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SECTION I

1G Number Theory
Define the Legendre symbol, and state Gauss’s lemma. Show that if p is an odd

prime, then
(

2

p

)

= (−1)(p
2−1)/8.

Use the law of quadratic reciprocity to compute

(

105

149

)

.

2F Topics in Analysis
For x ∈ Rn we write x = (x1, x2, . . . , xn). Define

P := {x ∈ Rn : xj > 0 for 1 6 j 6 n}.

(a) Suppose that L is a convex subset of P , that (1, 1, . . . , 1) ∈ L and that
∏n

j=1 xj 6 1 for all x ∈ L. Show that
∑n

j=1 xj 6 n for all x ∈ L.

(b) Suppose that K is a non-empty closed bounded convex subset of P . Show that
there is a u ∈ K such that

∏n
j=1 xj 6

∏n
j=1 uj for all x ∈ K. If uj 6= 0 for each j with

1 6 j 6 n, show that
n
∑

j=1

xj
uj

6 n,

for all x ∈ K, and that u is unique.

3H Coding & Cryptography
What is the channel matrix of a binary symmetric channel with error probability p?

State the maximum likelihood decoding rule and the minimum distance decoding
rule. Prove that if p < 1/2, then they agree.

Let C be the repetition code {000, 111}. Suppose a codeword from C is sent through
a binary symmetric channel with error probability p. Show that, if the minimum distance
decoding rule is used, then the probability of error is 3p2 − 2p3.

Part II, Paper 2
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4G Automata and Formal Languages
(a) Let E = (QE ,Σ, δE , q0, FE) be a nondeterministic finite-state automaton with

ǫ-transitions (ǫ-NFA). Define the deterministic finite-state automaton (DFA)
D = (QD,Σ, δD, qD, FD) obtained from E via the subset construction with
ǫ-transitions.

(b) Let E and D be as above. By inducting on lengths of words, prove that

δ̂E(q0, w) = δ̂D(qD, w) for all w ∈ Σ∗.

(c) Deduce that L(D) = L(E).

5J Statistical Modelling
Consider a linear model Y = Xβ + σ2ε with ε ∼ N(0, I), where the design matrix

X is n by p. Provide an expression for the F -statistic used to test the hypothesis
βp0+1 = βp0+2 = · · · = βp = 0 for p0 < p. Show that it is a monotone function of a
log-likelihood ratio statistic.

6C Mathematical Biology
Consider a model of an epidemic consisting of populations of susceptible, S(t), in-

fected, I(t), and recovered, R(t), individuals that obey the following differential equations

dS

dt
= aR− bSI,

dI

dt
= bSI − cI,

dR

dt
= cI − aR,

where a, b and c are constant. Show that the sum of susceptible, infected and recovered
individuals is a constant N . Find the fixed points of the dynamics and deduce the con-
dition for an endemic state with a positive number of infected individuals. Expressing
R in terms of S, I and N , reduce the system of equations to two coupled differential
equations and, hence, deduce the conditions for the fixed point to be a node or a focus.
How do small perturbations of the populations relax to the steady state in each case?

Part II, Paper 2 [TURN OVER
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7B Further Complex Methods
Show that

∫ ∞

−∞

cosnx− cosmx

x2
dx = π(m− n),

in the sense of Cauchy principal value, where n and m are positive integers. [State clearly
any standard results involving contour integrals that you use.]

8B Classical Dynamics
Let x = xi+ yj+ zk. Consider a Lagrangian

L =
1

2
ẋ2 + yẋ

of a particle constrained to move on a sphere |x| = 1/c of radius 1/c. Use Lagrange
multipliers to show that

ẍ+ ẏi− ẋj+ c2(|ẋ|2 + yẋ− xẏ)x = 0. (∗)

Now, consider the system (∗) with c = 0, and find the particle trajectories.

9B Cosmology
(a) Consider a homogeneous and isotropic universe with a uniform distribution of

galaxies. For three galaxies at positions rA, rB , rC , show that spatial homogeneity implies
that their non-relativistic velocities v(r) must satisfy

v(rB − rA) = v(rB − rC)− v(rA − rC),

and hence that the velocity field coordinates vi are linearly related to the position
coordinates rj via

vi = Hijrj ,

where the matrix coefficients Hij are independent of the position. Show why isotropy then
implies Hubble’s law

v = H r , with H independent of r .

Explain how the velocity of a galaxy is determined by the scale factor a and express the
Hubble parameter H0 today in terms of a.

(b) Define the cosmological horizon dH(t). For an Einstein–de Sitter universe with
a(t) ∝ t2/3, calculate dH(t0) at t = t0 today in terms of H0. Briefly describe the horizon
problem of the standard cosmology.

Part II, Paper 2
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10D Quantum Information and Computation
(a) The classical controlled-NOT operation applied to the 2-bit string b0 (for b = 0

or 1) achieves the cloning of b, i.e. the result is bb. Let CX denote the quantum controlled-
X (or controlled-NOT ) operation on two qubits. For which qubit states |ψ〉 = a | 0〉+b | 1〉
will the application of CX to |ψ〉 | 0〉 (with the first qubit being the control qubit) achieve
the cloning of |ψ〉? Justify your answer.

(b) Let |α0〉 and |α1〉 be two distinct non-orthogonal quantum states. State and
prove the quantum no-cloning theorem for unitary processes.
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SECTION II

11F Topics in Analysis
(a) Give Bernstein’s probabilistic proof of Weierstrass’s theorem.

(b) Are the following statements true or false? Justify your answer in each case.

(i) If f : R → R is continuous, then there exists a sequence of polynomials Pn

converging pointwise to f on R.

(ii) If f : R → R is continuous, then there exists a sequence of polynomials Pn

converging uniformly to f on R.

(iii) If f : (0, 1] → R is continuous and bounded, then there exists a sequence of
polynomials Pn converging uniformly to f on (0, 1].

(iv) If f : [0, 1] → R is continuous and x1, x2, . . . , xm are distinct points in
[0, 1], then there exists a sequence of polynomials Pn with Pn(xj) = f(xj),
for j = 1, . . . ,m, converging uniformly to f on [0, 1].

(v) If f : [0, 1] → R is m times continuously differentiable, then there exists a

sequence of polynomials Pn such that P
(r)
n → f (r) uniformly on [0, 1] for

each r = 0, . . . ,m.

12H Coding & Cryptography
Describe the RSA encryption scheme with public key (N, e) and private key d.

Suppose N = pq with p and q distinct odd primes and 1 6 x 6 N with x and N
coprime. Denote the order of x in F∗

p by Op(x). Further suppose Φ(N) divides 2ab where

b is odd. If Op(x
b) 6= Oq(x

b) prove that there exists 0 6 t < a such that the greatest

common divisor of x2
tb − 1 and N is a nontrivial factor of N . Further, prove that the

number of x satisfying Op(x
b) 6= Oq(x

b) is > Φ(N)/2.

Hence, or otherwise, prove that finding the private key d from the public key (N, e)
is essentially as difficult as factoring N .

Suppose a message m is sent using the RSA scheme with e = 43 and N = 77, and
c = 5 is the received text. What is m?

An integer m satisfying 1 6 m 6 N − 1 is called a fixed point if it is encrypted to
itself. Prove that if m is a fixed point then so is N −m.
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13B Further Complex Methods
Consider a multi-valued function w(z).

(a) Explain what is meant by a branch point and a branch cut.

(b) Consider z = ew.

(i) By writing z = reiθ, where 0 6 θ < 2π, and w = u + iv, deduce the
expression for w(z) in terms of r and θ. Hence, show that w is infinitely
valued and state its principal value.

(ii) Show that z = 0 and z = ∞ are the branch points of w. Deduce that the
line Im z = 0, Re z > 0 is a possible choice of branch cut.

(iii) Use the Cauchy–Riemann conditions to show that w is analytic in the cut

plane. Show that
dw

dz
=

1

z
.

14B Classical Dynamics
Define a body frame ea(t), a = 1, 2, 3 of a rotating rigid body, and show that there

exists a vector ω = (ω1, ω2, ω3) such that

ėa = ω × ea.

Let L = I1ω1(t)e1 + I2ω2(t)e2 + I3ω3(t)e3 be the angular momentum of a free rigid
body expressed in the body frame. Derive the Euler equations from the conservation of
angular momentum.

Verify that the kinetic energy E, and the total angular momentum L2 are conserved.
Hence show that

ω̇2
3 = f(ω3),

where f(ω3) is a quartic polynomial which should be explicitly determined in terms of L2

and E.
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15D Quantum Information and Computation
(a) Suppose that Alice and Bob are distantly separated in space and each has one

qubit of the 2-qubit state |φ+〉 = 1√
2
(| 00〉 + | 11〉). They also have the ability to perform

local unitary quantum operations and local computational basis measurements, and to
communicate only classically. Alice has a 1-qubit state |α〉 (whose identity is unknown to
her) which she wants to communicate to Bob. Show how this can be achieved using only
the operational resources, listed above, that they have available.

Suppose now that a third party, called Charlie, joins Alice and Bob. They are all
mutually distantly separated in space and each holds one qubit of the 3-qubit state

| γ〉 = 1√
2

(

| 000〉 + | 111〉
)

.

As previously with Alice and Bob, they are able to communicate with each other only
classically, e.g. by telephone, and they can each also perform only local unitary operations
and local computational basis measurements. Alice and Bob phone Charlie to say that
they want to do some quantum teleportation and they need a shared |φ+〉 state (as defined
above). Show how Charlie can grant them their wish (with certainty), given their joint
possession of | γ〉 and using only their allowed operational resources. [Hint: It may be

useful to consider application of an appropriate Hadamard gate action.]

(b) State the quantum no-signalling principle for a bipartite state |ψ〉AB of the
composite system AB.

Suppose we are given an unknown one of the two states

|φ+〉AB = 1√
2

(

| 00〉AB + | 11〉AB

)

,

|φ−〉AB = 1√
2

(

| 00〉AB − | 11〉AB

)

,

and we wish to identify which state we have. Show that the minimum error probability
for this state discrimination task is zero.

Suppose now that we have access only to qubit B of the received state. Show that
we can now do no better in the state discrimination task than just making a random guess
as to which state we have.

16G Logic and Set Theory
State and prove the Knaster–Tarski Fixed-Point Theorem. Deduce the Schröder–

Bernstein Theorem.

Show that the poset P of all countable subsets of R (ordered by inclusion) is not
complete.

Find an order-preserving function f : P → P that does not have a fixed point.
[Hint: Start by well-ordering the reals.]

Part II, Paper 2



9

17I Graph Theory
Let G be a graph and A, B ⊂ V (G). Show that if every AB-separator in G has

order at least k then there exist k vertex-disjoint AB-paths in G.

Let k > 3 and assume that G is k-connected. Show that G must contain a cycle of
length at least k.

Assume further that |G| > 2k. Must G contain a cycle of length at least 2k? Justify
your answer.

What is the largest integer n such that any 3-connected graph G with |G| > n must
contain a cycle of length at least n?

[No form of Menger’s theorem or of the max-flow-min-cut theorem may be assumed

without proof.]

18I Galois Theory
Let K be a field and let f(t) be a monic polynomial with coefficients in K. What

is meant by a splitting field L for f(t) over K? Show that such a splitting field exists and
is unique up to isomorphism.

Now suppose that K is a finite field. Prove that L is a Galois extension of K with
cyclic Galois group. Prove also that the degree of L over K is equal to the least common
multiple of the degrees of the irreducible factors of f(t) over K.

Now suppose K is the field with two elements, and let

Pn = {f(t) ∈ K[t] | f has degree n and is irreducible over K}.

How many elements does the set P9 have?
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19I Representation Theory
(a) Suppose H is a subgroup of a finite group G, χ is an irreducible character

of G and ϕ1, . . . , ϕr are the irreducible characters of H. Show that in the restriction
χ ↓H= a1ϕ1 + · · · + arϕr, the multiplicities a1, . . . , ar satisfy

r
∑

i=1

a2i 6 |G : H|. (†)

Determine necessary and sufficient conditions under which the inequality in (†) is actually
an equality.

(b) Henceforth suppose that H is a (normal) subgroup of index 2 in G, and that χ
is an irreducible character of G.

Lift the non-trivial linear character of G/H to obtain a linear character of G which
satisfies

λ(g) =

{

1 if g ∈ H
−1 if g 6∈ H

.

(i) Show that the following are equivalent:

(1) χ ↓H is irreducible;

(2) χ(g) 6= 0 for some g ∈ G with g 6∈ H;

(3) the characters χ and χλ of G are not equal.

(ii) Suppose now that χ ↓H is irreducible. Show that if ψ is an irreducible char-
acter of G which satisfies

ψ ↓H= χ ↓H ,

then either ψ = χ or ψ = χλ.

(iii) Suppose that χ ↓H is the sum of two irreducible characters of H, say
χ ↓H= ψ1 + ψ2. If φ is an irreducible character of G such that φ ↓H has
ψ1 or ψ2 as a constituent, show that φ = χ.

(c) Suppose that G is a finite group with a subgroup K of index 3, and let χ be an
irreducible character of G. Prove that

〈χ ↓K , χ ↓K〉K = 1, 2 or 3.

Give examples to show that each possibility can occur, giving brief justification in each
case.

Part II, Paper 2
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20G Number Fields
Let p ≡ 1 mod 4 be a prime, and let ω = e2πi/p. Let L = Q(ω).

(a) Show that [L : Q] = p− 1.

(b) Calculate disc(1, ω, ω2, . . . , ωp−2). Deduce that
√
p ∈ L.

(c) Now suppose p = 5. Prove that O×
L = {±ωa(12 +

√
5
2 )b | a, b ∈ Z}. [You may use

any general result without proof, provided that you state it precisely.]

21H Algebraic Topology
(a) Define the first barycentric subdivision K ′ of a simplicial complex K. Hence

define the rth barycentric subdivision K(r). [You do not need to prove thatK ′ is a simplicial
complex.]

(b) Define the mesh µ(K) of a simplicial complex K. State a result that describes
the behaviour of µ(K(r)) as r → ∞.

(c) Define a simplicial approximation to a continuous map of polyhedra

f : |K| → |L|.

Prove that, if g is a simplicial approximation to f , then the realisation |g| : |K| → |L| is
homotopic to f .

(d) State and prove the simplicial approximation theorem. [You may use the
Lebesgue number lemma without proof, as long as you state it clearly.]

(e) Prove that every continuous map of spheres Sn → Sm is homotopic to a constant
map when n < m.

22F Linear Analysis
Let X,Y be Banach spaces and let B(X,Y ) denote the space of bounded linear

operators T : X → Y .

(a) Define what it means for a bounded linear operator T : X → Y to be compact.
Let Ti : X → Y be linear operators with finite rank, i.e., Ti(X) is finite-dimensional.
Assume that the sequence Ti converges to T in B(X,Y ). Show that T is compact.

(b) Let T : X → Y be compact. Show that the dual map T ∗ : Y ∗ → X∗ is compact.
[Hint: You may use the Arzelà–Ascoli theorem.]

(c) Let X be a Hilbert space and let T : X → X be a compact operator. Let (λj) be
an infinite sequence of eigenvalues of T with eigenvectors xj . Assume that the eigenvectors
are orthogonal to each other. Show that λj → 0.
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23F Riemann Surfaces
State the uniformisation theorem. List without proof the Riemann surfaces which

are uniformised by C∞ and those uniformised by C.

Let U be a domain in C whose complement consists of more than one point. Deduce
that U is uniformised by the open unit disk.

Let R be a compact Riemann surface of genus g and P1, . . . , Pn be distinct points
of R. Show that R \ {P1, . . . , Pn} is uniformised by the open unit disk if and only if
2g − 2 + n > 0, and by C if and only if 2g − 2 + n = 0 or −1.

Let Λ be a lattice and X = C/Λ a complex torus. Show that an analytic map
f : C → X is either surjective or constant.

Give with proof an example of a pair of Riemann surfaces which are homeomorphic
but not conformally equivalent.

24I Algebraic Geometry
(a) Let X ⊆ An be an affine algebraic variety defined over the field k.

Define the tangent space TpX for p ∈ X, and the dimension of X in terms of TpX.

Suppose that k is an algebraically closed field with char k > 0. Show directly from
your definition that ifX = Z(f), where f ∈ k[x1, . . . , xn] is irreducible, then dimX = n−1.

[Any form of the Nullstellensatz may be used if you state it clearly.]

(b) Suppose that char k = 0, and let W be the vector space of homogeneous
polynomials of degree d in 3 variables over k. Show that

U = {(f, p) ∈W × k3 | Z(f − 1) is a smooth surface at p}

is a non-empty Zariski open subset of W × k3.
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25I Differential Geometry
Let γ(t) : [a, b] → R3 denote a regular curve.

(a) Show that there exists a parametrization of γ by arc length.

(b) Under the assumption that the curvature is non-zero, define the torsion of γ.
Give an example of two curves γ1 and γ2 in R3 whose curvature (as a function of arc
length s) coincides and is non-vanishing, but for which the curves are not related by a
rigid motion, i.e. such that γ1(s) is not identically ρ(R,T )(γ2(s)) where R ∈ SO(3), T ∈ R3

and
ρ(R,T )(v) := T +Rv.

(c) Give an example of a simple closed curve γ, other than a circle, which is preserved
by a non-trivial rigid motion, i.e. which satisfies

ρ(R,T )(v) ∈ γ([a, b]) for all v ∈ γ([a, b])

for some choice of R ∈ SO(3), T ∈ R3 with (R,T ) 6= (Id, 0). Justify your answer.

(d) Now show that a simple closed curve γ which is preserved by a nontrivial smooth
1-parameter family of rigid motions is necessarily a circle, i.e. show the following:

Let (R,T ) : (−ǫ, ǫ) → SO(3) ×R3 be a regular curve. If for all t̃ ∈ (−ǫ, ǫ),

ρ(R(t̃),T (t̃))(v) ∈ γ([a, b]) for all v ∈ γ([a, b]),

then γ([a, b]) is a circle. [You may use the fact that the set of fixed points of a non-trivial
rigid motion is either ∅ or a line L ⊂ R3.]
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26J Probability and Measure
Let (Ω,F ,P) be a probability space. Let (Xn)n>1 be a sequence of random variables

with E(|Xn|2) 6 1 for all n > 1.

(a) Suppose Z is another random variable such that E(|Z|2) < ∞. Why is ZXn

integrable for each n?

(b) Assume E(ZXn) −−−→
n→∞

0 for every random variable Z on (Ω,F ,P) such that

E(|Z|2) <∞. Show that there is a subsequence Yk := Xnk
, k > 1, such that

1

N

N
∑

k=1

Yk −−−−→
N→∞

0 in L2.

(c) Assume that Xn → X in probability. Show that X ∈ L2. Show that Xn → X
in L1. Must it converge also in L2? Justify your answer.

(d) Assume that the (Xn)n>1 are independent. Give a necessary and sufficient
condition on the sequence (E(Xn)n>1) for the sequence

YN =
1

N

N
∑

k=1

Xk

to converge in L2.

27J Applied Probability
Let X = (Xt : t > 0) be a continuous-time Markov chain on the finite state space

S. Define the terms generator (or Q-matrix ) and invariant distribution, and derive an
equation that links the generator G and any invariant distribution π. Comment on the
possible non-uniqueness of invariant distributions.

Suppose X is irreducible, and let N = (Nt : t > 0) be a Poisson process with
intensity λ, that is independent of X. Let Yn be the value of X immediately after the nth
arrival-time of N (and Y0 = X0). Show that (Yn : n = 0, 1, . . .) is a discrete-time Markov
chain, state its transition matrix and prove that it has the same invariant distribution
as X.
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28K Principles of Statistics
We consider the model {N (θ, Ip), θ ∈ Rp} of a Gaussian distribution in dimension

p > 3, with unknown mean θ and known identity covariance matrix Ip. We estimate θ
based on one observation X ∼ N (θ, Ip), under the loss function

ℓ(θ, δ) = ‖θ − δ‖22 .

(a) Define the risk of an estimator θ̂. Compute the maximum likelihood estimator
θ̂MLE of θ and its risk for any θ ∈ Rp.

(b) Define what an admissible estimator is. Is θ̂MLE admissible?

(c) For any c > 0, let πc(θ) be the prior N (0, c2Ip). Find a Bayes optimal estimator

θ̂c under this prior with the quadratic loss, and compute its Bayes risk.

(d) Show that θ̂MLE is minimax.

[You may use results from the course provided that you state them clearly.]

29K Stochastic Financial Models
Consider the Black–Scholes model, i.e. a market model with one risky asset with

price St at time t given by

St = S0 exp
(

σBt + µt
)

,

where (Bt)t>0 denotes a Brownian motion on (Ω,F ,P), µ > 0 the constant growth rate,
σ > 0 the constant volatility and S0 > 0 the initial price of the asset. Assume that the
riskless rate of interest is r > 0.

(a) Consider a European option C = f(ST ) with expiry T > 0 for any bounded,
continuous function f : R → R. Use the Cameron–Martin theorem to characterize the
equivalent martingale measure and deduce the following formula for the price πC of C at
time 0:

πC = e−rT

∫ ∞

−∞
f
(

S0 exp
(

σ
√
Ty + (r − 1

2σ
2)T

)

) 1√
2π
e−y2/2 dy.

(b) Find the price at time 0 of a European option with maturity T > 0 and payoff
C = (ST )

γ for some γ > 1. What is the value of the option at any time t ∈ [0, T ]?
Determine a hedging strategy (you only need to specify how many units of the risky asset
are held at any time t).
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30K Optimisation and Control
(a) A ball may be in one of n boxes. A search of the ith box costs ci > 0 and finds

the ball with probability αi > 0 if the ball is in that box. We are given initial probabilities
(P 1

i , i = 1, 2, . . . , n) that the ball is in the ith box.

Show that the policy which at time t = 1, 2, . . . searches the box with the maximal
value of αiP

t
i /ci minimises the expected searching cost until the ball is found, where P t

i is
the probability (given everything that has occurred up to time t) that the ball is in box i.

(b) Next suppose that a reward Ri > 0 is earned if the ball is found in the ith

box. Suppose also that we may decide to stop at any time. Develop the dynamic
programming equation for the value function starting from the probability distribution
(P t

i , i = 1, 2, . . . , n).

Show that if
∑

i ci/(αiRi) < 1 then it is never optimal to stop searching until the
ball is found. In this case, is the policy defined in part (a) optimal?

31B Asymptotic Methods
Given that

∫ +∞
−∞ e−u2

du =
√
π obtain the value of limR→+∞

∫ +R
−R e−itu2

du for real

positive t. Also obtain the value of limR→+∞
∫ R
0 e−itu3

du, for real positive t, in terms of

Γ(43) =
∫ +∞
0 e−u3

du.

For α > 0, x > 0, let

Qα(x) =
1

π

∫ π

0
cos

(

x sin θ − αθ
)

dθ .

Find the leading terms in the asymptotic expansions as x→ +∞ of (i) Qα(x) with α fixed,
and (ii) ofQx(x).
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32E Dynamical Systems
Consider the system

ẋ = y, ẏ = x− x3 + ǫ(1− αx2)y ,

where α and ǫ are real constants, and 0 6 ǫ≪ 1. Find and classify the fixed points.

Show that when ǫ = 0 the system is Hamiltonian and find H. Sketch the phase
plane for this case.

Suppose now that 0 < ǫ≪ 1. Show that the small change inH following a trajectory
of the perturbed system around an orbit H = H0 of the unperturbed system is given to
leading order by an equation of the form

∆H = ǫ

∫ x2

x1

F (x;α,H0) dx ,

where F should be found explicitly, and where x1 and x2 are the minimum and maximum
values of x on the unperturbed orbit.

Use the energy-balance method to find the value of α, correct to leading order in
ǫ, for which the system has a homoclinic orbit. [Hint: The substitution u = 1− 1

2x
2 may

prove useful.]

Over what range of α would you expect there to be periodic solutions that enclose
only one of the fixed points?
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33A Integrable Systems
(a) Let L,A be two families of linear operators, depending on a parameter t, which

act on a Hilbert space H with inner product (, ). Suppose further that for each t, L is
self-adjoint and that A is anti-self-adjoint. State Lax’s equation for the pair L,A, and
show that if it holds then the eigenvalues of L are independent of t.

(b) For ψ, φ : R → C, define the inner product:

(ψ, φ) :=

∫ ∞

−∞
ψ(x)φ(x)dx.

Let L,A be the operators:

Lψ := i
d3ψ

dx3
− i

(

q
dψ

dx
+

d

dx
(qψ)

)

+ pψ,

Aψ := 3i
d2ψ

dx2
− 4iqψ,

where p = p(x, t), q = q(x, t) are smooth, real-valued functions. You may assume that
the normalised eigenfunctions of L are smooth functions of x, t, which decay rapidly as
|x| → ∞ for all t.

(i) Show that if ψ, φ are smooth and rapidly decaying towards infinity then:

(Lψ, φ) = (ψ,Lφ), (Aψ, φ) = −(ψ,Aφ).

Deduce that the eigenvalues of L are real.

(ii) Show that if Lax’s equation holds for L,A, then q must satisfy the Boussinesq
equation:

qtt = aqxxxx + b(q2)xx,

where a, b are constants whose values you should determine. [You may assume
without proof that the identity:

LAψ = ALψ − 3i

(

px
dψ

dx
+

d

dx
(pxψ)

)

+
[

qxxx − 4(q2)x
]

ψ,

holds for smooth, rapidly decaying ψ.]
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34D Principles of Quantum Mechanics
Explain what is meant by the intrinsic parity of a particle.

In each of the decay processes below, parity is conserved.

A deuteron (d+) has intrinsic parity ηd = +1 and spin s = 1. A negatively charged
pion (π−) has spin s = 0. The ground state of a hydrogenic ‘atom’ formed from a deuteron
and a pion decays to two identical neutrons (n), each of spin s = 1

2 and parity ηn = +1.
Deduce the intrinsic parity of the pion.

The ∆− particle has spin s = 3
2 and decays as

∆− → π− + n .

What are the allowed values of the orbital angular momentum? In the centre of mass
frame, the vector rπ − rn joining the pion to the neutron makes an angle θ to the ẑ-axis.
The final state is an eigenstate of Jz and the spatial probability distribution is proportional
to cos2 θ. Deduce the intrinsic parity of the ∆−.

[Hint: You may use the fact that the first three Legendre polynomials are given by

P0(x) = 1 , P1(x) = x , P2(x) =
1

2
(3x2 − 1) . ]

35A Applications of Quantum Mechanics
Consider a one-dimensional chain of 2N ≫ 1 atoms, each of mass m. Impose

periodic boundary conditions. The forces between neighbouring atoms are modelled
as springs, with alternating spring constants λ and αλ. In equilibrium, the separation
between the atoms is a.

Denote the position of the nth atom as xn(t). Let un(t) = xn(t) − na be the
displacement from equilibrium. Write down the equations of motion of the system.

Show that the longitudinal modes of vibration are labelled by a wavenumber k
that is restricted to lie in a Brillouin zone. Find the frequency spectrum. What is the
frequency gap at the edge of the Brillouin zone? Show that the gap vanishes when α = 1.
Determine approximations for the frequencies near the centre of the Brillouin zone. Plot
the frequency spectrum. What is the speed of sound in this system?
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36A Statistical Physics
(a) Starting from the canonical ensemble, derive the Maxwell–Boltzmann distribu-

tion for the velocities of particles in a classical gas of atoms of mass m. Derive also the
distribution of speeds v of the particles. Calculate the most probable speed.

(b) A certain atom emits photons of frequency ω0. A gas of these atoms is contained
in a box. A small hole is cut in a wall of the box so that photons can escape in the positive
x-direction where they are received by a detector. The frequency of the photons received
is Doppler shifted according to the formula

ω = ω0

(

1 +
vx
c

)

where vx is the x-component of the velocity of the atom that emits the photon and c is
the speed of light. Let T be the temperature of the gas.

(i) Calculate the mean value 〈ω〉 of ω.

(ii) Calculate the standard deviation
√

〈(ω − 〈ω〉)2〉 .

(iii) Show that the relative number of photons received with frequency between ω and
ω + dω is I(ω)dω where

I(ω) ∝ exp(−a(ω − ω0)
2)

for some coefficient a to be determined. Hence explain how observations of the
radiation emitted by the gas can be used to measure its temperature.
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37E General Relativity
The Friedmann equations and the conservation of energy-momentum for a spatially
homogeneous and isotropic universe are given by:

3
ȧ2 + k

a2
− Λ = 8πρ ,

2aä+ ȧ2 + k

a2
− Λ = −8πP , ρ̇ = −3

ȧ

a
(P + ρ) ,

where a is the scale factor, ρ the energy density, P the pressure, Λ the cosmological
constant and k = +1, 0, −1.

(a) Show that for an equation of state P = wρ, w = constant, the energy density
obeys ρ = 3µ

8πa
−3(1+w), for some constant µ.

(b) Consider the case of a matter dominated universe, w = 0, with Λ = 0. Write
the equation of motion for the scale factor a in the form of an effective potential equation,

ȧ2 + V (a) = C ,

where you should determine the constant C and the potential V (a). Sketch the potential
V (a) together with the possible values of C and qualitatively discuss the long-term
dynamics of an initially small and expanding universe for the cases k = +1, 0, −1.

(c) Repeat the analysis of part (b), again assuming w = 0, for the cases:

(i) Λ > 0, k = −1,

(ii) Λ < 0, k = 0,

(iii) Λ > 0, k = 1.

Discuss all qualitatively different possibilities for the dynamics of the universe in each case.
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38C Fluid Dynamics II
An initially unperturbed two-dimensional inviscid jet in −h < y < h has uniform

speed U in the x direction, while the surrounding fluid is stationary. The unperturbed
velocity field u = (u, v) is therefore given by

u = 0 in y > h,

u =U in − h < y < h,

u = 0 in y < −h.

Consider separately disturbances in which the layer occupies −h−η < y < h+η (varicose
disturbances) and disturbances in which the layer occupies −h+ η < y < h + η (sinuous
disturbances), where η(x, t) = η̂eikx+σt, and determine the dispersion relation σ(k) in each
case.

Find asymptotic expressions for the real part σR of σ in the limits k → 0 and k → ∞
and draw sketches of σR(k) in each case.

Compare the rates of growth of the two types of disturbance.

39C Waves
A perfect gas occupies the region x > 0 of a tube that lies parallel to the x-axis.

The gas is initially at rest, with density ρ1, pressure p1, speed of sound c1 and specific heat
ratio γ. For times t > 0 a piston, initially at x = 0, is pushed into the gas at a constant
speed V . A shock wave propagates at constant speed U into the undisturbed gas ahead
of the piston. Show that the excess pressure in the gas next to the piston, p2 − p1 ≡ βp1,
is given implicitly by the expression

V 2 =
2β2

2γ + (γ + 1)β

p1
ρ1
.

Show also that
U2

c21
= 1 +

γ + 1

2γ
β ,

and interpret this result.

[Hint: You may assume for a perfect gas that the speed of sound is given by

c2 =
γp

ρ
,

and that the internal energy per unit mass is given by

e =
1

γ − 1

p

ρ
. ]
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40E Numerical Analysis
The Poisson equation d2u

dx2 = f in the unit interval [0, 1], with u(0) = u(1) = 0, is
discretised with the formula

ui−1 − 2ui + ui+1 = h2fi, 1 6 i 6 n,

where u0 = un+1 = 0, h = (n+ 1)−1, the grid points are at x = ih and ui ≈ u(ih).

(a) Write the above system of equations in the vector form Au = b and describe
the relaxed Jacobi method with relaxation parameter ω for solving this linear system.

(b) For x
∗ and x

(ν) being the exact and the iterated solution, respectively, let
e
(ν) := x

(ν) − x
∗ be the error and Hω be the iteration matrix, so that

e
(ν+1) = Hω e

(ν) .

Express Hω in terms of the matrix A and the relaxation parameter ω. Using the fact that
for any n × n Toeplitz symmetric tridiagonal matrix, the eigenvectors vk (k = 1, . . . , n)
have the form:

vk = (sin ikx)ni=1, x = π
n+1

,

find the eigenvalues λk(A) of A. Hence deduce the eigenvalues λk(ω) of Hω.

(c) For A as above, let

e
(ν) =

n
∑

k=1

a
(ν)
k vk

be the expansion of the error with respect to the eigenvectors (vk) of Hω.

Find the range of the parameter ω which provides convergence of the method for
any n, and prove that, for any such ω, the rate of convergence e

(ν) → 0 is not faster than
(1− c/n2)ν when n is large.

(d) Show that, for an appropriate range of ω, the high frequency components a
(ν)
k

(n+1
2 6 k 6 n) of the error e

(ν) tend to zero much faster than the rate obtained in
part (c). Determine the optimal parameter ω∗ which provides the largest supression of the
high frequency components per iteration, and find the corresponding attenuation factor µ∗
assuming n is large. That is, find the least µω such that |a(ν+1)

k | 6 µω|a(ν)k | for n+1
2 6 k 6 n.

END OF PAPER
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