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SECTION I

1E Linear Algebra
Define a quadratic form on a finite dimensional real vector space. What does it

mean for a quadratic form to be positive definite?

Find a basis with respect to which the quadratic form

x2 + 2xy + 2y2 + 2yz + 3z2

is diagonal. Is this quadratic form positive definite?

2G Groups, Rings and Modules

(a) Show that every automorphism α of the dihedral group D6 is equal to conjugation
by an element of D6; that is, there is an h ∈ D6 such that

α(g) = hgh−1

for all g ∈ D6.

(b) Give an example of a non-abelian group G with an automorphism which is not equal
to conjugation by an element of G.

3F Analysis II
State the Bolzano–Weierstrass theorem in R. Use it to deduce the Bolzano–

Weierstrass theorem in R
n.

Let D be a closed, bounded subset of Rn, and let f : D → R be a function. Let
S be the set of points in D where f is discontinuous. For ρ > 0 and z ∈ R

n, let Bρ(z)
denote the ball {x ∈ R

n : ‖x − z‖ < ρ}. Prove that for every ǫ > 0, there exists δ > 0
such that |f(x)− f(y)| < ǫ whenever x ∈ D, y ∈ D \ ∪z∈SBǫ(z) and ‖x− y‖ < δ.

(If you use the fact that a continuous function on a compact metric space is uniformly
continuous, you must prove it.)
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4F Complex Analysis

(a) Let Ω ⊂ C be open, a ∈ Ω and suppose that Dρ(a) = {z ∈ C : |z − a| 6 ρ} ⊂ Ω.
Let f : Ω → C be analytic.

State the Cauchy integral formula expressing f(a) as a contour integral over
C = ∂Dρ(a). Give, without proof, a similar expression for f ′(a).

If additionally Ω = C and f is bounded, deduce that f must be constant.

(b) If g = u + iv : C → C is analytic where u, v are real, and if u2(z) − u(z) > v2(z)
for all z ∈ C, show that g is constant.

5A Methods
By using separation of variables, solve Laplace’s equation

∂2u

∂x2
+

∂2u

∂y2
= 0 0 < x < 1, 0 < y < 1,

subject to

u(0, y) = 0 0 6 y 6 1,

u(1, y) = 0 0 6 y 6 1,

u(x, 0) = 0 0 6 x 6 1,

u(x, 1) = 2 sin(3πx) 0 6 x 6 1.

6B Quantum Mechanics
A particle moving in one space dimension with wavefunction Ψ(x, t) obeys the time-

dependent Schrödinger equation. Write down the probability density ρ and current density
j in terms of the wavefunction and show that they obey the equation

∂j

∂x
+

∂ρ

∂t
= 0 .

Evaluate j(x, t) in the case that

Ψ(x, t) =
(
Aeikx +Be−ikx

)
e−iEt/~ ,

where E = ~
2k2/2m, and A and B are constants, which may be complex.
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7C Electromagnetism
Show that Maxwell’s equations imply the conservation of charge.

A conducting medium has J = σE where σ is a constant. Show that any charge
density decays exponentially in time, at a rate to be determined.

8D Numerical Analysis
Let

A =




1 2 1 2
2 5 5 6
1 5 13 14
2 6 14 λ


 , b =




1
3
7
µ


 ,

where λ and µ are real parameters. Find the LU factorisation of the matrix A. For what
values of λ does the equation Ax = b have a unique solution for x?

For λ = 20, use the LU decomposition with forward and backward substitution to
determine a value for µ for which a solution to Ax = b exists. Find the most general
solution to the equation in this case.

9H Markov Chains
Let P = (pij)i,j∈S be the transition matrix for an irreducible Markov chain on the

finite state space S.

(a) What does it mean to say that a distribution π is the invariant distribution for the
chain?

(b) What does it mean to say that the chain is in detailed balance with respect to
a distribution π? Show that if the chain is in detailed balance with respect to a
distribution π then π is the invariant distribution for the chain.

(c) A symmetric random walk on a connected finite graph is the Markov chain whose
state space is the set of vertices of the graph and whose transition probabilities are

pij =

{
1/Di if j is adjacent to i
0 otherwise

where Di is the number of vertices adjacent to vertex i. Show that the random walk
is in detailed balance with respect to its invariant distribution.
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SECTION II

10E Linear Algebra
Let V be a finite dimensional inner-product space over C. What does it mean to

say that an endomorphism of V is self-adjoint? Prove that a self-adjoint endomorphism
has real eigenvalues and may be diagonalised.

An endomorphism α : V → V is called positive definite if it is self-adjoint and
satisfies 〈α(x), x〉 > 0 for all non-zero x ∈ V ; it is called negative definite if −α is positive
definite. Characterise the property of being positive definite in terms of eigenvalues, and
show that the sum of two positive definite endomorphisms is positive definite.

Show that a self-adjoint endomorphism α : V → V has all eigenvalues in the interval
[a, b] if and only if α − λI is positive definite for all λ < a and negative definite for all
λ > b.

Let α, β : V → V be self-adjoint endomorphisms whose eigenvalues lie in the
intervals [a, b] and [c, d] respectively. Show that all of the eigenvalues of α + β lie in
the interval [a+ c, b+ d].

11G Groups, Rings and Modules

(a) State the classification theorem for finitely generated modules over a Euclidean
domain.

(b) Deduce the existence of the rational canonical form for an n × n matrix A over a
field F .

(c) Compute the rational canonical form of the matrix

A =




3/2 1 0
−1 −1/2 0
2 2 1/2
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12F Analysis II

(a) Define what it means for a metric space (X, d) to be complete. Give a metric d on
the interval I = (0, 1] such that (I, d) is complete and such that a subset of I is
open with respect to d if and only if it is open with respect to the Euclidean metric
on I. Be sure to prove that d has the required properties.

(b) Let (X, d) be a complete metric space.

(i) If Y ⊂ X, show that Y taken with the subspace metric is complete if and only
if Y is closed in X.

(ii) Let f : X → X and suppose that there is a number λ ∈ (0, 1) such that
d(f(x), f(y)) 6 λd(x, y) for every x, y ∈ X. Show that there is a unique point
x0 ∈ X such that f(x0) = x0.

Deduce that if (an) is a sequence of points in X converging to a point a 6= x0, then
there are integers ℓ and m > ℓ such that f(am) 6= an for every n > ℓ.

13E Metric and Topological Spaces
Let X = {2, 3, 4, 5, 6, 7, 8, . . .} and for each n ∈ X let

Un = {d ∈ X | d divides n}.

Prove that the set of unions of the sets Un forms a topology on X.

Prove or disprove each of the following:

(i) X is Hausdorff;

(ii) X is compact.

If Y and Z are topological spaces, Y is the union of closed subspaces A and B, and
f : Y → Z is a function such that both f |A : A → Z and f |B : B → Z are continuous,
show that f is continuous. Hence show that X is path-connected.
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14A Complex Methods

(a) Find the Laplace transform of

y(t) =
e−a2/4t

√
πt

,

for a ∈ R, a 6= 0.

[You may use without proof that

∫ ∞

0

exp

(
−c2x2 − c2

x2

)
dx =

√
π

2|c|e
−2c2 .]

(b) By using the Laplace transform, show that the solution to

∂2u

∂x2
=

∂u

∂t
−∞ < x < ∞, t > 0,

u(x, 0) = f(x),

u(x, t) bounded,

can be written as

u(x, t) =

∫ ∞

−∞
K(|x− ξ|, t)f(ξ)dξ

for some K(|x− ξ|, t) to be determined.

[You may use without proof that a particular solution to

y′′(x)− sy(x) + f(x) = 0

is given by

y(x) =
e−

√
s x

2
√
s

∫ x

0

e
√
s ξf(ξ) dξ − e

√
s x

2
√
s

∫ x

0

e−
√
s ξf(ξ) dξ.]

15G Geometry
A Möbius strip in R

3 is parametrized by

σ(u, v) =
(
Q(u, v) sin u,Q(u, v) cos u, v cos(u/2)

)

for (u, v) ∈ U = (0, 2π)×R, where Q ≡ Q(u, v) = 2− v sin(u/2). Show that the Gaussian
curvature is

K =
−1

(v2/4 +Q2)2

at (u, v) ∈ U .
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16B Variational Principles

(a) A two-dimensional oscillator has action

S =

∫ t1

t0

{
1

2
ẋ2 +

1

2
ẏ2 − 1

2
ω2x2 − 1

2
ω2y2

}
dt .

Find the equations of motion as the Euler-Lagrange equations associated with S,
and use them to show that

J = ẋy − ẏx

is conserved. Write down the general solution of the equations of motion in terms of
sinωt and cosωt, and evaluate J in terms of the coefficients that arise in the general
solution.

(b) Another kind of oscillator has action

S̃ =

∫ t1

t0

{
1

2
ẋ2 +

1

2
ẏ2 − 1

4
αx4 − 1

2
βx2y2 − 1

4
αy4

}
dt ,

where α and β are real constants. Find the equations of motion and use these to
show that in general J = ẋy − ẏx is not conserved. Find the special value of the
ratio β/α for which J is conserved. Explain what is special about the action S̃ in
this case, and state the interpretation of J .
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17C Methods
Let Ω be a bounded region in the plane, with smooth boundary ∂Ω. Green’s second

identity states that for any smooth functions u, v on Ω

∫

Ω

(
u∇2v − v∇2u

)
dxdy =

∮

∂Ω
u (n ·∇v)− v (n ·∇u) ds ,

where n is the outward pointing normal to ∂Ω. Using this identity with v replaced by

G0(x;x0) =
1

2π
ln (‖x− x0‖) =

1

4π
ln
(
(x− x0)

2 + (y − y0)
2
)

and taking care of the singular point (x, y) = (x0, y0), show that if u solves the Poisson
equation ∇2u = −ρ then

u(x) = −
∫

Ω

G0(x;x0) ρ(x0) dx0 dy0

+

∮

∂Ω

(
u(x0)n ·∇G0(x;x0)−G0(x;x0)n ·∇u(x0)

)
ds

at any x = (x, y) ∈ Ω, where all derivatives are taken with respect to x0 = (x0, y0).

In the case that Ω is the unit disc ‖x‖ 6 1, use the method of images to show that
the solution to Laplace’s equation ∇2u = 0 inside Ω, subject to the boundary condition

u(1, θ) = δ(θ − α),

is

u(r, θ) =
1

2π

1− r2

1 + r2 − 2r cos(θ − α)
,

where (r, θ) are polar coordinates in the disc and α is a constant.

[Hint: The image of a point x0 ∈ Ω is the point y0 = x0/‖x0‖2, and then

‖x− x0‖ = ‖x0‖ ‖x− y0‖

for all x ∈ ∂Ω.]
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18D Fluid Dynamics
A deep layer of inviscid fluid is initially confined to the region 0 < x < a, 0 < y < a,

z < 0 in Cartesian coordinates, with z directed vertically upwards. An irrotational
disturbance is caused to the fluid so that its upper surface takes position z = η(x, y, t).
Determine the linear normal modes of the system and the dispersion relation between the
frequencies of the normal modes and their wavenumbers.

If the interface is initially displaced to position z = ǫ cos
3πx

a
cos

4πy

a
and released

from rest, where ǫ is a small constant, determine its position for subsequent times. How
far below the surface will the velocity have decayed to 1/e times its surface value?

19H Statistics
There is widespread agreement amongst the managers of the Reliable Motor

Company that the number X of faulty cars produced in a month has a binomial
distribution

P (X = s) =

(
n

s

)
ps(1− p)n−s (s = 0, 1, . . . , n; 0 6 p 6 1),

where n is the total number of cars produced in a month. There is, however, some dispute
about the parameter p. The general manager has a prior distribution for p which is
uniform, while the more pessimistic production manager has a prior distribution with
density 2p, both on the interval [0, 1].

In a particular month, s faulty cars are produced. Show that if the general manager’s
loss function is (p̂−p)2, where p̂ is her estimate and p the true value, then her best estimate
of p is

p̂ =
s+ 1

n+ 2
.

The production manager has responsibilities different from those of the general manager,
and a different loss function given by (1−p)(p̂−p)2. Find his best estimate of p and show
that it is greater than that of the general manager unless s > 1

2
n.

[You may use the fact that for non-negative integers α, β,

∫
1

0

pα(1− p)βdp =
α!β!

(α+ β + 1)!
. ]
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20H Optimisation
Given a network with a source A, a sink B, and capacities on directed edges, define

a cut. What is meant by the capacity of a cut? State the max-flow min-cut theorem. If
the capacities of edges are integral, what can be said about the maximum flow?

Consider an m × n matrix A in which each entry is either 0 or 1. We say that a
set of lines (rows or columns of the matrix) covers the matrix if each 1 belongs to some
line of the set. We say that a set of 1’s is independent if no pair of 1’s of the set lie in
the same line. Use the max-flow min-cut theorem to show that the maximal number of
independent 1’s equals the minimum number of lines that cover the matrix.

END OF PAPER
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