf(t)dt,

for suitably chosen contours γ and some suitable function f(t).

(a) Find f(t) and determine the required condition on γ, which you should express
in terms of z and t.

(b) Use the result of part (a) to specify a possible contour with the help of a clearly
labelled diagram.
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7A Further Complex Methods
Assume that |f(z)/z| → 0 as |z| → ∞ and that f(z) is analytic in the upper

half-plane (including the real axis). Evaluate

P
∫ ∞

−∞

f(x)

x(x2 + a2)
dx,

where a is a positive real number.
[You must state clearly any standard results involving contour integrals that you use.]

Paper 1, Section I

7A Further Complex Methods
The Beta function is defined by

B(p, q) :=

∫ 1

0
tp−1(1− t)q−1dt =

Γ(p)Γ(q)

Γ(p+ q)
,

where Re p > 0, Re q > 0, and Γ is the Gamma function.

(a) By using a suitable substitution and properties of Beta and Gamma functions,
show that ∫ 1

0

dx√
1− x4

=
[Γ(1/4)]2√

32π
.

(b) Deduce that

K
(
1/
√
2
)
=

4 [Γ(5/4)]2√
π

,

where K(k) is the complete elliptic integral, defined as

K(k) :=

∫ 1

0

dt√
(1− t2)(1− k2t2)

.

[Hint: You might find the change of variable x = t(2− t2)−1/2 helpful in part (b).]
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13A Further Complex Methods
The Riemann zeta function is defined as

ζ(z) :=

∞∑

n=1

1

nz
(†)

for Re(z) > 1, and by analytic continuation to the rest of C except at singular points.
The integral representation of (†) for Re(z) > 1 is given by

ζ(z) =
1

Γ(z)

∫ ∞

0

tz−1

et − 1
dt (‡)

where Γ is the Gamma function.

(a) The Hankel representation is defined as

ζ(z) =
Γ(1− z)

2πi

∫ (0+)

−∞

tz−1

e−t − 1
dt . (⋆)

Explain briefly why this representation gives an analytic continuation of ζ(z) as defined
in (‡) to all z other than z = 1, using a diagram to illustrate what is meant by the upper
limit of the integral in (⋆).

[You may assume Γ(z)Γ(1 − z) = π/ sin(πz).]

(b) Find

Res

(
t−z

e−t − 1
, t = 2πin

)
,

where n is an integer and the poles are simple.

(c) By considering ∫

γ

t−z

e−t − 1
dt ,

where γ is a suitably modified Hankel contour and using the result of part (b), derive the
reflection formula:

ζ(1− z) = 21−zπ−z cos
(
1
2πz

)
Γ(z)ζ(z) .
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14A Further Complex Methods
(a) Consider the Papperitz symbol (or P-symbol):

P





a b c
α β γ z
α′ β′ γ′



 . (†)

Explain in general terms what this P -symbol represents.

[You need not write down any differential equations explicitly, but should provide an
explanation of the meaning of a, b, c, α, β, γ, α′ , β′ and γ′.]

(b) Prove that the action of [(z−a)/(z−b)]δ on (†) results in the exponential shifting,

P





a b c
α+ δ β − δ γ z
α′ + δ β′ − δ γ′



 . (‡)

[Hint: It may prove useful to start by considering the relationship between two solutions, ω
and ω1, which satisfy the P -equations described by the respective P -symbols (†) and (‡).]

(c) Explain what is meant by a Möbius transformation of a second order differential
equation. By using suitable transformations acting on (†), show how to obtain the P -
symbol

P





0 1 ∞
0 0 a z

1− c c− a− b b



 , (⋆)

which corresponds to the hypergeometric equation.

(d) The hypergeometric function F (a, b, c; z) is defined to be the solution of the
differential equation corresponding to (⋆) that is analytic at z = 0 with F (a, b, c; 0) = 1,
which corresponds to the exponent zero. Use exponential shifting to show that the second
solution, which corresponds to the exponent 1− c, is

z1−cF (a− c+ 1, b− c+ 1, 2− c; z).
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18F Galois Theory
(a) Suppose K,L are fields and σ1, . . . , σm are distinct embeddings of K into L.

Prove that there do not exist elements λ1, . . . , λm of L (not all zero) such that

λ1σ1(x) + · · ·+ λmσm(x) = 0 for all x ∈ K.

(b) For a finite field extension K of a field k and for σ1, . . . , σm distinct k-
automorphisms of K, show that m 6 [K : k]. In particular, if G is a finite group of
field automorphisms of a field K with KG the fixed field, deduce that |G| 6 [K : KG].

(c) If K = Q(x, y) with x, y independent transcendentals over Q, consider the group
G generated by automorphisms σ and τ of K, where

σ(x) = y, σ(y) = −x and τ(x) = x, τ(y) = −y.

Prove that |G| = 8 and that KG = Q(x2 + y2, x2y2).

Paper 2, Section II

18F Galois Theory
For any prime p 6= 5, explain briefly why the Galois group of X5−1 over Fp is cyclic

of order d, where d = 1 if p ≡ 1 mod 5, d = 4 if p ≡ 2, 3 mod 5, and d = 2 if p ≡ 4
mod 5.

Show that the splitting field of X5 − 5 over Q is an extension of degree 20.

For any prime p 6= 5, prove that X5 − 5 ∈ Fp[X] does not have an irreducible cubic
as a factor. For p ≡ 2 or 3 mod 5, show that X5 − 5 is the product of a linear factor and
an irreducible quartic over Fp. For p ≡ 1 mod 5, show that either X5 − 5 is irreducible
over Fp or it splits completely.

[You may assume the reduction mod p criterion for finding cycle types in the Galois
group of a monic polynomial over Z and standard facts about finite fields.]
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18F Galois Theory
Let k be a field. For m a positive integer, consider Xm − 1 ∈ k[X], where either

char k = 0, or char k = p with p not dividing m; explain why the polynomial has distinct
roots in a splitting field.

For m a positive integer, define the mth cyclotomic polynomial Φm ∈ C[X] and
show that it is a monic polynomial in Z[X]. Prove that Φm is irreducible over Q for all m.
[Hint: If Φm = fg, with f, g ∈ Z[X] and f monic irreducible with 0 < deg f < deg Φm,
and ε is a root of f , show first that εp is a root of f for any prime p not dividing m.]

Let F = X8 + X7 − X5 − X4 − X3 + X + 1 ∈ Z[X]; by considering the product
(X2 −X + 1)F , or otherwise, show that F is irreducible over Q.

Paper 4, Section II

18F Galois Theory
State (without proof) a result concerning uniqueness of splitting fields of a polyno-

mial.

Given a polynomial f ∈ Q[X] with distinct roots, what is meant by its Galois group
GalQ(f)? Show that f is irreducible over Q if and only if GalQ(f) acts transitively on the
roots of f .

Now consider an irreducible quartic of the form g(X) = X4 + bX2 + c ∈ Q[X]. If
α ∈ C denotes a root of g, show that the splitting field K ⊂ C is Q(α,

√
c). Give an

explicit description of Gal(K/Q) in the cases:

(i)
√
c ∈ Q(α), and

(ii)
√
c 6∈ Q(α).

If c is a square in Q, deduce that GalQ(g) ∼= C2 × C2. Conversely, if GalQ(g) ∼=
C2 ×C2, show that

√
c is invariant under at least two elements of order two in the Galois

group, and deduce that c is a square in Q.

Part II, 2019 List of Questions



51

Paper 4, Section II

36D General Relativity
(a) Consider the spherically symmetric spacetime metric

ds2 = −λ2dt2 + µ2dr2 + r2dθ2 + r2 sin2 θ dφ2 , (†)

where λ and µ are functions of t and r. Use the Euler-Lagrange equations for the geodesics
of the spacetime to compute all non-vanishing Christoffel symbols for this metric.

(b) Consider the static limit of the line element (†) where λ and µ are functions of
the radius r only, and let the matter coupled to gravity be a spherically symmetric fluid
with energy momentum tensor

T µν = (ρ+ P )uµuν + Pgµν , uµ = [λ−1, 0, 0, 0] ,

where the pressure P and energy density ρ are also functions of the radius r. For
these Tolman-Oppenheimer-Volkoff stellar models, the Einstein and matter equations
Gµν = 8πTµν and ∇µT

µ
ν = 0 reduce to

∂rλ

λ
=

µ2 − 1

2r
+ 4πrµ2P ,

∂rm = 4πr2ρ , where m(r) =
r

2

(
1− 1

µ2

)
,

∂rP = −(ρ+ P )

(
µ2 − 1

2r
+ 4πrµ2P

)
.

Consider now a constant density solution to the above Einstein and matter equa-
tions, where ρ takes the non-zero constant value ρ0 out to a radius R and ρ = 0 for r > R.
Show that for such a star,

∂rP =
4πr

1− 8
3πρ0r

2

(
P +

1

3
ρ0

)
(P + ρ0) ,

and that the pressure at the centre of the star is

P (0) = −ρ0
1−

√
1− 2M/R

3
√

1− 2M/R − 1
, with M =

4

3
πρ0R

3 .

Show that P (0) diverges if M = 4R/9.
[
Hint: at the surface of the star the pressure

vanishes: P (R) = 0 .
]
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36D General Relativity
Consider the spacetime metric

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2(dθ2 + sin2 θ dφ2) , with f(r) = 1− 2m

r
−H2r2 ,

where H > 0 and m > 0 are constants.

(a) Write down the Lagrangian for geodesics in this spacetime, determine three
independent constants of motion and show that geodesics obey the equation

ṙ2 + V (r) = E2 ,

where E is constant, the overdot denotes differentiation with respect to an affine parameter
and V (r) is a potential function to be determined.

(b) Sketch the potential V (r) for the case of null geodesics, find any circular null
geodesics of this spacetime, and determine whether they are stable or unstable.

(c) Show that f(r) has two positive roots r− and r+ if mH < 1/
√
27 and that these

satisfy the relation r− < 1/(
√
3H) < r+.

(d) Describe in one sentence the physical significance of those points where f(r) = 0.
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37D General Relativity
(a) Let M be a manifold with coordinates xµ. The commutator of two vector fields

V and W is defined as
[V ,W ]α = V ν∂νW

α −W ν∂νV
α .

(i) Show that [V ,W ] transforms like a vector field under a change of coordinates
from xµ to x̃µ.

(ii) Show that the commutator of any two basis vectors vanishes, i.e.

[
∂

∂xα
,
∂

∂xβ

]
= 0 .

(iii) Show that if V and W are linear combinations (not necessarily with constant
coefficients) of n vector fields Z(a), a = 1, . . . , n that all commute with one
another, then the commutator [V ,W ] is a linear combination of the same n
fields Z(a).

[You may use without proof the following relations which hold for any vector fields
V 1,V 2,V 3 and any function f :

[V 1,V 2] = − [V 2,V 1] , (1)

[V 1,V 2 + V 3] = [V 1,V 2] + [V 1,V 3] , (2)

[V 1, fV 2] = f [V 1,V 2] + V 1(f)V 2 , (3)

but you should clearly indicate each time relation (1), (2), or (3) is used.]

(b) Consider the 2-dimensional manifold R2 with Cartesian coordinates (x1, x2) =
(x, y) carrying the Euclidean metric gαβ = δαβ .

(i) Express the coordinate basis vectors ∂r and ∂θ, where r and θ denote the usual
polar coordinates, in terms of their Cartesian counterparts.

(ii) Define the unit vectors

r̂ =
∂r

||∂r||
, θ̂ =

∂θ
||∂θ||

and show that (r̂, θ̂) are not a coordinate basis, i.e. there exist no coordinates
zα such that r̂ = ∂/∂z1 and θ̂ = ∂/∂z2.
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37D General Relativity
Let (M,g) be a spacetime and Γ the Levi-Civita connection of the metric g. The Riemann
tensor of this spacetime is given in terms of the connection by

Rγραβ = ∂αΓ
γ
ρβ − ∂βΓ

γ
ρα + ΓµρβΓ

γ
µα − ΓµραΓ

γ
µβ .

The contracted Bianchi identities ensure that the Einstein tensor satisfies

∇µGµν = 0 .

(a) Show that the Riemann tensor obeys the symmetry

Rµραβ +Rµβρα +Rµαβρ = 0 .

(b) Show that a vector field V α satisfies the Ricci identity

2∇[α∇β]V
γ = ∇α∇βV

γ −∇β∇αV
γ = RγραβV

ρ .

Calculate the analogous expression for a rank
(2
0

)
tensor T µν , i.e. calculate ∇[α∇β]T

µν in
terms of the Riemann tensor.

(c) Let Kα be a vector that satisfies the Killing equation

∇αKβ +∇βKα = 0 .

Use the symmetry relation of part (a) to show that

∇ν∇µK
α = RαµνβK

β ,

∇µ∇µK
α = −RαβKβ ,

where Rαβ is the Ricci tensor.

(d) Show that
Kα∇αR = 2∇[µ∇λ]∇[µKλ] ,

and use the result of part (b) to show that the right hand side evaluates to zero, hence
showing that Kα∇αR = 0.

Part II, 2019 List of Questions



55

Paper 4, Section II

17G Graph Theory
State and prove Hall’s theorem.

Let n be an even positive integer. Let X = {A : A ⊂ [n]} be the power set of
[n] = {1, 2, . . . , n}. For 1 6 i 6 n, let Xi = {A ∈ X : |A| = i}. Let Q be the graph with
vertex set X where A, B ∈ X are adjacent if and only if |A△B| = 1. [Here, A△B denotes
the symmetric difference of A and B, given by A△B := (A ∪B) \ (A ∩B).]

Let 1 6 i 6 n
2 . Why is the induced subgraph Q[Xi ∪Xi−1] bipartite? Show that it

contains a matching from Xi−1 to Xi.

A chain in X is a subset C ⊂ X such that whenever A, B ∈ C we have A ⊂ B or
B ⊂ A. What is the least positive integer k such that X can be partitioned into k pairwise
disjoint chains? Justify your answer.

Paper 3, Section II

17G Graph Theory
(a) What does it mean to say that a graph is bipartite?

(b) Show that G is bipartite if and only if it contains no cycles of odd length.

(c) Show that if G is bipartite then

ex (n;G)(n
2

) → 0

as n→ ∞.
[You may use without proof the Erdős–Stone theorem provided it is stated precisely.]

(d) Let G be a graph of order n with m edges. Let U be a random subset of V (G)
containing each vertex of G independently with probability 1

2 . Let X be the number of
edges with precisely one vertex in U . Find, with justification, E(X), and deduce that G
contains a bipartite subgraph with at least m

2 edges.

By using another method of choosing a random subset of V (G), or otherwise, show
that if n is even then G contains a bipartite subgraph with at least mn

2(n−1) edges.
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17G Graph Theory
(a) Suppose that the edges of the complete graph K6 are coloured blue and yellow.

Show that it must contain a monochromatic triangle. Does this remain true if K6 is
replaced by K5?

(b) Let t > 1. Suppose that the edges of the complete graph K3t−1 are coloured
blue and yellow. Show that it must contain t edges of the same colour with no two sharing
a vertex. Is there any t > 1 for which this remains true if K3t−1 is replaced by K3t−2?

(c) Now let t > 2. Suppose that the edges of the complete graph Kn are coloured
blue and yellow in such a way that there are a blue triangle and a yellow triangle with
no vertices in common. Show that there are also a blue triangle and a yellow triangle
that do have a vertex in common. Hence, or otherwise, show that whenever the edges of
the complete graph K5t are coloured blue and yellow it must contain t monochromatic
triangles, all of the same colour, with no two sharing a vertex. Is there any t > 2 for
which this remains true if K5t is replaced by K5t−1? [You may assume that whenever
the edges of the complete graph K10 are coloured blue and yellow it must contain two
monochromatic triangles of the same colour with no vertices in common.]

Paper 1, Section II

17G Graph Theory
Let G be a connected d-regular graph.

(a) Show that d is an eigenvalue of G with multiplicity 1 and eigenvector

e = (1 1 . . . 1)T .

(b) Suppose that G is strongly regular. Show that G has at most three distinct
eigenvalues.

(c) Conversely, suppose that G has precisely three distinct eigenvalues d, λ and µ.
Let A be the adjacency matrix of G and let

B = A2 − (λ+ µ)A+ λµI.

Show that if v is an eigenvector of G that is not a scalar multiple of e then Bv = 0. Deduce
that B is a scalar multiple of the matrix J whose entries are all equal to one. Hence show
that, for i 6= j, (A2)ij depends only on whether or not vertices i and j are adjacent, and
so G is strongly regular.

(d) Which connected d-regular graphs have precisely two eigenvalues? Justify your
answer.
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Paper 3, Section II

32C Integrable Systems
Suppose ψs : (x, u) 7→ (x̃, ũ) is a smooth one-parameter group of transformations

acting on R2, with infinitesimal generator

V = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
.

(a) Define the nth prolongation Pr(n) V of V , and show that

Pr(n) V = V +

n∑

i=1

ηi
∂

∂u(i)
,

where you should give an explicit formula to determine the ηi recursively in terms of ξ
and η.

(b) Find the nth prolongation of each of the following generators:

V1 =
∂

∂x
, V2 = x

∂

∂x
, V3 = x2

∂

∂x
.

(c) Given a smooth, real-valued, function u = u(x), the Schwarzian derivative is
defined by,

S = S[u] :=
uxuxxx − 3

2u
2
xx

u2x
.

Show that,
Pr(3) Vi (S) = ciS,

for i = 1, 2, 3 where ci are real functions which you should determine. What can you
deduce about the symmetries of the equations:

(i) S[u] = 0,

(ii) S[u] = 1,

(iii) S[u] = 1
x2
?
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Paper 2, Section II

32C Integrable Systems
Suppose p = p(x) is a smooth, real-valued, function of x ∈ R which satisfies p(x) > 0

for all x and p(x) → 1, px(x), pxx(x) → 0 as |x| → ∞. Consider the Sturm-Liouville
operator:

Lψ := − d

dx

(
p2
dψ

dx

)
,

which acts on smooth, complex-valued, functions ψ = ψ(x). You may assume that for any
k > 0 there exists a unique function ϕk(x) which satisfies:

Lϕk = k2ϕk,

and has the asymptotic behaviour:

ϕk(x) ∼
{
e−ikx as x→ −∞,
a(k)e−ikx + b(k)eikx as x→ +∞.

(a) By analogy with the standard Schrödinger scattering problem, define the
reflection and transmission coefficients: R(k), T (k). Show that |R(k)|2 + |T (k)|2 = 1.
[Hint: You may wish to consider W (x) = p(x)2 [ψ1(x)ψ

′
2(x)− ψ2(x)ψ

′
1(x)] for suitable

functions ψ1 and ψ2.]

(b) Show that, if κ > 0, there exists no non-trivial normalizable solution ψ to the
equation

Lψ = −κ2ψ.

Assume now that p = p(x, t), such that p(x, t) > 0 and p(x, t) → 1, px(x, t), pxx(x, t) →
0 as |x| → ∞. You are given that the operator A defined by:

Aψ := −4p3
d3ψ

dx3
− 18p2px

d2ψ

dx2
− (12pp2x + 6p2pxx)

dψ

dx
,

satisfies:

(LA−AL)ψ = − d

dx

(
2p4pxxx

dψ

dx

)
.

(c) Show that L,A form a Lax pair if the Harry Dym equation,

pt = p3pxxx

is satisfied. [You may assume L = L†, A = −A†.]

(d) Assuming that p solves the Harry Dym equation, find how the transmission and
reflection amplitudes evolve as functions of t.
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Paper 1, Section II

32C Integrable Systems
Let M = R2n = {(q,p)|q,p ∈ Rn} be equipped with its standard Poisson bracket.

(a) Given a Hamiltonian function H = H(q,p), write down Hamilton’s equations
for (M,H). Define a first integral of the system and state what it means that the system
is integrable.

(b) Show that if n = 1 then every Hamiltonian system is integrable whenever

(
∂H

∂q
,
∂H

∂p

)
6= 0.

Let M̃ = R2m = {(q̃, p̃)|q̃, p̃ ∈ Rm} be another phase space, equipped with its
standard Poisson bracket. Suppose that H̃ = H̃(q̃, p̃) is a Hamiltonian function for M̃ .
Define Q = (q1, . . . , qn, q̃1, . . . , q̃m), P = (p1, . . . , pn, p̃1, . . . , p̃m) and let the combined
phase space M = R2(n+m) = {(Q,P)} be equipped with the standard Poisson bracket.

(c) Show that if (M,H) and (M̃ , H̃) are both integrable, then so is (M,H), where
the combined Hamiltonian is given by:

H(Q,P) = H(q,p) + H̃(q̃, p̃).

(d) Consider the n−dimensional simple harmonic oscillator with phase spaceM and
Hamiltonian H given by:

H =
1

2
p21 + . . . +

1

2
p2n +

1

2
ω2
1q

2
1 + . . .+

1

2
ω2
nq

2
n,

where ωi > 0. Using the results above, or otherwise, show that (M,H) is integrable for
(q,p) 6= 0.

(e) Is it true that every bounded orbit of an integrable system is necessarily periodic?
You should justify your answer.
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Paper 3, Section II

21H Linear Analysis
(a) LetX be a Banach space and consider the open unit ball B = {x ∈ X : ‖x‖ < 1}.

Let T : X → X be a bounded operator. Prove that T (B) ⊃ B implies T (B) ⊃ B.

(b) Let P be the vector space of all polynomials in one variable with real coefficients.
Let ‖ · ‖ be any norm on P . Show that (P, ‖ · ‖) is not complete.

(c) Let f : C → C be entire, and assume that for every z ∈ C there is n such that
f (n)(z) = 0 where f (n) is the n-th derivative of f . Prove that f is a polynomial.

[You may use that an entire function vanishing on an open subset of C must vanish
everywhere.]

(d) A Banach space X is said to be uniformly convex if for every ε ∈ (0, 2] there
is δ > 0 such that for all x, y ∈ X such that ‖x‖ = ‖y‖ = 1 and ‖x − y‖ > ε, one has
‖(x+ y)/2‖ 6 1− δ. Prove that ℓ2 is uniformly convex.

Paper 4, Section II

22H Linear Analysis
(a) State and prove the Riesz representation theorem for a real Hilbert space H.

[You may use that if H is a real Hilbert space and Y ⊂ H is a closed subspace, then
H = Y ⊕ Y ⊥.]

(b) Let H be a real Hilbert space and T : H → H a bounded linear operator. Show
that T is invertible if and only if both T and T ∗ are bounded below. [Recall that an
operator S : H → H is bounded below if there is c > 0 such that ‖Sx‖ > c‖x‖ for all
x ∈ H.]

(c) Consider the complex Hilbert space of two-sided sequences,

X = {(xn)n∈Z : xn ∈ C,
∑

n∈Z
|xn|2 <∞}

with norm ‖x‖ = (
∑

n |xn|2)1/2. Define T : X → X by (Tx)n = xn+1. Show that T is
unitary and find the point spectrum and the approximate point spectrum of T .
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Paper 2, Section II

22H Linear Analysis
(a) State the real version of the Stone–Weierstrass theorem and state the Urysohn–

Tietze extension theorem.

(b) In this part, you may assume that there is a sequence of polynomials Pi such
that supx∈[0,1] |Pi(x)−

√
x| → 0 as i→ ∞.

Let f : [0, 1] → R be a continuous piecewise linear function which is linear on
[0, 1/2] and on [1/2, 1]. Using the polynomials Pi mentioned above (but not assuming any
form of the Stone-Weierstrass theorem), prove that there are polynomials Qi such that
supx∈[0,1] |Qi(x)− f(x)| → 0 as i→ ∞.

(d) Which of the following families of functions are relatively compact in C[0, 1]
with the supremum norm? Justify your answer.

F1 = {x 7→ sin(πnx)

n
: n ∈ N}

F2 = {x 7→ sin(πnx)

n1/2
: n ∈ N}

F3 = {x 7→ sin(πnx) : n ∈ N}

[In this question N denotes the set of positive integers.]

Paper 1, Section II

22H Linear Analysis
Let F be the space of real-valued sequences with only finitely many nonzero terms.

(a) For any p ∈ [1,∞), show that F is dense in ℓp. Is F dense in ℓ∞? Justify your
answer.

(b) Let p ∈ [1,∞), and let T : F → F be an operator that is bounded in the
‖ · ‖p-norm, i.e., there exists a C such that ‖Tx‖p 6 C‖x‖p for all x ∈ F . Show that there

is a unique bounded operator T̃ : ℓp → ℓp satisfying T̃ |F = T , and that ‖T̃‖p 6 C.

(c) For each p ∈ [1,∞] and for each i = 1, . . . , 5 determine if there is a bounded
operator from ℓp to ℓp (in the ‖ · ‖p norm) whose restriction to F is given by Ti:

(T1x)n = nxn, (T2x)n = n(xn − xn+1), (T3x)n =
xn
n
,

(T4x)n =
x1

n1/2
, (T5x)n =

∑n
j=1 xj

2n
.

(d) Let X be a normed vector space such that the closed unit ball B1(0) is compact.
Prove that X is finite dimensional.
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Paper 4, Section II

16I Logic and Set Theory
Define the cardinals ℵα, and explain briefly why every infinite set has cardinality

an ℵα.
Show that if κ is an infinite cardinal then κ2 = κ.

Let X1,X2, . . . ,Xn be infinite sets. Show that X1 ∪ X2 ∪ · · · ∪ Xn must have the
same cardinality as Xi for some i.

Let X1,X2, . . . be infinite sets, no two of the same cardinality. Is it possible that
X1 ∪X2 ∪ . . . has the same cardinality as some Xi? Justify your answer.

Paper 3, Section II

16I Logic and Set Theory
Define the von Neumann hierarchy of sets Vα. Show that each Vα is transitive, and

explain why Vα ⊂ Vβ whenever α 6 β. Prove that every set x is a member of some Vα.

Which of the following are true and which are false? Give proofs or counterexamples
as appropriate. [You may assume standard properties of rank.]

(i) If the rank of a set x is a (non-zero) limit then x is infinite.

(ii) If the rank of a set x is countable then x is countable.

(iii) If every finite subset of a set x has rank at most α then x has rank at most α.

(iv) For every ordinal α there exists a set of rank α.

Paper 2, Section II

16I Logic and Set Theory
Give the inductive and synthetic definitions of ordinal addition, and prove that they

are equivalent.

Which of the following assertions about ordinals α, β and γ are always true, and
which can be false? Give proofs or counterexamples as appropriate.

(i) α+ (β + γ) = (α+ β) + γ.

(ii) If α and β are uncountable then α+ β = β + α.

(iii) α(βγ) = (αβ)γ.

(iv) If α and β are infinite and α+ β = β + α then αβ = βα.
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Paper 1, Section II

16I Logic and Set Theory
State the completeness theorem for propositional logic. Explain briefly how the

proof of this theorem changes from the usual proof in the case when the set of primitive
propositions may be uncountable.

State the compactness theorem and the decidability theorem, and deduce them from
the completeness theorem.

A poset (X,<) is called two-dimensional if there exist total orders <1 and <2 on X
such that x < y if and only if x <1 y and x <2 y. By applying the compactness theorem
for propositional logic, show that if every finite subset of a poset is two-dimensional then
so is the poset itself.

[Hint: Take primitive propositions px,y and qx,y, for each distinct x, y ∈ X, with the
intended interpretation that px,y is true if and only if x <1 y and qx,y is true if and only
if x <2 y.]
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Paper 4, Section I

6C Mathematical Biology
(a) A variant of the classic logistic population model is given by:

dx(t)

dt
= α

[
x(t)− x(t− T )2

]

where α, T > 0.

Show that for small T , the constant solution x(t) = 1 is stable.

Allow T to increase. Express in terms of α the value of T at which the constant
solution x(t) = 1 loses stability.

(b) Another variant of the logistic model is given by this equation:

dx(t)

dt
= αx(t− T ) [1− x(t)]

where α, T > 0. When is the constant solution x(t) = 1 stable for this model?

Paper 3, Section I

6C Mathematical Biology
A model of wound healing in one spatial dimension is given by

∂S

∂t
= rS(1− S) +D

∂2S

∂x2
,

where S(x, t) gives the density of healthy tissue at spatial position x at time t and r and
D are positive constants.

By setting S(x, t) = f(ξ) where ξ = x − ct, seek a steady travelling wave solution
where f(ξ) tends to one for large negative ξ and tends to zero for large positive ξ. By
linearising around the leading edge, where f ≈ 1, find the possible wave speeds c of the
system. Assuming that the full nonlinear system will settle to the slowest possible speed,
express the wave speed as a function of D and r.

Consider now a situation where the tissue is destroyed in some window of length
W , i.e. S(x, 0) = 0 for 0 < x < W for some constant W > 0 and S(x, 0) is equal to one
elsewhere. Explain what will happen for subsequent times, illustrating your answer with
sketches of S(x, t). Determine approximately how long it will take for this wound to heal (in
the sense that S is close to one everywhere).
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Paper 2, Section I

6C Mathematical Biology
An activator–inhibitor system for u(x, t) and v(x, t) is described by the equations

∂u

∂t
= uv2 − a+D

∂2u

∂x2
,

∂v

∂t
= v − uv2 +

∂2v

∂x2
,

where a,D > 0.

Find the range of a for which the spatially homogeneous system has a stable
equilibrium solution with u > 0 and v > 0.

For the case when the homogeneous system is stable, consider spatial perturbations
proportional to cos(kx) to the equilibrium solution found above. Give a condition on D
in terms of a for the system to have a Turing instability (a spatial instability).

Paper 1, Section I

6C Mathematical Biology
An animal population has annual dynamics, breeding in the summer and hibernating

through the winter. At year t, the number of individuals alive who were born a years ago
is given by na,t. Each individual of age a gives birth to ba offspring, and after the summer
has a probability µa of dying during the winter. [You may assume that individuals do not
give birth during the year in which they are born.]

Explain carefully why the following equations, together with initial conditions, are
appropriate to describe the system:

n0,t =

∞∑

a=1

na,tba

na+1,t+1 = (1− µa)na,t ,

Seek a solution of the form na,t = raγ
t where γ and ra, for a = 1, 2, 3 . . ., are

constants. Show γ must satisfy φ(γ) = 1 where

φ(γ) =

∞∑

a=1

(
a−1∏

i=0

(1− µi)

)
γ−aba .

Explain why, for any reasonable set of parameters µi and bi, the equation φ(γ) = 1
has a unique solution. Explain also how φ(1) can be used to determine if the population will
grow or shrink.
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Paper 3, Section II

13C Mathematical Biology
(a) A stochastic birth-death process has a master equation given by

dpn
dt

= λ(pn−1 − pn) + β [(n+ 1)pn+1 − npn] ,

where pn(t) is the probability that there are n individuals in the population at time t for
n = 0, 1, 2, . . . and pn = 0 for n < 0.

(i) Give a brief interpretation of λ and β.

(ii) Derive an equation for ∂φ
∂t , where φ is the generating function

φ(s, t) =
∞∑

n=0

snpn(t).

(iii) Assuming that the generating function φ takes the form

φ(s, t) = e(s−1) f(t) ,

find f(t) and hence show that, as t→ ∞, both the mean 〈n〉 and variance σ2

of the population size tend to constant values, which you should determine.

(b) Now suppose an extra process is included: k individuals are added to the
population at rate ǫ(n).

(i) Write down the new master equation, and explain why, for k > 1, the approach
used in part (a) will fail.

(ii) By working with the master equation directly, find a differential equation for
the rate of change of the mean population size 〈n〉.

(iii) Now take ǫ(n) = an+ b for positive constants a and b. Show that for β > ak
the mean population size tends to a constant, which you should determine.
Briefly describe what happens for β < ak.
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Paper 4, Section II

14C Mathematical Biology
A model of an infectious disease in a plant population is given by

Ṡ = (S + I)− (S + I)S − βIS , (1)

İ = −(S + I)I + βIS (2)

where S(t) is the density of healthy plants and I(t) is the density of diseased plants at
time t and β is a positive constant.

(a) Give an interpretation of what each of the terms in equations (1) and (2)
represents in terms of the dynamics of the plants. What does the coefficient β represent?
What can you deduce from the equations about the effect of the disease on the plants?

(b) By finding all fixed points for S > 0 and I > 0 and analysing their stability,
explain what will happen to a healthy plant population if the disease is introduced. Sketch
the phase diagram, treating the cases β < 1 and β > 1 separately.

(c) Define new variables N(t) for the total plant population density and θ(t) for the
proportion of the population that is diseased. Starting from equations (1) and (2) above,
derive equations for Ṅ and θ̇ purely in terms of N , θ and β. Without carrying out a full
fixed point analysis, explain how this system can be used directly to show the same results
you had in part (b). [Hint: start by considering the dynamics of N(t) alone.]

(d) Suppose now that in an attempt to control disease, plants are culled at a rate k
per capita, independently of whether the plants are healthy or diseased. Write down the
modified versions of equations (1) and (2). Use these to build updated equations for Ṅ and
θ̇. Without carrying out a detailed fixed point analysis, what can you deduce about the
effect of culling? Give the range of k for which culling can effectively control the disease.
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Paper 4, Section II

20G Number Fields
(a) Let L be a number field, and suppose there exists α ∈ OL such that OL = Z[α].

Let f(X) ∈ Z[X] denote the minimal polynomial of α, and let p be a prime. Let
f(X) ∈ (Z/pZ)[X] denote the reduction modulo p of f(X), and let

f(X) = g1(X)e1 · · · gr(X)er

denote the factorisation of f(X) in (Z/pZ)[X] as a product of powers of distinct monic
irreducible polynomials g1(X), . . . , gr(X), where e1, . . . , er are all positive integers.

For each i = 1, . . . , r, let gi(X) ∈ Z[X] be any polynomial with reduction modulo p
equal to gi(X), and let Pi = (p, gi(α)) ⊂ OL. Show that P1, . . . , Pr are distinct, non-zero
prime ideals of OL, and that there is a factorisation

pOL = P e11 · · ·P err ,

and that N(Pi) = pdeg gi(X).

(b) Let K be a number field of degree n = [K : Q], and let p be a prime. Suppose
that there is a factorisation

pOK = Q1 · · ·Qs,
where Q1, . . . , Qs are distinct, non-zero prime ideals of OK with N(Qi) = p for each i =
1, . . . , s. Use the result of part (a) to show that if n > p then there is no α ∈ OK such that
OK = Z[α].

Paper 2, Section II

20G Number Fields
(a) Let L be a number field. State Minkowski’s upper bound for the norm of a

representative for a given class of the ideal class group Cl(OL).

(b) Now let K = Q(
√
−47) and ω = 1

2(1 +
√
−47). Using Dedekind’s criterion, or

otherwise, factorise the ideals (ω) and (2+ω) as products of non-zero prime ideals of OK .

(c) Show that Cl(OK) is cyclic, and determine its order.

[You may assume thatOK = Z[ω].]
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Paper 1, Section II

20G Number Fields
Let K = Q(

√
2).

(a) Write down the ring of integers OK .

(b) State Dirichlet’s unit theorem, and use it to determine all elements of the group
of units O×

K .

(c) Let P ⊂ OK denote the ideal generated by 3 +
√
2. Show that the group

G = {α ∈ O×
K | α ≡ 1 mod P}

is cyclic, and find a generator.
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Paper 4, Section I

1I Number Theory
Show that the product

∏

p prime

(
1− 1

p

)−1

and the series ∑

p prime

1

p

are both divergent.

Paper 3, Section I

1I Number Theory
Let f = (a, b, c) be a positive definite binary quadratic form with integer coefficients.

What does it mean to say that f is reduced? Show that if f is reduced and has discriminant
d, then |b| 6 a 6

√
|d| /3 and b ≡ d (mod 2). Deduce that for fixed d < 0, there are only

finitely many reduced f of discriminant d.

Find all reduced positive definite binary quadratic forms of discriminant −15.

Paper 2, Section I

1I Number Theory

Define the Jacobi symbol
(a
n

)
, where a, n ∈ Z and n is odd and positive.

State and prove the Law of Quadratic Reciprocity for the Jacobi symbol. [You
may use Quadratic Reciprocity for the Legendre symbol without proof but should state it
clearly.]

Compute the Jacobi symbol

(
503

2019

)
.

Paper 1, Section I

1I Number Theory
(a) State and prove the Chinese remainder theorem.

(b) Let N be an odd positive composite integer, and b a positive integer with
(b,N) = 1. What does it mean to say that N is a Fermat pseudoprime to base b? Show
that 35 is a Fermat pseudoprime to base b if and only if b is congruent to one of 1, 6, 29
or 34 (mod 35).
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Paper 4, Section II

11I Number Theory
(a) Let a0, a1, . . . be positive integers, and β > 0 a positive real number. Show that

for every n > 0, if θn = [a0, . . . , an, β], then θn = (βpn + pn−1)/(βqn + qn−1), where (pn),
(qn) (n > −1) are sequences of integers satisfying

p0 = a0, q0 = 1, p−1 = 1, q−1 = 0 and
(
pn pn−1

qn qn−1

)
=

(
pn−1 pn−2

qn−1 qn−2

)(
an 1
1 0

)
(n > 1).

Show that pnqn−1 − pn−1qn = (−1)n−1, and that θn lies between pn/qn and pn−1/qn−1.

(b) Show that if [a0, a1, . . . ] is the continued fraction expansion of a positive
irrational θ, then pn/qn → θ as n→ ∞.

(c) Let the convergents of the continued fraction [a0, a1, . . . , an] be pj/qj (0 6

j 6 n). Using part (a) or otherwise, show that the n-th and (n − 1)-th convergents
of [an, an−1, . . . , a0] are pn/pn−1 and qn/qn−1 respectively.

(d) Show that if θ = [ a0, a1, . . . , an ] is a purely periodic continued fraction with
convergents pj/qj, then f(θ) = 0, where f(X) = qnX

2 + (qn−1 − pn)X − pn−1. Deduce
that if θ′ is the other root of f(X), then −1/θ′ = [ an, an−1, . . . , a0 ].

Paper 3, Section II

11I Number Theory
Let p > 2 be a prime.

(a) What does it mean to say that an integer g is a primitive root mod p?

(b) Let k be an integer with 0 6 k < p− 1. Let

Sk =

p−1∑

x=0

xk.

Show that Sk ≡ 0 (mod p). [Recall that by convention 00 = 1.]

(c) Let f(X,Y,Z) = aX2 + bY 2 + cZ2 for some a, b, c ∈ Z, and let g = 1 − fp−1.
Show that for any x, y, z ∈ Z, g(x, y, z) ≡ 0 or 1 (mod p), and that

∑

x,y,z∈{0,1,...,p−1}
g(x, y, z) ≡ 0 (mod p).

Hence show that there exist integers x, y, z, not all divisible by p, such that f(x, y, z) ≡ 0
(mod p).
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Paper 4, Section II

39C Numerical Analysis
For a 2-periodic analytic function f , its Fourier expansion is given by the formula

f(x) =
∞∑

n=−∞
f̂ne

iπnx, f̂n =
1

2

∫ 1

−1
f(t)e−iπnt dt .

(a) Consider the two-point boundary value problem

− 1

π2
(1 + 2 cos πx)u′′ + u = 1 +

∞∑

n=1

2

n2 + 1
cos πnx, −1 6 x 6 1 ,

with periodic boundary conditions u(−1) = u(1). Construct explicitly the infinite
dimensional linear algebraic system that arises from the application of the Fourier spectral
method to the above equation, and explain how to truncate the system to a finite-
dimensional one.

(b) A rectangle rule is applied to computing the integral of a 2-periodic analytic
function h: ∫ 1

−1
h(t) dt ≈ 2

N

N/2∑

k=−N/2+1

h

(
2k

N

)
. (∗)

Find an expression for the error eN (h) := LHS− RHS of (∗), in terms of ĥn, and show
that eN (h) has a spectral rate of decay as N → ∞. [In the last part, you may quote a
relevant theorem about ĥn.]
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39C Numerical Analysis
The Poisson equation on the unit square, equipped with zero boundary conditions,

is discretized with the 9-point scheme:

−10
3 ui,j +

2
3(ui+1,j + ui−1,j + ui,j+1 + ui,j−1)

+ 1
6(ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1) = h2fi,j ,

where 1 6 i, j 6 m, ui,j ≈ u(ih, jh), and (ih, jh) are the grid points with h = 1
m+1 . We

also assume that u0,j = ui,0 = um+1,j = ui,m+1 = 0.

(a) Prove that all m×m tridiagonal symmetric Toeplitz (TST-) matrices

H = [β, α, β] :=









α β

β α
. . .

. . .
. . . β
β α









∈ R
m×m (1)

share the same eigenvectors qk with the components (sin jkπh)mj=1 for k = 1, ...,m.
Find expressions for the corresponding eigenvalues λk for k = 1, ...,m. Deduce that
H = QDQ−1, where D = diag{λk} and Q is the matrix (sin ijπh)mi,j=1.

(b) Show that, by arranging the grid points (ih, jh) into a one-dimensional array
by columns, the 9-points scheme results in the following system of linear equations of the
form

Au = b ⇔









B C

C B
. . .

. . .
. . . C
C B



















u1

u2

...
um











=











b1

b2

...
bm











, (2)

where A ∈ Rm
2×m2

, the vectors uk, bk ∈ Rm are portions of u, b ∈ Rm
2

, respectively, and
B,C are m×m TST-matrices whose elements you should determine.

(c) Using vk = Q−1uk, ck = Q−1bk, show that (2) is equivalent to









D E

E D
. . .

. . .
. . . E
E D



















v1

v2

...
vm











=











c1

c2

...
cm











, (3)

where D and E are diagonal matrices.

(d) Show that, by appropriate reordering of the grid, the system (3) is reduced to
m uncoupled m×m systems of the form

Λkv̂k = ĉk, k = 1, . . . ,m.

Determine the elements of the matrices Λk.
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40C Numerical Analysis
The diffusion equation

ut = uxx, 0 6 x 6 1, t > 0,

with the initial condition u(x, 0) = φ(x), 0 6 x 6 1, and boundary conditions u(0, t) =
u(1, t) = 0, is discretised by unm ≈ u(mh,nk) with k = ∆t, h = ∆x = 1/(1 +M). The
Courant number is given by µ = k/h2.

(a) The system is solved numerically by the method

un+1
m = unm + µ

(
unm−1 − 2unm + unm+1

)
, m = 1, 2, ...,M, n > 0 .

Prove directly that µ 6 1/2 implies convergence.

(b) Now consider the method

aun+1
m − 1

4
(µ− c)

(
un+1
m−1 − 2un+1

m + un+1
m+1

)
= aunm + 1

4
(µ+ c)

(
unm−1 − 2unm + unm+1

)
,

where a and c are real constants. Using an eigenvalue analysis and carefully justifying
each step, determine conditions on µ, a and c for this method to be stable.

[You may use the notation [β, α, β] for the tridiagonal matrix with α along the diag-
onal, and β along the sub- and super-diagonals and use without proof any relevant theorems
about such matrices.]

Paper 1, Section II

40C Numerical Analysis
(a) Describe the Jacobi method for solving a system of linear equations Ax = b as

a particular case of splitting, and state the criterion for its convergence in terms of the
iteration matrix.

(b) For the case when

A =




1 α α
α 1 α
α α 1


 ,

find the exact range of the parameter α for which the Jacobi method converges.

(c) State the Householder-John theorem and deduce that the Jacobi method con-
verges if A is a symmetric positive-definite tridiagonal matrix.
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32B Principles of Quantum Mechanics
Define the spin raising and spin lowering operators S+ and S−. Show that

S±|s, σ〉 = ~
√
s(s+ 1)− σ(σ ± 1) |s, σ ± 1〉 ,

where Sz|s, σ〉 = ~σ|s, σ〉 and S2|s, σ〉 = s(s+ 1)~2|s, σ〉.
Two spin-12 particles, with spin operators S(1) and S(2), have a Hamiltonian

H = αS(1) · S(2) +B · (S(1) − S(2)) ,

where α and B = (0, 0, B) are constants. Express H in terms of the two particles’ spin

raising and spin lowering operators S
(1)
± , S

(2)
± and the corresponding z-components S

(1)
z ,

S
(2)
z . Hence find the eigenvalues of H. Show that there is a unique groundstate in the

limit B → 0 and that the first excited state is triply degenerate in this limit. Explain
this degeneracy by considering the action of the combined spin operator S(1)+S(2) on the
energy eigenstates.

Paper 3, Section II

33B Principles of Quantum Mechanics
Consider the Hamiltonian H = H0 + V , where V is a small perturbation. If

H0|n〉 = En|n〉, write down an expression for the eigenvalues of H, correct to second
order in the perturbation, assuming the energy levels of H0 are non-degenerate.

In a certain three-state system, H0 and V take the form

H0 =



E1 0 0
0 E2 0
0 0 E3


 and V = V0




0 ǫ ǫ2

ǫ 0 0
ǫ2 0 0


 ,

with V0 and ǫ real, positive constants and ǫ≪ 1.

(a) Consider first the case E1 = E2 6= E3 and |ǫV0/(E3 − E2)| ≪ 1. Use the results
of degenerate perturbation theory to obtain the energy eigenvalues correct to order ǫ.

(b) Now consider the different case E3 = E2 6= E1 and |ǫV0/(E2 − E1)| ≪ 1. Use
the results of non-degenerate perturbation theory to obtain the energy eigenvalues correct
to order ǫ2. Why is it not necessary to use degenerate perturbation theory in this case?

(c) Obtain the exact energy eigenvalues in case (b), and compare these to your
perturbative results by expanding to second order in ǫ.
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33B Principles of Quantum Mechanics
(a) Let |i〉 and |j〉 be two eigenstates of a time-independent Hamiltonian H0,

separated in energy by ~ωij. At time t = 0 the system is perturbed by a small, time
independent operator V . The perturbation is turned off at time t = T . Show that if the
system is initially in state |i〉, the probability of a transition to state |j〉 is approximately

Pij = 4|〈i|V |j〉|2 sin
2(ωijT/2)

(~ωij)2
.

(b) An uncharged particle with spin one-half and magnetic moment µ travels at
speed v through a region of uniform magnetic field B = (0, 0, B). Over a length L of its
path, an additional perpendicular magnetic field b is applied. The spin-dependent part of
the Hamiltonian is

H(t) =

{
−µ(Bσz + bσx) while 0 < t < L/v

−µBσz otherwise,

where σz and σx are Pauli matrices. The particle initially has its spin aligned along the
direction of B = (0, 0, B). Find the probability that it makes a transition to the state
with opposite spin

(i) by assuming b≪ B and using your result from part (a),

(ii) by finding the exact evolution of the state.

[Hint: for any 3-vector a, eia·σ = (cos a)I +(i sin a) â ·σ, where I is the 2× 2 unit matrix,
σ = (σx, σy, σz), a=|a| and â = a/|a|. ]
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33B Principles of Quantum Mechanics
A d = 3 isotropic harmonic oscillator of mass µ and frequency ω has lowering

operators

A =
1√
2µ~ω

(µωX+ iP) ,

where X and P are the position and momentum operators. Assuming the standard
commutation relations for X and P, evaluate the commutators [A†

i , A
†
j ], [Ai, Aj ] and

[Ai, A
†
j ], for i, j = 1, 2, 3, among the components of the raising and lowering operators.

How is the ground state |0〉 of the oscillator defined? How are normalised higher
excited states obtained from |0〉? [You should determine the appropriate normalisation
constant for each energy eigenstate.]

By expressing the orbital angular momentum operator L in terms of the raising and
lowering operators, show that each first excited state of the isotropic oscillator has total
orbital angular momentum quantum number ℓ = 1, and find a linear combination |ψ〉 of
these first excited states obeying Lz|ψ〉 = +~|ψ〉 and ‖|ψ〉‖ = 1.
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28J Principles of Statistics
We consider a statistical model {f(·, θ) : θ ∈ Θ}.
(a) Define the maximum likelihood estimator (MLE) and the Fisher information

I(θ).

(b) Let Θ = R and assume there exist a continuous one-to-one function µ : R → R

and a real-valued function h such that

Eθ[h(X)] = µ(θ) ∀θ ∈ R.

(i) For X1, . . . ,Xn i.i.d. from the model for some θ0 ∈ R, give the limit in almost
sure sense of

µ̂n =
1

n

n∑

i=1

h(Xi) .

Give a consistent estimator θ̂n of θ0 in terms of µ̂n.

(ii) Assume further that Eθ0 [h(X)2] < ∞ and that µ is continuously differentiable
and strictly monotone. What is the limit in distribution of

√
n(θ̂n− θ0)? Assume too that

the statistical model satisfies the usual regularity assumptions. Do you necessarily expect
Var(θ̂n) > (nI(θ0))

−1 for all n? Why?

(iii) Propose an alternative estimator for θ0 with smaller bias than θ̂n if Bn(θ0) =
Eθ0 [θ̂n]− θ0 =

a
n + b

n2 +O( 1
n3 ) for some a, b ∈ R with a 6= 0.

(iv) Further to all the assumptions in iii), assume that the MLE for θ0 is of the form

θ̂MLE =
1

n

n∑

i=1

h(Xi).

What is the link between the Fisher information at θ0 and the variance of h(X)? What
does this mean in terms of the precision of the estimator and why?

[You may use results from the course, provided you state them clearly.]
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28J Principles of Statistics
We consider the exponential model {f(·, θ) : θ ∈ (0,∞)}, where

f(x, θ) = θe−θx for x > 0 .

We observe an i.i.d. sample X1, . . . ,Xn from the model.

(a) Compute the maximum likelihood estimator θ̂MLE for θ. What is the limit in
distribution of

√
n(θ̂MLE − θ)?

(b) Consider the Bayesian setting and place a Gamma(α, β), α, β > 0, prior for θ
with density

π(θ) =
βα

Γ(α)
θα−1 exp(−βθ) for θ > 0 ,

where Γ is the Gamma function satisfying Γ(α + 1) = αΓ(α) for all α > 0. What is the
posterior distribution for θ? What is the Bayes estimator θ̂π for the squared loss?

(c) Show that the Bayes estimator is consistent. What is the limiting distribution
of

√
n(θ̂π − θ)?

[You may use results from the course, provided you state them clearly.]
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28J Principles of Statistics
(a) We consider the model {Poisson(θ) : θ ∈ (0,∞)} and an i.i.d. sample

X1, . . . ,Xn from it. Compute the expectation and variance of X1 and check they are
equal. Find the maximum likelihood estimator θ̂MLE for θ and, using its form, derive the
limit in distribution of

√
n(θ̂MLE − θ).

(b) In practice, Poisson-looking data show overdispersion, i.e., the sample variance
is larger than the sample expectation. For π ∈ [0, 1] and λ ∈ (0,∞), let pπ,λ : N0 → [0, 1],

k 7→ pπ,λ(k) =





πe−λ λ
k

k! for k > 1

(1− π) + πe−λ for k = 0.

Show that this defines a distribution. Does it model overdispersion? Justify your answer.

(c) Let Y1, . . . , Yn be an i.i.d. sample from pπ,λ. Assume λ is known. Find the
maximum likelihood estimator π̂MLE for π.

(d) Furthermore, assume that, for any π ∈ [0, 1],
√
n(π̂MLE − π) converges in

distribution to a random variable Z as n → ∞. Suppose we wanted to test the null
hypothesis that our data arises from the model in part (a). Before making any further
computations, can we necessarily expect Z to follow a normal distribution under the null
hypothesis? Explain. Check your answer by computing the appropriate distribution.

[You may use results from the course, provided you state it clearly.]
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29J Principles of Statistics
In a regression problem, for a given X ∈ Rn×p fixed, we observe Y ∈ Rn such that

Y = Xθ0 + ε

for an unknown θ0 ∈ Rp and ε random such that ε ∼ N (0, σ2In) for some known σ2 > 0.

(a) When p 6 n and X has rank p, compute the maximum likelihood estimator
θ̂MLE for θ0. When p > n, what issue is there with the likelihood maximisation approach
and how many maximisers of the likelihood are there (if any)?

(b) For any λ > 0 fixed, we consider θ̂λ minimising

‖Y −Xθ‖22 + λ‖θ‖22

over Rp. Derive an expression for θ̂λ and show it is well defined, i.e., there is a unique
minimiser for every X,Y and λ.

Assume p 6 n and that X has rank p. Let Σ = X⊤X and note that Σ = V ΛV ⊤

for some orthogonal matrix V and some diagonal matrix Λ whose diagonal entries satisfy
Λ1,1 > Λ2,2 > . . . > Λp,p. Assume that the columns of X have mean zero.

(c) Denote the columns of U = XV by u1, . . . , up. Show that they are sample
principal components, i.e., that their pairwise sample correlations are zero and that they
have sample variances n−1Λ1,1, . . . , n

−1Λp,p, respectively. [Hint: the sample covariance
between ui and uj is n−1u⊤i uj .]

(d) Show that
ŶMLE = Xθ̂MLE = UΛ−1U⊤Y.

Conclude that prediction ŶMLE is the closest point to Y within the subspace spanned by
the normalised sample principal components of part (c).

(e) Show that
Ŷλ = Xθ̂λ = U(Λ + λIp)

−1U⊤Y.

Assume Λ1,1,Λ2,2, . . . ,Λq,q >> λ >> Λq+1,q+1, . . . ,Λp,p for some 1 6 q < p. Conclude
that prediction Ŷλ is approximately the closest point to Y within the subspace spanned
by the q normalised sample principal components of part (c) with the greatest variance.
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26K Probability and Measure
(a) Let (Xi,Ai) for i = 1, 2 be two measurable spaces. Define the product σ-algebra

A1 ⊗A2 on the Cartesian product X1 ×X2. Given a probability measure µi on (Xi,Ai)
for each i = 1, 2, define the product measure µ1⊗µ2. Assuming the existence of a product
measure, explain why it is unique. [You may use standard results from the course if clearly
stated.]

(b) Let (Ω,F ,P) be a probability space on which the real random variables U and V
are defined. Explain what is meant when one says that U has law µ. On what measurable
space is the measure µ defined? Explain what it means for U and V to be independent
random variables.

(c) Now let X = [−1
2 ,

1
2 ], let A be its Borel σ-algebra and let µ be Lebesgue

measure. Give an example of a measure η on the product (X × X,A ⊗ A) such that
η(X × A) = µ(A) = η(A × X) for every Borel set A, but such that η is not Lebesgue
measure on X ×X.

(d) Let η be as in part (c) and let I, J ⊂ X be intervals of length x and y respectively.
Show that

x+ y − 1 6 η(I × J) 6 min{x, y}.

(e) Let X be as in part (c). Fix d > 2 and let Πi denote the projection
Πi(x1, . . . , xd) = (x1, . . . , xi−1, xi+1, . . . , xd) from Xd to Xd−1. Construct a probability
measure η on Xd, such that the image under each Πi coincides with the (d−1)-dimensional
Lebesgue measure, while η itself is not the d-dimensional Lebesgue measure. [Hint:
Consider the following collection of 2d − 1 independent random variables: U1, . . . , Ud
uniformly distributed on [0, 12 ], and ε1, . . . , εd−1 such that P(εi = 1) = P(εi = −1) = 1

2 for
each i.]
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26K Probability and Measure
(a) Let X and Y be real random variables such that E[f(X)] = E[f(Y )] for every

compactly supported continuous function f . Show that X and Y have the same law.

(b) Given a real random variable Z, let ϕZ(s) = E(eisZ) be its characteristic
function. Prove the identity

∫∫
g(εs)f(x)e−isxϕZ(s)ds dx =

∫
ĝ(t) E[f(Z − εt)]dt

for real ε > 0, where is f is continuous and compactly supported, and where g is a Lebesgue
integrable function such that ĝ is also Lebesgue integrable, where

ĝ(t) =

∫
g(x)eitxdx

is its Fourier transform. Use the above identity to derive a formula for E[f(Z)] in terms
of ϕZ , and recover the fact that ϕZ determines the law of Z uniquely.

(c) Let X and Y be bounded random variables such that E(Xn) = E(Y n) for every
positive integer n. Show that X and Y have the same law.

(d) The Laplace transform ψZ(s) of a non-negative random variable Z is defined by
the formula

ψZ(s) = E(e−sZ)

for s > 0. Let X and Y be (possibly unbounded) non-negative random variables such that
ψX(s) = ψY (s) for all s > 0. Show that X and Y have the same law.

(e) Let

f(x; k) = 1{x>0}
1

k!
xke−x

where k is a non-negative integer and 1{x>0} is the indicator function of the interval
(0,+∞).

Given non-negative integers k1, . . . , kn, suppose that the random variablesX1, . . . ,Xn

are independent with Xi having density function f(·; ki). Find the density of the random
variableX1+· · ·+Xn.
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26K Probability and Measure
(a) Let (Xn)n>1 and X be real random variables with finite second moment on a

probability space (Ω,F ,P). Assume that Xn converges to X almost surely. Show that the
following assertions are equivalent:

(i) Xn → X in L2 as n→ ∞,

(ii) E(X2
n) → E(X2) as n→ ∞.

(b) Suppose now that Ω = (0, 1), F is the Borel σ-algebra of (0, 1) and P is Lebesgue
measure. Given a Borel probability measure µ on R we set

Xµ(ω) = inf{x ∈ R|Fµ(x) > ω},

where Fµ(x) := µ((−∞, x]) is the distribution function of µ and ω ∈ Ω.

(i) Show that Xµ is a random variable on (Ω,F ,P) with law µ.

(ii) Let (µn)n>1 and ν be Borel probability measures on R with finite second
moments. Show that

E((Xµn −Xν)
2) → 0 as n→ ∞

if and only if µn converges weakly to ν and
∫
x2dµn(x) converges to∫

x2dν(x) as n→ ∞.

[You may use any theorem proven in lectures as long as it is clearly stated.
Furthermore, you may use without proof the fact that µn converges weakly to ν as n→ ∞
if and only if Xµn converges to Xν almost surely.]
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27K Probability and Measure
Let X = (X1, . . . ,Xd) be an Rd-valued random variable. Given u = (u1, . . . , ud) ∈

Rd we let
φX(u) = E(ei〈u,X〉)

be its characteristic function, where 〈·, ·〉 is the usual inner product on Rd.

(a) Suppose X is a Gaussian vector with mean 0 and covariance matrix σ2Id, where
σ > 0 and Id is the d × d identity matrix. What is the formula for the characteristic
function φX in the case d = 1? Derive from it a formula for φX in the case d > 2.

(b) We now no longer assume that X is necessarily a Gaussian vector. Instead we
assume that the Xi’s are independent random variables and that the random vector AX
has the same law as X for every orthogonal matrix A. Furthermore we assume that d > 2.

(i) Show that there exists a continuous function f : [0,+∞) → R such that

φX(u) = f(u21 + . . . + u2d).

[ You may use the fact that for every two vectors u, v ∈ Rd such that
〈u, u〉 = 〈v, v〉 there is an orthogonal matrix A such that Au = v. ]

(ii) Show that for all r1, r2 > 0

f(r1 + r2) = f(r1)f(r2).

(iii) Deduce that f takes values in (0, 1], and furthermore that there exists α > 0
such that f(r) = e−rα, for all r > 0.

(iv) What must be the law of X?

[Standard properties of characteristic functions from the course may be used without
proof if clearly stated.]
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10D Quantum Information and Computation
(a) Define the order of α mod N for coprime integers α and N with α < N . Explain

briefly how knowledge of this order can be used to provide a factor of N , stating conditions
on α and its order that must be satisfied.

(b) Shor’s algorithm for factoring N starts by choosing α < N coprime. Describe
the subsequent steps of a single run of Shor’s algorithm that computes the order of α mod
N with probability O(1/ log logN).

[Any significant theorems that you invoke to justify the algorithm should be clearly
stated (but proofs are not required). In addition you may use without proof the following
two technical results.

Theorem FT: For positive integers t and M with M > t2, and any 0 6 x0 < t, let K
be the largest integer such that x0 +(K − 1)t < M . Let QFT denote the quantum Fourier

transform mod M . Suppose we measure QFT
(

1√
K

∑K−1
k=0 |x0 + kt〉

)
to obtain an integer

c with 0 6 c < M . Then with probability O(1/ log log t), c will be an integer closest to a
multiple j(M/t) of M/t for which the value of j (between 0 and t) is coprime to t.

Theorem CF: For any rational number a/b with 0 < a/b < 1 and with integers a
and b having at most n digits each, let p/q with p and q coprime, be any rational number
satisfying ∣∣∣∣

a

b
− p

q

∣∣∣∣ 6
1

2q2
.

Then p/q is one of the O(n) convergents of the continued fraction of a/b and all the
convergents can be classically computed from a/b in time O(n3).]
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10D Quantum Information and Computation
Let Bn denote the set of all n-bit strings and write N = 2n. Let I denote the

identity operator on n qubits and for G = {x1, x2, . . . , xk} ⊂ Bn introduce the n-qubit
operator

Q = −HnI0HnIG

where Hn = H ⊗ . . .⊗H is the Hadamard operation on each of the n qubits, and I0 and
IG are given by

I0 = I − 2 |00 . . . 0〉 〈00 . . . 0| IG = I − 2
∑

x∈G
|x〉 〈x| .

Also introduce the states

|ψ0〉 =
1√
N

∑

x∈Bn

|x〉 |ψG〉 =
1√
k

∑

x∈G
|x〉 |ψB〉 =

1√
N − k

∑

x/∈G
|x〉 .

Let P denote the real span of |ψ0〉 and |ψG〉.
(a) Show that Q maps P to itself, and derive a geometrical interpretation of the

action of Q on P, stating clearly any results from Euclidean geometry that you use.

(b) Let f : Bn → B1 be the Boolean function such that f(x) = 1 iff x ∈ G. Suppose
that k = N/4. Show that we can obtain an x ∈ G with certainty by using just one
application of the standard quantum oracle Uf for f (together with other operations that
are independent of f).
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10D Quantum Information and Computation
The BB84 quantum key distribution protocol begins with Alice choosing two

uniformly random bit strings X = x1x2 . . . xm and Y = y1y2 . . . ym.

(a) In terms of these strings, describe Alice’s process of conjugate coding for the
BB84 protocol.

(b) Suppose Alice and Bob are distantly separated in space and have available a
noiseless quantum channel on which there is no eavesdropping. They can also communicate
classically publicly. For this idealised situation, describe the steps of the BB84 protocol
that results in Alice and Bob sharing a secret key of expected length m/2.

(c) Suppose now that an eavesdropper Eve taps into the channel and carries out the
following action on each passing qubit. With probability 1−p, Eve lets it pass undisturbed,
and with probability p she chooses a bit w ∈ {0, 1} uniformly at random and measures
the qubit in basis Bw where B0 = {|0〉 , |1〉} and B1 = {(|0〉 + |1〉)/

√
2, (|0〉 − |1〉)/

√
2}.

After measurement Eve sends the post-measurement state on to Bob. Calculate the bit
error rate for Alice and Bob’s final key in part (b) that results from Eve’s action.
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10D Quantum Information and Computation
Introduce the 2-qubit states

|βxz〉 = (ZzXx)⊗ I

( |00〉+ |11〉√
2

)
,

where X and Z are the standard qubit Pauli operations and x, z ∈ {0, 1}.
(a) For any 1-qubit state |α〉 show that the 3-qubit state |α〉C |β00〉AB of system

CAB can be expressed as

|α〉C |β00〉AB =
1

2

1∑

x,z=0

|βxz〉CA |µxz〉B ,

where the 1-qubit states |µxz〉 are uniquely determined. Show that |µ10〉 = X |α〉.
(b) In addition to |µ10〉 = X |α〉 you may now assume that |µxz〉 = XxZz |α〉. Alice

and Bob are separated distantly in space and share a |β00〉AB state with A and B labelling
qubits held by Alice and Bob respectively. Alice also has a qubit C in state |α〉 whose
identity is unknown to her. Using the results of part (a) show how she can transfer the
state of C to Bob using only local operations and classical communication, i.e. the sending
of quantum states across space is not allowed.

(c) Suppose that in part (b), while sharing the |β00〉AB state, Alice and Bob are
also unable to engage in any classical communication, i.e. they are able only to perform
local operations. Can Alice now, perhaps by a modified process, transfer the state of C
to Bob? Give a reason for your answer.
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15D Quantum Information and Computation
Let Hd denote a d-dimensional state space with orthonormal basis {|y〉 : y ∈ Zd}.

For any f : Zm → Zn let Uf be the operator on Hm ⊗Hn defined by

Uf |x〉 |y〉 = |x〉 |y + f(x) modn〉

for all x ∈ Zm and y ∈ Zn.

(a) Define QFT , the quantum Fourier transform mod d (for any chosen d).

(b) Let S on Hd (for any chosen d) denote the operator defined by

S |y〉 = |y + 1 mod d〉

for y ∈ Zd. Show that the Fourier basis states |ξx〉 = QFT |x〉 for x ∈ Zd are eigenstates
of S. By expressing Uf in terms of S find a basis of eigenstates of Uf and determine the
corresponding eigenvalues.

(c) Consider the following oracle promise problem:
Input: an oracle for a function f : Z3 → Z3.
Promise: f has the form f(x) = sx+ t where s and t are unknown coefficients (and with
all arithmetic being mod 3).
Problem: Determine s with certainty.

Can this problem be solved by a single query to a classical oracle for f (and possible
further processing independent of f)? Give a reason for your answer.

Using the results of part (b) or otherwise, give a quantum algorithm for this problem
that makes just one query to the quantum oracle Uf for f .

(d) For any f : Z3 → Z3, let f1(x) = f(x + 1) and f2(x) = −f(x) (all arithmetic
being mod 3). Show how Uf1 and Uf2 can each be implemented with one use of Uf together
with other unitary gates that are independent of f .

(e) Consider now the oracle problem of the form in part (c) except that now f is a
quadratic function f(x) = ax2+bx+c with unknown coefficients a, b, c (and all arithmetic
being mod 3), and the problem is to determine the coefficient a with certainty. Using the
results of part (d) or otherwise, give a quantum algorithm for this problem that makes
just two queries to the quantum oracle for f .
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15D Quantum Information and Computation
Let |α0〉 6= |α1〉 be two quantum states and let p0 and p1 be associated probabilities

with p0 + p1 = 1, p0 6= 0, p1 6= 0 and p0 > p1. Alice chooses state |αi〉 with probability pi
and sends it to Bob. Upon receiving it, Bob performs a 2-outcome measurement M with
outcomes labelled 0 and 1, in an attempt to identify which state Alice sent.

(a) By using the extremal property of eigenvalues, or otherwise, show that the
operator D = p0 |α0〉 〈α0| − p1 |α1〉 〈α1| has exactly two nonzero eigenvalues, one of which
is positive and the other negative.

(b) Let PS denote the probability that Bob correctly identifies Alice’s sent state. If
the measurementM comprises orthogonal projectors {Π0,Π1} (corresponding to outcomes
0 and 1 respectively) give an expression for PS in terms of p1, Π0 and D.

(c) Show that the optimal success probability P opt
S , i.e. the maximum attainable

value of PS , is

P opt
S =

1 +
√

1− 4p0p1 cos2 θ

2
,

where cos θ = |〈α0|α1〉|.
(d) Suppose we now place the following extra requirement on Bob’s discrimination

process: whenever Bob obtains output 0 then the state sent by Alice was definitely |α0〉.
Show that Bob’s P opt

S now satisfies P opt
S > 1− p0 cos

2 θ.
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19I Representation Theory
In this question all representations are complex and G is a finite group.

(a) State and prove Mackey’s theorem. State the Frobenius reciprocity theorem.

(b) Let X be a finite G-set and let CX be the corresponding permutation represen-
tation. Pick any orbit of G on X: it is isomorphic as a G-set to G/H for some subgroup
H of G. Write down the character of C(G/H).

(i) Let CG be the trivial representation of G. Show that CX may be written as
a direct sum

CX = CG ⊕ V

for some representation V .

(ii) Using the results of (a) compute the character inner product 〈1H ↑G, 1H ↑G〉G
in terms of the number of (H,H) double cosets.

(iii) Now suppose that |X| > 2, so that V 6= 0. By writing C(G/H) as a direct
sum of irreducible representations, deduce from (ii) that the representation V
is irreducible if and only if G acts 2-transitively. In that case, show that V is
not the trivial representation.
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19I Representation Theory
(a) What is meant by a compact topological group? Explain why SU(n) is an example

of such a group.

[In the following the existence of a Haar measure for any compact Hausdorff
topological group may be assumed, if required.]

(b) Let G be any compact Hausdorff topological group. Show that there is a
continuous group homomorphism ρ : G → O(n) if and only if G has an n-dimensional
representation over R. [Here O(n) denotes the subgroup of GLn(R) preserving the standard
(positive-definite) symmetric bilinear form.]

(c) Explicitly construct such a representation ρ : SU(2) → SO(3) by showing that
SU(2) acts on the following vector space of matrices,

{
A =

(
a b
c −a

)
∈ M2(C) : A+At = 0

}

by conjugation.

Show that

(i) this subspace is isomorphic to R3;

(ii) the trace map (A,B) 7→ −tr(AB) induces an invariant positive definite
symmetric bilinear form;

(iii) ρ is surjective with kernel {±I2}. [You may assume, without proof, that SU(2)
is connected.]
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19I Representation Theory
(a) For any finite groupG, let ρ1, . . . , ρk be a complete set of non-isomorphic complex

irreducible representations of G, with dimensions n1, . . . nk, respectively. Show that

k∑

j=1

n2j = |G|.

(b) Let A, B, C, D be the matrices

A =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 , B =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 ,

C =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 , D =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 ,

and let G = 〈A,B,C,D〉. Write Z = −I4.
(i) Prove that the derived subgroup G′ = 〈Z〉.
(ii) Show that for all g ∈ G, g2 ∈ 〈Z〉, and deduce that G is a 2-group of order at

most 32.

(iii) Prove that the given representation of G of degree 4 is irreducible.

(iv) Prove that G has order 32, and find all the irreducible representations of G.
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19I Representation Theory
(a) State and prove Schur’s lemma over C.

In the remainder of this question we work over R.

(b) Let G be the cyclic group of order 3.

(i) Write the regular RG-module as a direct sum of irreducible submodules.

(ii) Find all the intertwining homomorphisms between the irreducibleRG-modules.
Deduce that the conclusion of Schur’s lemma is false if we replace C by R.

(c) Henceforth let G be a cyclic group of order n. Show that

(i) if n is even, the regular RG-module is a direct sum of two (non-isomorphic) 1-
dimensional irreducible submodules and (n−2)/2 (non-isomorphic) 2-dimensional
irreducible submodules;

(ii) if n is odd, the regular RG-module is a direct sum of one 1-dimensional irre-
ducible submodule and (n − 1)/2 (non-isomorphic) 2-dimensional irreducible
submodules.
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23F Riemann Surfaces
Let Λ be a lattice in C, and f : C/Λ → C/Λ a holomorphic map of complex tori.

Show that f lifts to a linear map F : C → C.

Give the definition of ℘(z) := ℘Λ(z), the Weierstrass ℘-function for Λ. Show that
there exist constants g2, g3 such that

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3.

Suppose f ∈ Aut(C/Λ), that is, f : C/Λ → C/Λ is a biholomorphic group
homomorphism. Prove that there exists a lift F (z) = ζz of f , where ζ is a root of
unity for which there exist m,n ∈ Z such that ζ2 +mζ + n = 0.

Paper 2, Section II

23F Riemann Surfaces
(a) Prove that z 7→ z4 as a map from the upper half-plane H to C\{0} is a covering

map which is not regular.

(b) Determine the set of singular points on the unit circle for

h(z) =

∞∑

n=0

(−1)n(2n + 1)zn.

(c) Suppose f : ∆ \ {0} → ∆ \ {0} is a holomorphic map where ∆ is the unit disk.
Prove that f extends to a holomorphic map f̃ : ∆ → ∆. If additionally f is biholomorphic,
prove that f̃(0) = 0.

(d) Suppose that g : C →֒ R is a holomorphic injection with R a compact Riemann
surface. Prove that R has genus 0, stating carefully any theorems you use.
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24F Riemann Surfaces
Define X ′ := {(x, y) ∈ C2 : x3y + y3 + x = 0}.
(a) Prove by defining an atlas that X ′ is a Riemann surface.

(b) Now assume that by adding finitely many points, it is possible to compactify X ′

to a Riemann surface X so that the coordinate projections extend to holomorphic maps
πx and πy from X to C∞. Compute the genus of X.

(c) Assume that any holomorphic automorphism of X ′ extends to a holomorphic
automorphism of X. Prove that the group Aut(X) of holomorphic automorphisms of X
contains an element φ of order 7. Prove further that there exists a holomorphic map
π : X → C∞ which satisfies π ◦ φ = π.
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5J Statistical Modelling
In a normal linear model with design matrix X ∈ Rn×p, output variables y ∈ Rn

and parameters β ∈ Rp and σ2 > 0, define a (1 − α)-level prediction interval for a new
observation with input variables x∗ ∈ Rp. Derive an explicit formula for the interval,
proving that it satisfies the properties required by the definition. [You may assume that
the maximum likelihood estimator β̂ is independent of σ−2‖y −Xβ̂‖22, which has a χ2

n−p
distribution.]

Paper 3, Section I

5J Statistical Modelling
(a) For a given model with likelihood L(β), β ∈ Rp, define the Fisher information

matrix in terms of the Hessian of the log-likelihood.

Consider a generalised linear model with design matrix X ∈ Rn×p, output variables
y ∈ Rn, a bijective link function, mean parameters µ = (µ1, . . . , µn) and dispersion
parameters σ21 = . . . = σ2n = σ2. Assume σ2 is known.

(b) State the form of the log-likelihood.

(c) For the canonical link, show that when the parameter σ2 is known, the Fisher
information matrix is equal to

σ−2XTWX,

for a diagonal matrix W depending on the means µ. Identify W .
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5J Statistical Modelling
The cycling data frame contains the results of a study on the effects of cycling to

work among 1,000 participants with asthma, a respiratory illness. Half of the participants,
chosen uniformly at random, received a monetary incentive to cycle to work, and the other
half did not. The variables in the data frame are:

• miles: the average number of miles cycled per week

• episodes: the number of asthma episodes experienced during the study

• incentive: whether or not a monetary incentive to cycle was given

• history: the number of asthma episodes in the year preceding the study

Consider the R code below and its abbreviated output.

> lm.1 = lm(episodes ~ miles + history, data=cycling)

> summary(lm.1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.66937 0.07965 8.404 < 2e-16 ***

miles -0.04917 0.01839 -2.674 0.00761 **

history 1.48954 0.04818 30.918 < 2e-16 ***

> lm.2 = lm(episodes ~ incentive + history, data=cycling)

> summary(lm.2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.09539 0.06960 1.371 0.171

incentiveYes 0.91387 0.06504 14.051 <2e-16 ***

history 1.46806 0.04346 33.782 <2e-16 ***

> lm.3 = lm(miles ~ incentive + history, data=cycling)

> summary(lm.3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.47050 0.11682 12.588 < 2e-16 ***

incentiveYes 1.73282 0.10917 15.872 < 2e-16 ***

history 0.47322 0.07294 6.487 1.37e-10 ***

(a) For each of the fitted models, briefly explain what can be inferred about
participants with similar histories.

(b) Based on this analysis and the experimental design, is it advisable for a
participant with asthma to cycle to work more often? Explain.
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5J Statistical Modelling
The Gamma distribution with shape parameter α > 0 and scale parameter λ > 0

has probability density function

f(y;α, λ) =
λα

Γ(α)
yα−1e−λy for y > 0.

Give the definition of an exponential dispersion family and show that the set of Gamma
distributions forms one such family. Find the cumulant generating function and derive
the mean and variance of the Gamma distribution as a function of α and λ.
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13J Statistical Modelling
A sociologist collects a dataset on friendships among m Cambridge graduates. Let

yi,j = 1 if persons i and j are friends 3 years after graduation, and yi,j = 0 otherwise. Let
zi be a categorical variable for person i’s college, taking values in the set {1, 2, . . . , C}.
Consider logistic regression models,

P(yi,j = 1) =
eθi,j

1 + eθi,j
, 1 6 i < j 6 m,

with parameters either

1. θi,j = βzi,zj ; or,

2. θi,j = βzi + βzj ; or,

3. θi,j = βzi + βzj + β0δzi,zj , where δzi,zj = 1 if zi = zj and 0 otherwise.

(a) Write the likelihood of the models.

(b) Show that the three models are nested and specify the order. Suggest a statistic
to compare models 1 and 3, give its definition and specify its asymptotic distribution under
the null hypothesis, citing any necessary theorems.

(c) Suppose persons i and j are in the same college k; consider the number of
friendships, Mi and Mj, that each of them has with people in college ℓ 6= k (ℓ and
k fixed). In each of the models above, compare the distribution of these two random
variables. Explain why this might lead to a poor quality of fit.

(d) Find a minimal sufficient statistic for model 3. [You may use the following
characterisation of a minimal sufficient statistic: let f(β; y) be the likelihood in this model,
where β = (βk)k=0,1,...,C and y = (yi,j)i,j=1,...,m; suppose T = t(y) is a statistic such that
f(β; y)/f(β; y′) is constant in β if and only if t(y) = t(y′); then, T is a minimal sufficient
statistic for β.]
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13J Statistical Modelling
The ice cream data frame contains the result of a blind tasting of 90 ice creams,

each of which is rated as poor, good, or excellent. It also contains the price of each ice
cream classified into three categories. Consider the R code below and its output.

> table(ice_cream)

score

price excellent good poor

high 12 8 10

low 7 9 14

medium 12 11 7

>

> ice_cream.counts = as.data.frame(xtabs(Freq ~ price + score-1, data=table(ice_cream)))

> glm.fit = glm(Freq ~ price + score,data=ice_cream.counts,family="poisson")

> summary(glm.fit)

Call:

glm(formula = Freq ~ price + score - 1, family = "poisson", data = ice_cream.counts)

Deviance Residuals:

1 2 3 4 5 6 7 8 9

0.5054 -1.1019 0.5054 -0.4475 -0.1098 0.5304 -0.1043 1.0816 -1.1019

Coefficients:

Estimate Std. Error z value Pr(>|z|)

pricehigh 2.335e+00 2.334e-01 10.01 <2e-16 ***

pricelow 2.335e+00 2.334e-01 10.01 <2e-16 ***

pricemedium 2.335e+00 2.334e-01 10.01 <2e-16 ***

scoregood -1.018e-01 2.607e-01 -0.39 0.696

scorepoor 3.892e-14 2.540e-01 0.00 1.000

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 257.2811 on 9 degrees of freedom

Residual deviance: 4.6135 on 4 degrees of freedom

AIC: 51.791

(a) Write down the generalised linear model fitted by the code above.

(b) Prove that the fitted values resulting from the maximum likelihood estimator of
the coefficients in this model are identical to those resulting from the maximum likelihood
estimator when fitting a Multinomial model which assumes the number of ice creams at
each price level is fixed.

(c) Using the output above, perform a goodness-of-fit test at the 1% level, specifying
the null hypothesis, the test statistic, its asymptotic null distribution, any assumptions of
the test and the decision from your test.
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(d) If we believe that better ice creams are more expensive, what could be a more
powerful test against the model fitted above and why?
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34D Statistical Physics
Give an outline of the Landau theory of phase transitions for a system with one real

order parameter φ. Describe the phase transitions that can be modelled by the Landau
potentials

(i) G =
1

4
φ4 +

1

2
εφ2,

(ii) G =
1

6
φ6 +

1

4
gφ4 +

1

2
εφ2,

where ε and g are control parameters that depend on the temperature and pressure.

In case (ii), find the curve of first-order phase transitions in the (g, ε) plane. Find
the region where it is possible for superheating to occur. Find also the region where it is
possible for supercooling to occur.

Paper 3, Section II

35D Statistical Physics
What is meant by the chemical potential µ of a thermodynamic system? Derive

the Gibbs distribution for a system at temperature T and chemical potential µ (and fixed
volume) with variable particle number N .

Consider a non-interacting, two-dimensional gas of N fermionic particles in a region
of fixed area, at temperature T and chemical potential µ. Using the Gibbs distribution,
find the mean occupation number nF (ε) of a one-particle quantum state of energy ε. Show
that the density of states g(ε) is independent of ε and deduce that the mean number of
particles between energies ε and ε+ dε is very well approximated for T ≪ εF by

N

εF

dε

e(ε−εF )/T + 1
,

where εF is the Fermi energy. Show that, for T small, the heat capacity of the gas has a
power-law dependence on T , and find the power.
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35D Statistical Physics
Using the classical statistical mechanics of a gas of molecules with negligible

interactions, derive the ideal gas law. Explain briefly to what extent this law is independent
of the molecule’s internal structure.

Calculate the entropy S of a monatomic gas of low density, with negligible interac-
tions. Deduce the equation relating the pressure P and volume V of the gas on a curve
in the PV -plane along which S is constant.

[You may use

∫ ∞

−∞
e−αx

2

dx =
(π
α

) 1

2

for α > 0 .]

Paper 1, Section II

35D Statistical Physics
(a) Explain, from a macroscopic and microscopic point of view, what is meant by

an adiabatic change. A system has access to heat baths at temperatures T1 and T2, with
T2 > T1. Show that the most effective method for repeatedly converting heat to work,
using this system, is by combining isothermal and adiabatic changes. Define the efficiency
and calculate it in terms of T1 and T2.

(b) A thermal system (of constant volume) undergoes a phase transition at temper-
ature Tc. The heat capacity of the system is measured to be

C =

{
αT for T < Tc

β for T > Tc,

where α, β are constants. A theoretical calculation of the entropy S for T > Tc leads to

S = β log T + γ.

How can the value of the theoretically-obtained constant γ be verified using macroscopi-
cally measurable quantities?
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29K Stochastic Financial Models
(a) Describe the (Cox-Ross-Rubinstein) binomial model. What are the necessary

and sufficient conditions on the model parameters for it to be arbitrage-free? How is the
equivalent martingale measure Q characterised in this case?

(b) Consider a discounted claim H of the form H = h(S1
0 , S

1
1 , . . . , S

1
T ) for some

function h. Show that the value process of H is of the form

Vt(ω) = vt
(
S1
0 , S

1
1(ω), . . . , S

1
t (ω)

)
,

for t ∈ {0, . . . , T}, where the function vt is given by

vt(x0, . . . , xt) = EQ

[
h
(
x0, . . . , xt, xt ·

S1
1

S1
0

, . . . , xt ·
S1
T−t
S1
0

)]
.

You may use any property of conditional expectations without proof.

(c) Suppose that H = h(S1
T ) only depends on the terminal value S1

T of the stock
price. Derive an explicit formula for the value of H at time t ∈ {0, . . . , T}.

(d) Suppose that H is of the form H = h(S1
T ,MT ), where Mt := maxs∈{0,...,t} S

1
s .

Show that the value process of H is of the form

Vt(ω) = vt
(
S1
t (ω),Mt(ω)

)
,

for t ∈ {0, . . . , T}, where the function vt is given by

vt(x,m) = EQ

[
g(x,m, S1

0 , S
1
T−t,MT−t)

]

for a function g to be determined.
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29K Stochastic Financial Models
In the Black–Scholes model the price π(C) at time 0 for a European option of the

form C = f(ST ) with maturity T > 0 is given by

π(C) = e−rT
∫ ∞

−∞
f
(
S0 exp

(
σ
√
Ty + (r − 1

2σ
2)T
)) 1√

2π
e−y

2/2 dy.

(a) Find the price at time 0 of a European call option with maturity T > 0 and
strike price K > 0 in terms of the standard normal distribution function. Derive the
put-call parity to find the price of the corresponding European put option.

(b) The digital call option with maturity T > 0 and strike price K > 0 has payoff
given by

CdigCall =

{
1 if ST > K,

0 otherwise.

What is the value of the option at any time t ∈ [0, T ]? Determine the number of units of
the risky asset that are held in the hedging strategy at time t.

(c) The digital put option with maturity T > 0 and strike price K > 0 has payoff

CdigPut =

{
1 if ST < K,

0 otherwise.

Find the put-call parity for digital options and deduce the Black–Scholes price at time 0
for a digital put.
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29K Stochastic Financial Models
(a) In the context of a multi-period model in discrete time, what does it mean to

say that a probability measure is an equivalent martingale measure?

(b) State the fundamental theorem of asset pricing.

(c) Consider a single-period model with one risky asset S1 having initial price S1
0 = 1.

At time 1 its value S1
1 is a random variable on (Ω,F ,P) of the form

S1
1 = exp

(
σZ +m

)
, m ∈ R, σ > 0,

where Z ∼ N (0, 1). Assume that there is a riskless numéraire S0 with S0
0 = S0

1 = 1. Show
that there is no arbitrage in this model.

[Hint: You may find it useful to consider a density of the form exp(σ̃Z + m̃) and
find suitable m̃ and σ̃. You may use without proof that if X is a normal random variable
then E(eX) = exp

(
E(X) + 1

2Var(X)
)
.]

(d) Now consider a multi-period model with one risky asset S1 having a non-random
initial price S1

0 = 1 and a price process (S1
t )t∈{0,...,T} of the form

S1
t =

t∏

i=1

exp
(
σiZi +mi

)
, mi ∈ R, σi > 0,

where Zi are i.i.d. N (0, 1)-distributed random variables on (Ω,F ,P). Assume that there
is a constant riskless numéraire S0 with S0

t = 1 for all t ∈ {0, . . . , T}. Show that there
exists no arbitrage in this model.
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Paper 1, Section II

30K Stochastic Financial Models
(a) What does it mean to say that (Mn,Fn)n>0 is a martingale?

(b) Let (Xn)n>0 be a Markov chain defined by X0 = 0 and

P
[
Xn = 1 |Xn−1 = 0

]
= P

[
Xn = −1 |Xn−1 = 0

]
=

1

2n
,

P
[
Xn = 0 |Xn−1 = 0

]
= 1− 1

n

and

P
[
Xn = nXn−1 |Xn−1 6= 0

]
=

1

n
, P

[
Xn = 0 |Xn−1 6= 0

]
= 1− 1

n

for n > 1. Show that (Xn)n>0 is a martingale with respect to the filtration (Fn)n>0 where
F0 is trivial and Fn = σ(X1, . . . ,Xn) for n > 1.

(c) Let M = (Mn)n>0 be adapted with respect to a filtration (Fn)n>0 with
E[|Mn|] <∞ for all n. Show that the following are equivalent:

(i) M is a martingale.

(ii) For every stopping time τ , the stopped process M τ defined by M τ
n := Mn∧τ ,

n > 0, is a martingale.

(iii) E[Mn∧τ ] = E[M0] for all n > 0 and every stopping time τ .

[Hint: To show that (iii) implies (i) you might find it useful to consider the stopping time

T (ω) :=

{
n if ω ∈ A,

n+ 1 if ω 6∈ A,

for any A ∈ Fn.]
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Paper 4, Section I

2H Topics in Analysis
Show that π is irrational. [Hint: consider the functions fn : [0, π] → R given by

fn(x) = xn(π − x)n sinx.]

Paper 3, Section I

2H Topics in Analysis
State Nash’s theorem for a non zero-sum game in the case of two players with two

choices.

The role playing game Tixerb involves two players. Before the game begins, each
player i chooses a pi with 0 6 pi 6 1 which they announce. They may change their choice
as many times as they wish, but, once the game begins, no further changes are allowed.
When the game starts, player i becomes a Dark Lord with probability pi and a harmless
peasant with probability 1− pi. If one player is a Dark Lord and the other a peasant the
Lord gets 2 points and the peasant −2. If both are peasants they get 1 point each, if both
Lords they get −U each. Show that there exists a U0, to be found, such that, if U > U0

there will be three choices of (p1, p2) for which neither player can increase the expected
value of their outcome by changing their choice unilaterally, but, if U0 > U , there will
only be one. Find the appropriate (p1, p2) in each case.
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2H Topics in Analysis
Let K be the collection of non-empty closed bounded subsets of Rn.

(a) Show that, if A, B ∈ K and we write

A+B = {a+ b : a ∈ A, b ∈ B},

then A+B ∈ K.

(b) Show that, if Kn ∈ K, and

K1 ⊇ K2 ⊇ K3 ⊇ . . .

then K :=
⋂∞
n=1Kn ∈ K.

(c) Assuming the result that

ρ(A,B) = sup
a∈A

inf
b∈B

|a− b|+ sup
b∈B

inf
a∈A

|a− b|

defines a metric on K (the Hausdorff metric), show that if Kn and K are as in part (b),
then ρ(Kn,K) → 0 as n→ ∞.

Paper 1, Section I

2H Topics in Analysis
Let Tn be the nth Chebychev polynomial. Suppose that γi > 0 for all i and that∑∞

i=1 γi converges. Explain why f =
∑∞

i=1 γiT3i is a well defined continuous function on
[−1, 1].

Show that, if we take Pn =
∑n

i=1 γiT3i , we can find points xk with

−1 6 x0 < x1 < . . . < x3n+1 6 1

such that f(xk)− Pn(xk) = (−1)k+1
∑∞

i=n+1 γi for each k = 0, 1, . . . , 3n+1.

Suppose that δn is a decreasing sequence of positive numbers and that δn → 0 as
n → ∞. Stating clearly any theorem that you use, show that there exists a continuous
function f with

sup
t∈[−1,1]

|f(t)− P (t)| > δn

for all polynomials P of degree at most n and all n > 1.
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Paper 2, Section II

11H Topics in Analysis
Throughout this question I denotes the closed interval [−1, 1].

(a) For n ∈ N, consider the 2n+1 points r/n ∈ I with r ∈ Z and −n 6 r 6 n. Show
that, if we colour them red or green in such a way that −1 and 1 are coloured differently,
there must be two neighbouring points of different colours.

(b) Deduce from part (a) that, if I = A ∪ B with A and B closed, −1 ∈ A and
1 ∈ B, then A ∩B 6= ∅.

(c) Deduce from part (b) that there does not exist a continuous function f : I → R

with f(t) ∈ {−1, 1} for all t ∈ I and f(−1) = −1, f(1) = 1.

(d) Deduce from part (c) that if f : I → I is continuous then there exists an x ∈ I
with f(x) = x.

(e) Deduce the conclusion of part (c) from the conclusion of part (d).

(f) Deduce the conclusion of part (b) from the conclusion of part (c).

(g) Suppose that we replace I wherever it occurs by the unit circle

C = {z ∈ C | |z| = 1}.

Which of the conclusions of parts (b), (c) and (d) remain true? Give reasons.

Paper 4, Section II

12H Topics in Analysis
(a) Suppose that K ⊂ C is a non-empty subset of the square {x+iy : x, y ∈ (−1, 1)}

and f is analytic in the larger square {x+ iy : x, y ∈ (−1− δ, 1+ δ)} for some δ > 0. Show
that f can be uniformly approximated on K by polynomials.

(b) Let K be a closed non-empty proper subset of C. Let Λ be the set of λ ∈ C \K
such that gλ(z) = (z − λ)−1 can be approximated uniformly on K by polynomials and let
Γ = C \ (K ∪ Λ). Show that Λ and Γ are open. Is it always true that Λ is non-empty? Is
it always true that, if K is bounded, then Γ is empty? Give reasons.

[No form of Runge’s theorem may be used without proof.]
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38A Waves
(a) Assuming a slowly-varying two-dimensional wave pattern of the form

ϕ(x, t) = A(x, t; ε) exp

[
i

ε
θ(x, t)

]
,

where 0 < ε≪ 1, and a local dispersion relation ω = Ω(k;x, t), derive the ray tracing
equations,

dxi
dt

=
∂Ω

∂ki
,

dω

dt
=
∂Ω

∂t
,

dki
dt

= − ∂Ω

∂xi
,

1

ε

dθ

dt
= −ω + kj

∂Ω

∂kj
,

for i, j = 1, 2, explaining carefully the meaning of the notation used.

(b) For a homogeneous, time-independent (but not necessarily isotropic) medium,
show that all rays are straight lines. When the waves have zero frequency, deduce that if
the point x lies on a ray emanating from the origin in the direction given by a unit vector
ĉg, then

θ(x) = θ(0) + ĉg · k |x| .

(c) Consider a stationary obstacle in a steadily moving homogeneous medium which
has the dispersion relation

Ω = α
(
k21 + k22

)1/4 − V k1 ,

where (V, 0) is the velocity of the medium and α > 0 is a constant. The obstacle generates
a steady wave system. Writing (k1, k2) = κ(cosφ, sinφ), with κ > 0, show that the wave
satisfies

κ =
α2

V 2 cos2 φ
, ĉg = (cosψ, sinψ) ,

where ψ is defined by

tanψ = − tan φ

1 + 2 tan2 φ

with 1
2π < ψ < 3

2π and −1
2π < φ < 1

2π. Deduce that the wave pattern occupies a wedge

of semi-angle tan−1
(
2−3/2

)
, extending in the negative x1-direction.
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Paper 2, Section II

38A Waves
The linearised equation of motion governing small disturbances in a homogeneous

elastic medium of density ρ is

ρ
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∇2u ,

where u(x, t) is the displacement, and λ and µ are the Lamé moduli.

(a) The medium occupies the region between a rigid plane boundary at y = 0 and
a free surface at y = h. Show that SH waves can propagate in the x-direction within this
region, and find the dispersion relation for such waves.

(b) For each mode, deduce the cutoff frequency, the phase velocity and the group
velocity. Plot the latter two velocities as a function of wavenumber.

(c) Verify that in an average sense (to be made precise), the wave energy flux is
equal to the wave energy density multiplied by the group velocity.

[You may assume that the elastic energy per unit volume is given by

Ep =
1
2λeiiejj + µeijeij .]

Paper 3, Section II

39A Waves
(a) Derive the wave equation for perturbation pressure for linearised sound waves

in a compressible gas.

(b) For a single plane wave show that the perturbation pressure and the velocity are
linearly proportional and find the constant of proportionality, i.e. the acoustic impedance.

(c) Gas occupies a tube lying parallel to the x-axis. In the regions x < 0 and x > L
the gas has uniform density ρ0 and sound speed c0. For 0 < x < L the temperature of the
gas has been adjusted so that it has uniform density ρ1 and sound speed c1. A harmonic
plane wave with frequency ω and unit amplitude is incident from x = −∞. If T is the (in
general complex) amplitude of the wave transmitted into x > L, show that

|T | =
(
cos2 k1L+ 1

4

(
λ+ λ−1

)2
sin2 k1L

)− 1

2

,

where λ = ρ1c1/ρ0c0 and k1 = ω/c1. Discuss both of the limits λ≪ 1 and λ≫ 1.

Part II, 2019 List of Questions



117

Paper 1, Section II

39A Waves
The equation of state relating pressure p to density ρ for a perfect gas is given by

p

p0
=

(
ρ

ρ0

)γ
,

where p0 and ρ0 are constants, and γ > 1 is the specific heat ratio.

(a) Starting from the equations for one-dimensional unsteady flow of a perfect gas
of uniform entropy, show that the Riemann invariants,

R± = u± 2

γ − 1
(c− c0)

are constant on characteristics C± given by

dx

dt
= u± c ,

where u(x, t) is the velocity of the gas, c(x, t) is the local speed of sound, and c0 is a
constant.

(b) Such an ideal gas initially occupies the region x > 0 to the right of a piston in
an infinitely long tube. The gas and the piston are initially at rest. At time t = 0 the
piston starts moving to the left with path given by

x = Xp(t) , with Xp(0) = 0 .

(i) Solve for u(x, t) and ρ(x, t) in the region x > Xp(t) under the assumptions that
− 2c0
γ−1 < Ẋp < 0 and that |Ẋp| is monotonically increasing, where dot indicates

a time derivative.

[It is sufficient to leave the solution in implicit form, i.e. for given x, t you
should not attempt to solve the C+ characteristic equation explicitly.]

(ii) Briefly outline the behaviour of u and ρ for times t > tc, where tc is the solution
to Ẋp(tc) = − 2c0

γ−1 .

(iii) Now suppose,

Xp(t) = − t1+α

1 + α
,

where α > 0. For 0 < α ≪ 1, find a leading-order approximation to the
solution of the C+ characteristic equation when x = c0t−at, 0 < a < 1

2(γ+1)
and t = O(1).

[Hint: You may find it useful to consider the structure of the characteristics
in the limiting case when α = 0.]
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