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SECTION I

1G Number Theory
What is a multiplicative function? Show that if f(n) is a multiplicative function,

then so is g(n) =
∑

d|n
f(d).

Define the Möbius function µ(n), and show that it is multiplicative. Deduce that

∑

d|n
µ(d) =

{

1 if n = 1

0 if n > 1

and that
f(n) =

∑

e|n
µ(e)g

(n

e

)

.

What is g(n) if f(n) = n? What is f(n) if g(n) = n?

2F Topics in Analysis
State a version of the Baire category theorem and use it to prove the following

result:

If f : C → C is analytic, but not a polynomial, then there exists a point z0 ∈ C

such that each coefficient of the Taylor series of f at z0 is non-zero.

3H Coding & Cryptography
Compute the rank and minimum distance of the cyclic code with generator polyno-

mial g(X) = X3+X2+1 and parity check polynomial h(X) = X4+X3+X2+1. Now let
α be a root of g(X) in the field with 8 elements. We receive the word r(X) = X2 +X +1
(mod X7 − 1). Verify that r(α) = α4, and hence decode r(X) using minimum-distance
decoding.

Part II, Paper 3



3

4G Automata and Formal Languages
(a) Define what it means for a context-free grammar (CFG) to be in Chomsky

normal form (CNF).

(b) Give an algorithm for converting a CFG G into a corresponding CFG GChom in
CNF satisfying L(GChom) = L(G)−{ǫ}. [You need only outline the steps, without proof.]

(c) Convert the following CFG G:

S → ASc | B , A→ a , B → b ,

into a grammar in CNF.

Part II, Paper 3 [TURN OVER
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5J Statistical Modelling
The data frame Cases.of.flu contains a list of cases of flu recorded in 3 London

hospitals during each month of 2017. Consider the following R code and its output.

> table(Cases.of.flu)

Hospital

Month A B C

April 10 40 27

August 9 34 19

December 24 129 81

February 49 134 74

January 45 138 78

July 5 47 35

June 11 36 22

March 20 82 41

May 5 43 23

November 17 82 62

October 6 26 19

September 6 40 21

> Cases.of.flu.table = as.data.frame(table(Cases.of.flu))

> head(Cases.of.flu.table)

Month Hospital Freq

1 April A 10

2 August A 9

3 December A 24

4 February A 49

5 January A 45

6 July A 5

> mod1 = glm(Freq ~., data=Cases.of.flu.table, family=poisson)

> mod1$dev

[1] 28.51836

> levels(Cases.of.flu$Month)

[1] "April" "August" "December" "February" "January" "July"

[7] "June" "March" "May" "November" "October" "September"

> levels(Cases.of.flu$Month) <- c("Q2","Q3","Q4","Q1","Q1","Q3",

+ "Q2","Q1","Q2","Q4","Q4","Q3")

> Cases.of.flu.table = as.data.frame(table(Cases.of.flu))

> mod2 = glm(Freq ~., data=Cases.of.flu.table, family=poisson)

> mod2$dev

[1] 17.9181

Describe a test for the null hypothesis of independence between the variables Month
and Hospital using the deviance statistic. State the assumptions of the test.

Perform the test at the 1% level for each of the two different models shown above.
You may use the table below showing 99th percentiles of the χ2

p distribution with a range of
degrees of freedom p. How would you explain the discrepancy between their conclusions?
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Degrees of freedom 99th percentile Degrees of freedom 99th percentile

1 6.63 21 38.93
2 9.21 22 40.29
3 11.34 23 41.64
4 13.28 24 42.98
5 15.09 25 44.31
6 16.81 26 45.64
7 18.48 27 46.96
8 20.09 28 48.28
9 21.67 29 49.59
10 23.21 30 50.89
11 24.72 31 52.19
12 26.22 32 53.49
13 27.69 33 54.78
14 29.14 34 56.06
15 30.58 35 57.34
16 32.00 36 58.62
17 33.41 37 59.89
18 34.81 38 61.16
19 36.19 39 62.43
20 37.57 40 63.69
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6C Mathematical Biology
Consider a nonlinear model for the axisymmetric dispersal of a population in two

spatial dimensions whose density, n(r, t), obeys

∂n

∂t
= D∇ · (n∇n) ,

where D is a positive constant, r is a radial polar coordinate, and t is time.

Show that

2π

∫ ∞

0
n(r, t)rdr = N

is constant. Interpret this condition.

Show that a similarity solution of the form

n(r, t) =

(
N

Dt

)1/2

f

(
r

(NDt)1/4

)

is valid for t > 0 provided that the scaling function f(x) satisfies

d

dx

(

xf
df

dx
+

1

4
x2f

)

= 0 .

Show that there exists a value x0 (which need not be evaluated) such that f(x) > 0 for
x < x0 but f(x) = 0 for x > x0. Determine the area within which n(r, t) > 0 at time t in
terms of x0.

[
Hint: The gradient and divergence operators in cylindrical polar coordinates act on

radial functions f and g as

∇f(r) =
∂f

∂r
r̂ , ∇ · [g(r)r̂] = 1

r

∂

∂r
(rg(r)).

]

7B Further Complex Methods
Using a suitable branch cut, show that

∫ a

−a
(a2 − x2)1/2dx =

a2π

2
,

where a > 0.

Part II, Paper 3
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8B Classical Dynamics
Three particles of unit mass move along a line in a potential

V =
1

2

(

(x1 − x2)
2 + (x1 − x3)

2 + (x3 − x2)
2 + x21 + x22 + x23

)

,

where xi is the coordinate of the i’th particle, i = 1, 2, 3.

Write the Lagrangian in the form

L =
1

2
Tij ẋiẋj −

1

2
Vijxixj,

and specify the matrices Tij and Vij .

Find the normal frequencies and normal modes for this system.
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9B Cosmology
The energy density of a particle species is defined by

ǫ =

∫ ∞

0
E(p)n(p)dp ,

where E(p) = c
√

p2 +m2c2 is the energy, and n(p) the distribution function, of a particle
with momentum p. Here c is the speed of light and m is the rest mass of the particle. If
the particle species is in thermal equilibrium then the distribution function takes the form

n(p) =
4π

h3
g

p2

exp((E(p) − µ)/kT )∓ 1
,

where g is the number of degrees of freedom of the particle, T is the temperature, h and
k are constants and − is for bosons and + is for fermions.

(a) Stating any assumptions you require, show that in the very early universe the
energy density of a given particle species i is

ǫi =
4πgi
(hc)3

(kT )4
∫ ∞

0

y3

ey ∓ 1
dy .

(b) Show that the total energy density in the very early universe is

ǫ =
4π5

15(hc)3
g∗ (kT )4 ,

where g∗ is defined by

g∗ ≡
∑

Bosons

gi +
7

8

∑

Fermions

gi.

[Hint: You may use the fact that
∫∞
0 y3(ey − 1)−1dy = π4/15.]
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10D Quantum Information and Computation
Let Bn denote the set of all n-bit strings. For any Boolean function on 2 bits

f : B2 → B1 consider the linear operation on 3 qubits defined by

Uf |x〉 | y〉 = |x〉 | y ⊕ f(x)〉

for all x ∈ B2, y ∈ B1 and ⊕ denoting addition of bits modulo 2. Here the first register
is a 2-qubit register and the second is a 1-qubit register. We are able to apply only the
1-qubit Pauli X and Hadamard H gates to any desired qubits, as well as the 3-qubit gate
Uf to any three qubits. We can also perform measurements in the computational basis.

(a) Describe how we can construct the state

| f〉 = 1

2

∑

x∈B2

(−1)f(x) |x〉

starting from the standard 3-qubit state | 0〉 | 0〉 | 0〉.
(b) Suppose now that the gate Uf is given to us but f is not specified. However f

is promised to be one of two following cases:

(i) f is a constant function (i.e. f(x) = 0 for all x, or f(x) = 1 for all x),

(ii) for any 2-bit string x = b1b2 we have f(b1b2) = b1 ⊕ b2 (with ⊕ as above).

Show how we may determine with certainty which of the two cases (i) or (ii) applies, using
only a single application of Uf .
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SECTION II

11G Number Theory
What does it mean to say that a positive definite binary quadratic form is reduced?

What does it mean to say that two binary quadratic forms are equivalent? Show that
every positive definite binary quadratic form is equivalent to some reduced form.

Show that the reduced positive definite binary quadratic forms of discriminant −35
are f1 = x2+xy+9y2 and f2 = 3x2+xy+3y2. Show also that a prime p > 7 is represented
by fi if and only if

(p

5

)

=
(p

7

)

=

{

+1 (i = 1)

−1 (i = 2).

12G Automata and Formal Languages
(a) State and prove the pumping lemma for regular languages.

(b) Let D be a minimal deterministic finite-state automaton whose language L(D)
is finite. Let ΓD be the transition diagram of D, and suppose there exists a non-empty
closed path γ in ΓD starting and ending at state p.

(i) Show that there is no path in ΓD from p to any accept state of D.

(ii) Show that there is no path in ΓD from p to any other state of D.

Part II, Paper 3



11

13C Mathematical Biology
Consider fluctuations of a population described by the vector x = (x1, x2, . . . , xN ).

The probability of the state x at time t, P (x, t), obeys the multivariate Fokker–Planck
equation

∂P

∂t
= − ∂

∂xi

(
Ai(x)P

)
+

1

2

∂2

∂xi∂xj

(
Bij(x)P

)
,

where P = P (x, t), Ai is a drift vector and Bij is a symmetric positive-definite diffusion
matrix, and the summation convention is used throughout.

(a) Show that the Fokker–Planck equation can be expressed as a continuity equation

∂P

∂t
+∇ · J = 0,

for some choice of probability flux J which you should determine explicitly. Here,
∇ = ( ∂

∂x1
, ∂
∂x2

, . . . , ∂
∂xN

) denotes the gradient operator.

(b) Show that the above implies that an initially normalised probability distribution
remains normalised, ∫

P (x, t)dV = 1,

at all times, where the volume element dV = dx1dx2 . . . dxN .

(c) Show that the first two moments of the probability distribution obey

d

dt
〈xk〉 = 〈Ak〉

d

dt
〈xkxl〉 = 〈xlAk + xkAl +Bkl〉.

(d) Now consider small fluctuations with zero mean, and assume that it is possible to
linearise the drift vector and the diffusion matrix as Ai(x) = aijxj and Bij(x) = bij where
aij has real negative eigenvalues and bij is a symmetric positive-definite matrix. Express
the probability flux in terms of the matrices aij and bij and assume that it vanishes in the
stationary state.

(e) Hence show that the multivariate normal distribution,

P (x) =
1

Z
exp(−1

2
Dijxixj),

where Z is a normalisation and Dij is symmetric, is a solution of the linearised Fokker–
Planck equation in the stationary state, and obtain an equation that relates Dij to the
matrices aij and bij .

(f) Show that the inverse of the matrix Dij is the matrix of covariances Cij = 〈xixj〉
and obtain an equation relating Cij to the matrices aij and bij .
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14B Cosmology
The pressure support equation for stars is

1

r2
d

dr

[
r2

ρ

dP

dr

]

= −4πGρ ,

where ρ is the density, P is the pressure, r is the radial distance, and G is Newton’s
constant.

(a) What two boundary conditions should we impose on the above equation for it
to describe a star?

(b) By assuming a polytropic equation of state,

P (r) = Kρ1+
1

n (r) ,

where K is a constant, derive the Lane–Emden equation

1

ξ2
d

dξ

[

ξ2
dθ

dξ

]

= −θn,

where ρ = ρcθ
n, with ρc the density at the centre of the star, and r = aξ, for some a that

you should determine.

(c) Show that the mass of a polytropic star is

M =
1

2
√
π

(
(n+ 1)K

G

) 3

2

ρ
3−n
2n

c Yn,

where Yn ≡ − ξ21
dθ
dξ

∣
∣
∣
ξ=ξ1

and ξ1 is the value of ξ at the surface of the star.

(d) Derive the following relation between the mass,M , and radius, R, of a polytropic
star

M = AnK
n

n−1R
3−n
1−n ,

where you should determine the constant An. What type of star does the n = 3 polytrope
represent and what is the significance of the mass being constant for this star?
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15D Quantum Information and Computation
In this question you may assume the following fact about the quantum Fourier

transform QFT mod N : if N = Ar and 0 6 x0 < r, where A, r, x0 ∈ Z, then

QFT
1√
A

A−1∑

k=0

|x0 + kr〉 = 1√
r

r−1∑

l=0

ωx0lA | lA〉

where ω = e2πi/N .

(a) Let ZN denote the integers modulo N . Let f : ZN → Z be a periodic function
with period r and with the property that f is one-to-one within each period. We have one
instance of the quantum state

| f〉 = 1√
N

N−1∑

x=0

|x〉 | f(x)〉

and the ability to calculate the function f on at most two x values of our choice.

Describe a procedure that may be used to determine the period r with success
probability O(1/ log logN). As a further requirement, at the end of the procedure we
should know if it has been successful, or not, in outputting the correct period value.
[You may assume that the number of integers less than N that are coprime to N is
O(N/ log logN)].

(b) Consider the function f : Z12 → Z10 defined by f(x) = 3x mod 10.

(i) Show that f is periodic and find the period.

(ii) Suppose we are given the state | f〉 = 1√
12

∑11
x=0 | x〉 | f(x)〉 and we measure

the second register. What are the possible resulting measurement values y
and their probabilities?

(iii) Suppose the measurement result was y = 3. Find the resulting state |α〉
of the first register after the measurement.

(iv) Suppose we measure the state QFT |α〉 (with |α〉 from part (iii)). What
is the probability of each outcome 0 6 c 6 11?
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16G Logic and Set Theory
State and prove the Compactness Theorem for first-order predicate logic. State and

prove the Upward Löwenheim–Skolem Theorem.

[You may assume the Completeness Theorem for first-order predicate logic.]

For each of the following theories, either give axioms (in the specified language) for
the theory or prove that the theory is not axiomatisable.

(i) The theory of finite groups (in the language of groups).

(ii) The theory of groups in which every non-identity element has infinite order (in
the language of groups).

(iii) The theory of total orders (in the language of posets).

(iv) The theory of well-orderings (in the language of posets).

If a theory is axiomatisable by a set S of sentences, and also by a finite set T
of sentences, does it follow that the theory is axiomatisable by some finite subset of S?
Justify your answer.

17I Graph Theory
What does it mean to say that a graph G has a k-colouring? What are the chromatic

number χ(G) and the independence number α(G) of a graph G? For each r > 3, give an
example of a graph G such that χ(G) > r but Kr 6⊂ G.

Let g, k > 3. Show that there exists a graph G containing no cycle of length 6 g
with χ(G) > k.

Show also that if n is sufficiently large then there is a triangle-free G of order n with
α(G) < n0.7.

Part II, Paper 3
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18I Galois Theory
Let L be a finite field extension of a field K, and let G be a finite group of K-

automorphisms of L. Denote by LG the field of elements of L fixed by the action of G.

(a) Prove that the degree of L over LG is equal to the order of the group G.

(b) For any α ∈ L write f(t, α) = Πg∈G(t− g(α)).

(i) Suppose that L = K(α). Prove that the coefficients of f(t, α) generate LG

over K.

(ii) Suppose that L = K(α1, α2). Prove that the coefficients of f(t, α1) and

f(t, α2) lie in LG. By considering the case L = K(a
1/2
1 , a

1/2
2 ) with a1 and

a2 in K, or otherwise, show that they need not generate LG over K.

19I Representation Theory
State the row orthogonality relations. Prove that if χ is an irreducible character of

the finite group G, then χ(1) divides the order of G.

Stating clearly any additional results you use, deduce the following statements:

(i) Groups of order p2, where p is prime, are abelian.

(ii) If G is a group of order 2p, where p is prime, then either the degrees of the
irreducible characters of G are all 1, or they are

1, 1, 2, . . . , 2 (with (p− 1)/2 of degree 2).

(iii) No simple group has an irreducible character of degree 2.

(iv) Let p and q be prime numbers with p > q, and let G be a non-abelian group of
order pq. Then q divides p− 1 and G has q + ((p − 1)/q) conjugacy classes.
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20H Algebraic Topology
(a) State a version of the Seifert–van Kampen theorem for a cell complex X written

as the union of two subcomplexes Y,Z.

(b) Let
Xn = S1 ∨ . . . ∨ S1

︸ ︷︷ ︸

n

∨RP 2

for n > 1, and take any x0 ∈ Xn. Write down a presentation for π1(Xn, x0).

(c) By computing a homology group of a suitable four-sheeted covering space of
Xn, prove that Xn is not homotopy equivalent to a compact, connected surface whenever
n > 1.

21F Linear Analysis
(a) Let X be a normed vector space and let Y be a Banach space. Show that the

space of bounded linear operators B(X,Y ) is a Banach space.

(b) Let X and Y be Banach spaces, and let D ⊂ X be a dense linear subspace.
Prove that a bounded linear map T : D → Y can be extended uniquely to a bounded
linear map T : X → Y with the same operator norm. Is the claim also true if one of X
and Y is not complete?

(c) Let X be a normed vector space. Let (xn) be a sequence in X such that

∞∑

n=1

|f(xn)| <∞ ∀f ∈ X∗.

Prove that there is a constant C such that

∞∑

n=1

|f(xn)| 6 C‖f‖ ∀f ∈ X∗.

Part II, Paper 3
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22F Analysis of Functions
(a) Let (X,A, µ) be a measure space. Define the spaces Lp(X) for p ∈ [1,∞]. Prove

that if µ(X) <∞ then Lq(X) ⊂ Lp(X) for all 1 6 p < q 6 ∞.

(b) Now let X = Rn endowed with Borel sets and Lebesgue measure. Describe the
dual spaces of Lp(X) for p ∈ [1,∞). Define reflexivity and say which Lp(X) are reflexive.
Prove that L1(X) is not the dual space of L∞(X).

(c) Now let X ⊂ Rn be a Borel subset and consider the measure space (X,A, µ)
induced from Borel sets and Lebesgue measure on Rn.

(i) Given any p ∈ [1,∞], prove that any sequence (fn) in Lp(X) converging
in Lp(X) to some f ∈ Lp(X) admits a subsequence converging almost
everywhere to f .

(ii) Prove that if Lq(X) ⊂ Lp(X) for 1 6 p < q 6 ∞ then µ(X) < ∞. [Hint:
You might want to prove first that the inclusion is continuous with the help
of one of the corollaries of Baire’s category theorem.]

23F Riemann Surfaces
Define the degree of an analytic map of compact Riemann surfaces, and state the

Riemann–Hurwitz formula.

Let Λ be a lattice in C and E = C/Λ the associated complex torus. Show that the
map

ψ : z + Λ 7→ −z + Λ

is biholomorphic with four fixed points in E.

Let S = E/ ∼ be the quotient surface (the topological surface obtained by identi-
fying z + Λ and ψ(z + Λ) ), and let p : E → S be the associated projection map. Denote
by E′ the complement of the four fixed points of ψ, and let S′ = p(E′). Describe briefly a
family of charts making S′ into a Riemann surface, so that p : E′ → S′ is a holomorphic
map.

Now assume that, by adding finitely many points, it is possible to compactify S′ to
a Riemann surface S so that p extends to a regular map E → S. Find the genus of S.
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24I Algebraic Geometry
(a) State the Riemann–Roch theorem.

(b) Let E be a smooth projective curve of genus 1 over an algebraically closed field
k, with char k 6= 2, 3. Show that there exists an isomorphism from E to the plane cubic
in P2 defined by the equation

y2 = (x− λ1)(x− λ2)(x− λ3),

for some distinct λ1, λ2, λ3 ∈ k.

(c) LetQ be the point at infinity on E. Show that the map E → Cl0(E), P 7→ [P−Q]
is an isomorphism.

Describe how this defines a group structure on E. Denote addition by ⊞. Determine
all the points P ∈ E with P⊞P = Q in terms of the equation of the plane curve in part (b).

25I Differential Geometry
Let S ⊂ R3 be a surface.

(a) Define the Gaussian curvature K of S in terms of the coefficients of the first
and second fundamental forms, computed with respect to a local parametrization φ(u, v)
of S.

Prove the Theorema Egregium, i.e. show that the Gaussian curvature can be
expressed entirely in terms of the coefficients of the first fundamental form and their
first and second derivatives with respect to u and v.

(b) State the global Gauss–Bonnet theorem for a compact orientable surface S.

(c) Now assume that S is non-compact and diffeomorphic to S2 \{(1, 0, 0)} but that
there is a point p ∈ R3 such that S ∪ {p} is a compact subset of R3. Is it necessarily the
case that

∫

SKdA = 4/π? Justify your answer.
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26J Probability and Measure
Let m be the Lebesgue measure on the real line. Recall that if E ⊆ R is a Borel

subset, then

m(E) = inf

{
∑

n>1

|In|, E ⊆
⋃

n>1

In

}

,

where the infimum is taken over all covers of E by countably many intervals, and |I|
denotes the length of an interval I.

(a) State the definition of a Borel subset of R.

(b) State a definition of a Lebesgue measurable subset of R.

(c) Explain why the following sets are Borel and compute their Lebesgue measure:

Q, R \Q,
⋂

n>2

[ 1

n
, n

]

.

(d) State the definition of a Borel measurable function f : R → R.

(e) Let f be a Borel measurable function f : R → R. Is it true that the subset of
all x ∈ R where f is continuous at x is a Borel subset? Justify your answer.

(f) Let E ⊆ [0, 1] be a Borel subset with m(E) = 1/2 + α, α > 0. Show that

E − E := {x− y : x, y ∈ E}

contains the interval (−2α, 2α).

(g) Let E ⊆ R be a Borel subset such that m(E) > 0. Show that for every ε > 0,
there exists a < b in R such that

m(E ∩ (a, b)) > (1− ε)m((a, b)).

Deduce that E−E contains an open interval around 0.
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27J Applied Probability
Individuals arrive in a shop in the manner of a Poisson process with intensity λ,

and they await service in the order of their arrival. Their service times are independent,
identically distributed random variables S1, S2, . . . . For n > 1, let Qn be the number
remaining in the shop immediately after the nth departure. Show that

Qn+1 = An +Qn − h(Qn),

where An is the number of arrivals during the (n + 1)th service period, and h(x) =
min{1, x}.

Show that
E(An) = ρ, E(A2

n) = ρ+ λ2E(S2),

where S is a typical service period, and ρ = λE(S) is the traffic intensity of the queue.

Suppose ρ < 1, and the queue is in equilibrium in the sense that Qn and Qn+1 have
the same distribution for all n. Express E(Qn) in terms of λ, E(S), E(S2). Deduce that
the mean waiting time (prior to service) of a typical individual is 1

2λE(S
2)/(1− ρ).

28K Principles of Statistics
In the model {N (θ, Ip), θ ∈ Rp} of a Gaussian distribution in dimension p, with

unknown mean θ and known identity covariance matrix Ip, we estimate θ based on a
sample of i.i.d. observations X1, . . . ,Xn drawn from N (θ0, Ip).

(a) Define the Fisher information I(θ0), and compute it in this model.

(b) We recall that the observed Fisher information in(θ) is given by

in(θ) =
1

n

n∑

i=1

∇θ log f(Xi, θ)∇θ log f(Xi, θ)
⊤ .

Find the limit of în = in(θ̂MLE), where θ̂MLE is the maximum likelihood estimator of θ
in this model.

(c) Define the Wald statistic Wn(θ) and compute it. Give the limiting distribution
of Wn(θ0) and explain how it can be used to design a confidence interval for θ0.

[You may use results from the course provided that you state them clearly.]
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29K Stochastic Financial Models
Consider a multi-period model with asset prices S̄t = (S0

t , . . . , S
d
t ), t ∈ {0, . . . , T},

modelled on a probability space (Ω,F ,P) and adapted to a filtration (Ft)t∈{0,...,T}. Assume
that F0 is P-trivial, i.e. P[A] ∈ {0, 1} for all A ∈ F0, and assume that S0 is a P-a.s. strictly
positive numéraire, i.e. S0

t > 0 P-a.s. for all t ∈ {0, . . . , T}. Further, let Xt = (X1
t , . . . ,X

d
t )

denote the discounted price process defined by Xi
t := Si

t/S
0
t , t ∈ {0, . . . , T}, i ∈ {1, . . . , d}.

(a) What does it mean to say that a self-financing strategy θ̄ is an arbitrage?

(b) State the fundamental theorem of asset pricing.

(c) Let Q be a probability measure on (Ω,F) which is equivalent to P and for which
EQ[|Xt|] <∞ for all t. Show that the following are equivalent:

(i) Q is a martingale measure.

(ii) If θ̄ = (θ0, θ) is self-financing and θ is bounded, i.e. maxt=1,...,T |θt| 6 c <∞
for a suitable c > 0, then the value process V of θ̄ is a Q-martingale.

(iii) If θ̄ = (θ0, θ) is self-financing and θ is bounded, then the value process V
of θ̄ satisfies

EQ[VT ] = V0.

[Hint: To show that (iii) implies (i) you might find it useful to consider self-financing
strategies θ̄ = (θ0, θ) with θ of the form

θs :=

{

1A if s = t,

0 otherwise,

for any A ∈ Ft−1 and any t ∈ {1, . . . , T}.]
(d) Prove that if there exists a martingale measure Q satisfying the conditions in (c)

then there is no arbitrage.
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30K Optimisation and Control
The scalars xt, yt, ut are related by the equations

xt = xt−1 + ut−1, yt = xt−1 + ηt−1, t = 1, 2, . . . , T,

where the initial state x0 is normally distributed with mean x̂0 and variance 1 and {ηt} is
a sequence of independent random variables each normally distributed with mean 0 and
variance 1. The control variable ut is to be chosen at time t on the basis of information
Wt, where W0 = (x̂0) and

Wt = (x̂0, u0, . . . , ut−1, y1, . . . , yt), t = 1, 2, . . . , T.

(a) Let x̂1, x̂2, . . . , x̂T be the Kalman filter estimates of x1, x2, . . . , xT , i.e.

x̂t = x̂t−1 + ut−1 + ht(yt − x̂t−1)

where ht is chosen to minimise E((x̂t−xt)2 | Wt). Calculate ht and show that, conditional
on Wt, xt is normally distributed with mean x̂t and variance Vt = 1/(1 + t).

(b) Define

F (WT ) = E
(
x2T | WT

)
, and

F (Wt) = inf
ut,...,uT−1

E



x2T +

T−1∑

j=t

u2j

∣
∣
∣Wt



 , t = 0, . . . , T − 1.

Show that F (Wt) = x̂2tPt + dt, where Pt = 1/(T − t + 1), dT = 1/(1 + T ) and
dt−1 = Vt−1VtPt + dt.

(c) Show that the minimising control ut can be expressed in the form ut = −Ktx̂t
and find Kt. How would the expression for Kt be altered if x0 or {ηt} had variances other
than 1?
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31B Asymptotic Methods
(a) Find the curves of steepest descent emanating from t = 0 for the integral

Jx(x) =
1

2πi

∫

C
ex(sinh t−t) dt ,

for x > 0 and determine the angles at which they meet at t = 0, and their asymptotes at
infinity.

(b) An integral representation for the Bessel function Kν(x) for real x > 0 is

Kν(x) =
1

2

∫ +∞

−∞
eνh(t) dt , h(t) = t −

(
x

ν

)

cosh t .

Show that, as ν → +∞ , with x fixed,

Kν(x) ∼
(
π

2ν

) 1

2

(
2ν

ex

)ν

.

32E Dynamical Systems
Consider the system

ẋ = y , ẏ = µ1x+ µ2y − (x+ y)3 ,

where µ1 and µ2 are parameters.

By considering a function of the form V (x, y) = f(x + y) + 1
2y

2, show that when
µ1 = µ2 = 0 the origin is globally asymptotically stable. Sketch the phase plane for this
case.

Find the fixed points for the general case. Find the values of µ1 and µ2 for which
the fixed points have (i) a stationary bifurcation and (ii) oscillatory (Hopf) bifurcations.
Sketch these bifurcation values in the (µ1, µ2)-plane.

For the case µ2 = −1, find the leading-order approximation to the extended centre
manifold of the bifurcation as µ1 varies, assuming that µ1 = O(x2). Find also the evolution
equation on the extended centre manifold to leading order. Deduce the type of bifurcation,
and sketch the bifurcation diagram in the (µ1, x)-plane.
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33A Integrable Systems
Suppose ψs : (x, u) 7→ (x̃, ũ) is a smooth one-parameter group of transformations

acting on R2.

(a) Define the generator of the transformation,

V = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
,

where you should specify ξ and η in terms of ψs.

(b) Define the nth prolongation of V , Pr(n) V and explicitly compute Pr(1) V in
terms of ξ, η.

Recall that if ψs is a Lie point symmetry of the ordinary differential equation:

∆

(

x, u,
du

dx
, . . . ,

dnu

dxn

)

= 0,

then it follows that Pr(n) V [∆] = 0 whenever ∆ = 0.

(c) Consider the ordinary differential equation:

du

dx
= F (x, u) ,

for F a smooth function. Show that if V generates a Lie point symmetry of this equation,
then:

0 = ηx + (ηu − ξx − Fξu)F − ξFx − ηFu.

(d) Find all the Lie point symmetries of the equation:

du

dx
= xG

( u

x2

)

,

where G is an arbitrary smooth function.
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34D Principles of Quantum Mechanics
A quantum system is prepared in the ground state |0〉 at time t = 0. It is subjected

to a time-varying Hamiltonian H = H0 + ∆(t). Show that, to first order in ∆(t), the
system evolves as

|ψ(t)〉 =
∑

k

ck(t) e
−iEkt/~|k〉 ,

where H0|k〉 = Ek|k〉 and

ck(t) =
1

i~

∫ t

0
〈k|∆(t′)|0〉 ei(Ek−E0)t′/~ dt′ .

A large number of hydrogen atoms, each in the ground state, are subjected to an
electric field

E(t) =

{

0 for t < 0

ẑ E0 exp(−t/τ) for t > 0 ,

where E0 is a constant. Show that the fraction of atoms found in the state |n, ℓ,m〉 =
|2, 1, 0〉 is, after a long time and to lowest non-trivial order in E0,

215

310
a20e

2E2
0

~2(ω2 + 1/τ2)
,

where ~ω is the energy difference between the |2, 1, 0〉 and |1, 0, 0〉 states, and e is the
electron charge and a0 the Bohr radius. What fraction of atoms lie in the |2, 0, 0〉 state?

[Hint: You may assume the hydrogenic wavefunctions

〈r|1, 0, 0〉 = 2√
4π

1

a
3/2
0

exp

(

− r

a0

)

and 〈r|2, 1, 0〉 = 1√
4π

1

(2a0)3/2
r

a0
cos θ exp

(

− r

2a0

)

and the integral ∫ ∞

0
rme−αr dr =

m!

αm+1

for m a positive integer.]
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35A Applications of Quantum Mechanics
A beam of particles of mass m and momentum p = ~k is incident along the z-axis.

The beam scatters off a spherically symmetric potential V (r). Write down the asymptotic
form of the wavefunction in terms of the scattering amplitude f(θ).

The incoming plane wave and the scattering amplitude can be expanded in partial
waves as,

eikr cos θ ∼ 1

2ikr

∞∑

l=0

(2l + 1)
(

eikr − (−1)le−ikr
)

Pl(cos θ)

f(θ) =
∞∑

l=0

2l + 1

k
fl Pl(cos θ)

where Pl are Legendre polynomials. Define the S-matrix. Assuming that the S-matrix is
unitary, explain why we can write

fl = eiδl sin δl

for some real phase shifts δl. Obtain an expression for the total cross-section σT in terms
of the phase shifts δl.

[Hint: You may use the orthogonality of Legendre polynomials:

∫ +1

−1
dw Pl(w)Pl′(w) =

2

2l + 1
δll′ . ]

Consider the repulsive, spherical potential

V (r) =

{
+V0 r < a
0 r > a

where V0 = ~2γ2/2m. By considering the s-wave solution to the Schrödinger equation,
show that

tan(ka+ δ0)

ka
=

tanh(
√

γ2 − k2a)
√

γ2 − k2a
.

For low momenta, ka ≪ 1, compute the s-wave contribution to the total cross-section.
Comment on the physical interpretation of your result in the limit γa→ ∞.
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36A Statistical Physics
(a) A system of non-interacting bosons has single particle states |i〉 with energies

ǫi > 0. Show that the grand canonical partition function is

logZ = −
∑

i

log
(

1− e−β(ǫi−µ)
)

where β = 1/(kT ), k is Boltzmann’s constant, and µ is the chemical potential. What is
the maximum possible value for µ?

(b) A system of N ≫ 1 bosons has one energy level with zero energy and M ≫ 1
energy levels with energy ǫ > 0. The number of particles with energies 0, ǫ is N0, Nǫ

respectively.

(i) Write down expressions for 〈N0〉 and 〈Nǫ〉 in terms of µ and β.

(ii) At temperature T what is the maximum possible number Nmax
ǫ of bosons

in the state with energy ǫ? What happens for N > Nmax
ǫ ?

(iii) Calculate the temperature TB at which Bose condensation occurs.

(iv) For T > TB , show that µ = ǫ(TB − T )/TB . For T < TB show that

µ ≈ −kT
N

eǫ/(kT ) − 1

eǫ/(kT ) − eǫ/(kTB)
.

(v) Calculate the mean energy 〈E〉 for T > TB and for T < TB . Hence show
that the heat capacity of the system is

C ≈
{

1
kT 2

Mǫ2

(eβǫ−1)2
T < TB

0 T > TB
.
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37D Electrodynamics
Starting from the covariant form of the Maxwell equations and making a suitable

choice of gauge which you should specify, show that the 4-vector potential due to an
arbitrary 4-current Jµ(x) obeys the wave equation,

(

∇2 − 1

c2
∂2

∂t2

)

Aµ = −µ0Jµ,

where xµ = (ct,x).

Use the method of Green’s functions to show that, for a localised current distribu-
tion, this equation is solved by

Aµ(t,x) =
µ0
4π

∫

d3x′
Jµ(tret,x

′)
|x− x′| ,

for some tret that you should specify.

A point particle, of charge q, moving along a worldline yµ(τ) parameterised by
proper time τ , produces a 4-vector potential

Aµ(x) =
µ0qc

4π

ẏµ(τ⋆)

|Rν(τ⋆)ẏν(τ⋆)|

where Rµ(τ) = xµ − yµ(τ). Define τ⋆(x) and draw a spacetime diagram to illustrate its
physical significance.

Suppose the particle follows a circular trajectory,

y(t) = (R cos(ω t), R sin(ω t), 0)

(with y0 = ct), in some inertial frame with coordinates (ct, x, y, z). Evaluate the resulting
4-vector potential at a point on the z-axis as a function of z and t.
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38E General Relativity
The Schwarzschild metric in isotropic coordinates x̄ᾱ = (t̄, x̄, ȳ, z̄), ᾱ = 0, . . . , 3, is

given by:

ds2 = ḡᾱβ̄dx̄
ᾱdx̄β̄ = −(1−A)2

(1 +A)2
dt̄2 + (1 +A)4(dx̄2 + dȳ2 + dz̄2)

where
A =

m

2r̄
, r̄ =

√

x̄2 + ȳ2 + z̄2 ,

and m is the mass of the black hole.

(a) Let xµ = (t, x, y, z), µ = 0, . . . , 3, denote a coordinate system related to x̄ᾱ by

t̄ = γ(t− vx), x̄ = γ(x− vt), ȳ = y, z̄ = z ,

where γ = 1/
√
1− v2 and −1 < v < 1. Write down the transformation matrix ∂x̄ᾱ/∂xµ,

briefly explain its physical meaning and show that the inverse transformation is of the
same form, but with v → −v.

(b) Using the coordinate transformation matrix of part (a), or otherwise, show that
the components gµν of the metric in coordinates xµ are given by

ds2 = gµνdx
µdxν = f(A)(−dt2 + dx2 + dy2 + dz2) + γ2g(A)(dt − v dx)2 ,

where f and g are functions of A that you should determine. You should also express A
in terms of the coordinates (t, x, y, z).

(c) Consider the limit v → 1 with p = mγ held constant. Show that for points x 6= t
the function A→ 0, while γ2A tends to a finite value, which you should determine. Hence
determine the metric components gµν at points x 6= t in this limit.
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39C Fluid Dynamics II
For two Stokes flows u(1)(x) and u(2)(x) inside the same volume V with different

boundary conditions on its boundary S, prove the reciprocal theorem

∫

S
u
(1)
i σ

(2)
ij njdS =

∫

S
u
(2)
i σ

(1)
ij njdS,

where σ(1) and σ(2) are the stress tensors associated with the flows.

Stating clearly any properties of Stokes flow that you require, use the reciprocal
theorem to prove that the drag F on a body translating with uniform velocity U is given
by

Fi = AijUj ,

where A is a symmetric second-rank tensor that depends only on the geometry of the
body.

A slender rod falls slowly through very viscous fluid with its axis inclined to the
vertical. Explain why the rod does not rotate, stating any properties of Stokes flow that
you use.

When the axis of the rod is inclined at an angle θ to the vertical, the centre of mass
of the rod travels at an angle φ to the vertical. Given that the rod falls twice as quickly
when its axis is vertical as when its axis is horizontal, show that

tan φ =
sin θ cos θ

1 + cos2 θ
.
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40C Waves
Derive the ray-tracing equations

dxi
dt

=
∂Ω

∂ki
,

dki
dt

= − ∂Ω

∂xi
,

dω

dt
=
∂Ω

∂t
,

for wave propagation through a slowly-varying medium with local dispersion relation
ω = Ω(k;x, t), where ω and k are the frequency and wavevector respectively, t is time and
x = (x, y, z) are spatial coordinates. The meaning of the notation d/dt should be carefully
explained.

A slowly-varying medium has a dispersion relation Ω(k;x, t) = kc(z), where k = |k|.
State and prove Snell’s law relating the angle ψ between a ray and the z-axis to c.

Consider the case of a medium with wavespeed c = c0(1 + β2z2), where β and c0
are positive constants. Show that a ray that passes through the origin with wavevector
k(cosφ, 0, sin φ), remains in the region

|z| 6 zm ≡ 1

β

[
1

| cosφ| − 1

]1/2

.

By considering an approximation to the equation for a ray in the region |zm − z| ≪ β−1,
or otherwise, determine the path of a ray near zm, and hence sketch rays passing through
the origin for a few sample values of φ in the range 0 < φ < π/2.

41E Numerical Analysis
The diffusion equation for u(x, t):

∂u

∂t
=
∂2u

∂x2
, x ∈ R, t > 0,

is solved numerically by the difference scheme

un+1
m = unm + 3

2
µ(unm−1 − 2unm + unm+1)− 1

2
µ(un−1

m−1 − 2un−1
m + un−1

m+1) .

Here µ = k
h2 is the Courant number, with k = ∆t, h = ∆x, and unm ≈ u(mh,nk).

(a) Prove that, as k → 0 with constant µ, the local error of the method is O(k2).

(b) Applying the Fourier stability analysis, show that the method is stable if and
only if µ 6 1

4 . [Hint: If a polynomial p(x) = x2 − 2αx+ β has real roots, then those roots
lie in [a, b] if and only if p(a)p(b) > 0 and α ∈ [a, b].]

(c) Prove that, for the same equation, the leapfrog scheme

un+1
m = un−1

m + 2µ(unm−1 − 2unm + unm+1)

is unstable for any choice of µ > 0.
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