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Paper 3, Section I

2F Analysis II
For a continuous function f = (f1, f2, . . . , fm) : [0, 1] → Rm, define

∫ 1

0
f(t) dt =

(∫ 1

0
f1(t) dt,

∫ 1

0
f2(t) dt, . . . ,

∫ 1

0
fm(t) dt

)
.

Show that ∥∥∥
∫ 1

0
f(t) dt

∥∥∥
2
6

∫ 1

0
‖f(t)‖2 dt

for every continuous function f : [0, 1] → Rm, where ‖ · ‖2 denotes the Euclidean norm
on Rm.

Find all continuous functions f : [0, 1] → Rm with the property that

∥∥∥
∫ 1

0
f(t) dt

∥∥∥ =

∫ 1

0
‖f(t)‖ dt

regardless of the norm ‖ · ‖ on Rm.

[Hint: start by analysing the case when ‖·‖ is the Euclidean norm ‖·‖2.]

Paper 2, Section I

3F Analysis II
Show that ‖f‖1 =

∫ 1
0 |f(x)| dx defines a norm on the space C([0, 1]) of continuous

functions f : [0, 1] → R.

Let S be the set of continuous functions g : [0, 1] → R with g(0) = g(1) = 0.
Show that for each continuous function f : [0, 1] → R, there is a sequence gn ∈ S with
supx∈[0,1] |gn(x)| 6 supx∈[0,1] |f(x)| such that ‖f − gn‖1 → 0 as n→ ∞.

Show that if f : [0, 1] → R is continuous and
∫ 1
0 f(x)g(x) dx = 0 for every g ∈ S

then f = 0.
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Paper 4, Section I

3F Analysis II
State the Bolzano–Weierstrass theorem in R. Use it to deduce the Bolzano–

Weierstrass theorem in Rn.

Let D be a closed, bounded subset of Rn, and let f : D → R be a function. Let
S be the set of points in D where f is discontinuous. For ρ > 0 and z ∈ Rn, let Bρ(z)
denote the ball {x ∈ Rn : ‖x − z‖ < ρ}. Prove that for every ǫ > 0, there exists δ > 0
such that |f(x)− f(y)| < ǫ whenever x ∈ D, y ∈ D \ ∪z∈SBǫ(z) and ‖x− y‖ < δ.

(If you use the fact that a continuous function on a compact metric space is uniformly
continuous, you must prove it.)

Paper 1, Section II

11F Analysis II
Let U ⊂ Rn be a non-empty open set and let f : U → Rn.

(a) What does it mean to say that f is differentiable? What does it mean to say that
f is a C1 function?

If f is differentiable, show that f is continuous.

State the inverse function theorem.

(b) Suppose that U is convex, f is C1 and that its derivative Df(a) at a satisfies
‖Df(a) − I‖ < 1 for all a ∈ U, where I : Rn → Rn is the identity map and ‖ · ‖
denotes the operator norm. Show that f is injective.

Explain why f(U) is an open subset of Rn.

Must it be true that f(U) = Rn? What if U = Rn? Give proofs or counter-examples
as appropriate.

(c) Find the largest set U ⊂ R2 such that the map f : R2 → R2 given by
f(x, y) = (x2 − y2, 2xy) satisfies ‖Df(a)− I‖ < 1 for every a ∈ U.
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Paper 4, Section II

12F Analysis II

(a) Define what it means for a metric space (X, d) to be complete. Give a metric d on
the interval I = (0, 1] such that (I, d) is complete and such that a subset of I is
open with respect to d if and only if it is open with respect to the Euclidean metric
on I. Be sure to prove that d has the required properties.

(b) Let (X, d) be a complete metric space.

(i) If Y ⊂ X, show that Y taken with the subspace metric is complete if and only
if Y is closed in X.

(ii) Let f : X → X and suppose that there is a number λ ∈ (0, 1) such that
d(f(x), f(y)) 6 λd(x, y) for every x, y ∈ X. Show that there is a unique point
x0 ∈ X such that f(x0) = x0.

Deduce that if (an) is a sequence of points in X converging to a point a 6= x0, then
there are integers ℓ and m > ℓ such that f(am) 6= an for every n > ℓ.

Paper 3, Section II

12F Analysis II

(a) Let A ⊂ Rm and let f, fn : A → R be functions for n = 1, 2, 3, . . .. What does it
mean to say that the sequence (fn) converges uniformly to f on A? What does it
mean to say that f is uniformly continuous?

(b) Let f : R → R be a uniformly continuous function. Determine whether each of the
following statements is true or false. Give reasons for your answers.

(i) If fn(x) = f(x + 1/n) for each n = 1, 2, 3, . . . and each x ∈ R, then fn → f
uniformly on R.

(ii) If gn(x) = (f(x + 1/n))2 for each n = 1, 2, 3, . . . and each x ∈ R, then
gn → (f)2 uniformly on R.

(c) Let A be a closed, bounded subset of Rm. For each n = 1, 2, 3, . . . , let gn : A→ R
be a continuous function such that (gn(x)) is a decreasing sequence for each x ∈ A.
If δ ∈ R is such that for each n there is xn ∈ A with gn(xn) > δ, show that there is
x0 ∈ A such that limn→∞ gn(x0) > δ.

Deduce the following: If fn : A→ R is a continuous function for each n = 1, 2, 3, . . .
such that (fn(x)) is a decreasing sequence for each x ∈ A, and if the pointwise limit
of (fn) is a continuous function f : A→ R, then fn → f uniformly on A.
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Paper 2, Section II

12F Analysis II

(a) Let (X, d) be a metric space, A a non-empty subset of X and f : A → R. Define
what it means for f to be Lipschitz. If f is Lipschitz with Lipschitz constant L and
if

F (x) = inf
y∈A

(f(y) + Ld(x, y))

for each x ∈ X, show that F (x) = f(x) for each x ∈ A and that F : X → R is
Lipschitz with Lipschitz constant L. (Be sure to justify that F (x) ∈ R, i.e. that the
infimum is finite for every x ∈ X.)

(b) What does it mean to say that two norms on a vector space are Lipschitz equivalent?

Let V be an n-dimensional real vector space equipped with a norm ‖ · ‖. Let
{e1, e2, . . . , en} be a basis for V . Show that the map g : Rn → R defined by
g(x1, x2, . . . , xn) = ‖x1e1 + x2e2 + . . . + xnen‖ is continuous. Deduce that any two
norms on V are Lipschitz equivalent.

(c) Prove that for each positive integer n and each a ∈ (0, 1], there is a constant C > 0
with the following property: for every polynomial p of degree 6 n, there is a point
y ∈ [0, a] such that

sup
x∈[0,1]

|p′(x)| 6 C|p(y)|,

where p′ is the derivative of p.
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Paper 4, Section I

4F Complex Analysis

(a) Let Ω ⊂ C be open, a ∈ Ω and suppose that Dρ(a) = {z ∈ C : |z − a| 6 ρ} ⊂ Ω.
Let f : Ω → C be analytic.

State the Cauchy integral formula expressing f(a) as a contour integral over
C = ∂Dρ(a). Give, without proof, a similar expression for f ′(a).

If additionally Ω = C and f is bounded, deduce that f must be constant.

(b) If g = u + iv : C → C is analytic where u, v are real, and if u2(z) − u(z) > v2(z)
for all z ∈ C, show that g is constant.

Paper 3, Section II

13F Complex Analysis
Let D = {z ∈ C : |z| < 1} and let f : D → C be analytic.

(a) If there is a point a ∈ D such that |f(z)| 6 |f(a)| for all z ∈ D, prove that f is
constant.

(b) If f(0) = 0 and |f(z)| 6 1 for all z ∈ D, prove that |f(z)| 6 |z| for all z ∈ D.

(c) Show that there is a constant C independent of f such that if f(0) = 1 and
f(z) 6∈ (−∞, 0] for all z ∈ D then |f(z)| 6 C whenever |z| 6 1/2.

[Hint: you may find it useful to consider the principal branch of the map z 7→ z1/2.]

(d) Does the conclusion in (c) hold if we replace the hypothesis f(z) 6∈ (−∞, 0] for
z ∈ D with the hypothesis f(z) 6= 0 for z ∈ D, and keep all other hypotheses?
Justify your answer.
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Paper 1, Section I

2A Complex Analysis or Complex Methods

(a) Show that
w = log(z)

is a conformal mapping from the right half z-plane, Re(z) > 0, to the strip

S =
{
w : −π

2
< Im(w) <

π

2

}
,

for a suitably chosen branch of log(z) that you should specify.

(b) Show that

w =
z − 1

z + 1

is a conformal mapping from the right half z-plane, Re(z) > 0, to the unit disc

D = {w : |w| < 1}.

(c) Deduce a conformal mapping from the strip S to the disc D.
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Paper 1, Section II

13A Complex Analysis or Complex Methods

(a) Let C be a rectangular contour with vertices at ±R + π i and ±R − π i for some
R > 0 taken in the anticlockwise direction. By considering

lim
R→∞

∮

C

eiz
2/4π

ez/2 − e−z/2
dz,

show that

lim
R→∞

∫ R

−R
eix

2/4πdx = 2πeπi/4.

(b) By using a semi-circular contour in the upper half plane, calculate

∫ ∞

0

x sin(πx)

x2 + a2
dx

for a > 0.

[You may use Jordan’s Lemma without proof.]
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Paper 2, Section II

13A Complex Analysis or Complex Methods

(a) Let f(z) be a complex function. Define the Laurent series of f(z) about z = z0,
and give suitable formulae in terms of integrals for calculating the coefficients of the
series.

(b) Calculate, by any means, the first 3 terms in the Laurent series about z = 0 for

f(z) =
1

e2z − 1
.

Indicate the range of values of |z| for which your series is valid.

(c) Let

g(z) =
1

2z
+

m∑

k=1

z

z2 + π2k2
.

Classify the singularities of F (z) = f(z)− g(z) for |z| < (m+ 1)π.

(d) By considering ∮

CR

F (z)

z2
dz

where CR = {|z| = R} for some suitably chosen R > 0, show that

∞∑

k=1

1

k2
=
π2

6
.
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Paper 3, Section I

4A Complex Methods

(a) Let f(z) = (z2 − 1)1/2. Define the branch cut of f(z) as [−1, 1] such that

f(x) = +
√
x2 − 1 x > 1.

Show that f(z) is an odd function.

(b) Let g(z) =
[
(z − 2)(z2 − 1)

]1/2
.

(i) Show that z = ∞ is a branch point of g(z).

(ii) Define the branch cuts of g(z) as [−1, 1] ∪ [2,∞) such that

g(x) = eπi/2
√

|x− 2||x2 − 1| x ∈ (1, 2).

Find g(0±), where 0+ denotes z = 0 just above the branch cut, and 0− denotes
z = 0 just below the branch cut.
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Paper 4, Section II

14A Complex Methods

(a) Find the Laplace transform of

y(t) =
e−a2/4t

√
πt

,

for a ∈ R, a 6= 0.

[You may use without proof that

∫ ∞

0
exp

(
−c2x2 − c2

x2

)
dx =

√
π

2|c|e
−2c2 .]

(b) By using the Laplace transform, show that the solution to

∂2u

∂x2
=
∂u

∂t
−∞ < x <∞, t > 0,

u(x, 0) = f(x),

u(x, t) bounded,

can be written as

u(x, t) =

∫ ∞

−∞
K(|x− ξ|, t)f(ξ)dξ

for some K(|x− ξ|, t) to be determined.

[You may use without proof that a particular solution to

y′′(x)− sy(x) + f(x) = 0

is given by

y(x) =
e−

√
s x

2
√
s

∫ x

0
e
√
s ξf(ξ) dξ − e

√
s x

2
√
s

∫ x

0
e−

√
s ξf(ξ) dξ.]
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Paper 2, Section I

6C Electromagnetism
Derive the Biot–Savart law

B(r) =
µ0
4π

∫

V

j(r′)× (r− r′)

|r− r′|3 dV

from Maxwell’s equations, where the time–independent current j(r) vanishes outside V .
[You may assume that the vector potential can be chosen to be divergence–free.]

Paper 4, Section I

7C Electromagnetism
Show that Maxwell’s equations imply the conservation of charge.

A conducting medium has J = σE where σ is a constant. Show that any charge
density decays exponentially in time, at a rate to be determined.

Paper 1, Section II

16C Electromagnetism
Starting from the Lorentz force law acting on a current distribution J obeying

∇ · J = 0, show that the energy of a magnetic dipole m in the presence of a time–
independent magnetic field B is

U = −m ·B .

State clearly any approximations you make.

[You may use without proof the fact that

∫
(a · r) J(r) dV = −1

2
a×

∫
(r× J(r)) dV

for any constant vector a, and the identity

(b×∇)× c = ∇(b · c)− b(∇ · c),

which holds when b is constant.]

A beam of slowly moving, randomly oriented magnetic dipoles enters a region where
the magnetic field is

B = ẑB0 + (yx̂+ xŷ)B1 ,

with B0 and B1 constants. By considering their energy, briefly describe what happens to
those dipoles that are parallel to, and those that are anti-parallel to the direction of B.
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Paper 3, Section II

17C Electromagnetism
Use Maxwell’s equations to show that

d

dt

∫

Ω

(
ǫ0
2
E ·E+

1

2µ0
B ·B

)
dV +

∫

Ω
J ·E dV = − 1

µ0

∫

∂Ω
(E ×B) · n dS,

where Ω ⊂ R3 is a bounded region, ∂Ω its boundary and n its outward–pointing normal.
Give an interpretation for each of the terms in this equation.

A certain capacitor consists of two conducting, circular discs, each of large area A,
separated by a small distance along their common axis. Initially, the plates carry charges
q0 and −q0. At time t = 0 the plates are connected by a resistive wire, causing the charge
on the plates to decay slowly as q(t) = q0 e

−λt for some constant λ. Construct the Poynting
vector and show that energy flows radially out of the capacitor as it discharges.

Paper 2, Section II

18C Electromagnetism
A plane with unit normal n supports a charge density and a current density that

are each time–independent. Show that the tangential components of the electric field and
the normal component of the magnetic field are continuous across the plane.

Albert moves with constant velocity v = vn relative to the plane. Find the boundary
conditions at the plane on the normal component of the magnetic field and the tangential
components of the electric field as seen in Albert’s frame.
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Paper 1, Section I

5D Fluid Dynamics
Show that the flow with velocity potential

φ =
q

2π
ln r

in two-dimensional, plane-polar coordinates (r, θ) is incompressible in r > 0. Determine
the flux of fluid across a closed contour C that encloses the origin. What does this flow
represent?

Show that the flow with velocity potential

φ =
q

4π
ln

(
x2 + (y − a)2

)
+

q

4π
ln
(
x2 + (y + a)2

)

has no normal flow across the line y = 0. What fluid flow does this represent in the
unbounded plane? What flow does it represent for fluid occupying the domain y > 0?

Paper 2, Section I

7D Fluid Dynamics
The Euler equations for steady fluid flow u in a rapidly rotating system can be

written
ρf × u = −∇p+ ρg,

where ρ is the density of the fluid, p is its pressure, g is the acceleration due to gravity and
f = (0, 0, f) is the constant Coriolis parameter in a Cartesian frame of reference (x, y, z),
with z pointing vertically upwards.

Fluid occupies a layer of slowly-varying height h(x, y). Given that the pressure
p = p0 is constant at z = h and that the flow is approximately horizontal with components
u = (u, v, 0), show that the contours of h are streamlines of the horizontal flow. What is
the leading-order horizontal volume flux of fluid between two locations at which h = h0
and h = h0 +∆h, where ∆h≪ h0?

Identify the dimensions of all the quantities involved in your expression for the
volume flux and show that your expression is dimensionally consistent.
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Paper 1, Section II

17D Fluid Dynamics
A layer of fluid of dynamic viscosity µ, density ρ and uniform thickness h flows down

a rigid vertical plane. The adjacent air has uniform pressure p0 and exerts a tangential
stress on the fluid that is proportional to the surface velocity and opposes the flow, with
constant of proportionality k. The acceleration due to gravity is g.

(a) Draw a diagram of this situation, including indications of the applied stresses and
body forces, a suitable coordinate system and a representation of the expected
velocity profile.

(b) Write down the equations and boundary conditions governing the flow, with a brief
description of each, paying careful attention to signs. Solve these equations to
determine the pressure and velocity fields in terms of the parameters given above.

(c) Show that the surface velocity of the fluid layer is
ρgh2

2µ

(
1 +

kh

µ

)−1

.

(d) Determine the volume flux per unit width of the plane for general values of k and
its limiting values when k → 0 and k → ∞.

Paper 4, Section II

18D Fluid Dynamics
A deep layer of inviscid fluid is initially confined to the region 0 < x < a, 0 < y < a,

z < 0 in Cartesian coordinates, with z directed vertically upwards. An irrotational
disturbance is caused to the fluid so that its upper surface takes position z = η(x, y, t).
Determine the linear normal modes of the system and the dispersion relation between the
frequencies of the normal modes and their wavenumbers.

If the interface is initially displaced to position z = ǫ cos
3πx

a
cos

4πy

a
and released

from rest, where ǫ is a small constant, determine its position for subsequent times. How
far below the surface will the velocity have decayed to 1/e times its surface value?
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Paper 3, Section II

18D Fluid Dynamics
A soap bubble of radius a(t) is attached to the end of a long, narrow straw of internal

radius ǫ and length L, the other end of which is open to the atmosphere. The pressure
difference between the inside and outside of the bubble is 2γ/a, where γ is the surface
tension of the soap bubble. At time t = 0, a = a0 and the air in the straw is at rest.
Assume that the flow of air through the straw is irrotational and consider the pressure
drop along the straw to show that subsequently

a3ä+ 2a2ȧ2 = − γǫ2

2ρL
,

where ρ is the density of air.

By multiplying the equation by 2aȧ and integrating, or otherwise, determine an
implicit equation for a(t) and show that the bubble disappears in a time

t =
π

2

a20
ǫ

(
ρL

2γ

)1/2

.

[Hint: The substitution a = a0 sin θ can be used.]
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Paper 1, Section I

3G Geometry

(a) State the Gauss–Bonnet theorem for spherical triangles.

(b) Prove that any geodesic triangulation of the sphere has Euler number equal to 2.

(c) Prove that there is no geodesic triangulation of the sphere in which every vertex is
adjacent to exactly 6 triangles.

Paper 3, Section I

5G Geometry
Consider a quadrilateral ABCD in the hyperbolic plane whose sides are hyperbolic

line segments. Suppose angles ABC, BCD and CDA are right-angles. Prove that AD is
longer than BC.

[You may use without proof the distance formula in the upper-half-plane model

ρ(z1, z2) = 2 tanh−1

∣∣∣∣
z1 − z2
z1 − z̄2

∣∣∣∣ .]

Paper 3, Section II

14G Geometry
Let U be an open subset of the plane R2, and let σ : U → S be a smooth

parametrization of a surface S. A coordinate curve is an arc either of the form

αv0(t) = σ(t, v0)

for some constant v0 and t ∈ [u1, u2], or of the form

βu0
(t) = σ(u0, t)

for some constant u0 and t ∈ [v1, v2]. A coordinate rectangle is a rectangle in S whose
sides are coordinate curves.

Prove that all coordinate rectangles in S have opposite sides of the same length if
and only if ∂E

∂v = ∂G
∂u = 0 at all points of S, where E and G are the usual components of

the first fundamental form, and (u, v) are coordinates in U .
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Paper 2, Section II

14G Geometry
For any matrix

A =

(
a b
c d

)
∈ SL(2,R),

the corresponding Möbius transformation is

z 7→ Az =
az + b

cz + d
,

which acts on the upper half-plane H, equipped with the hyperbolic metric ρ.

(a) Assuming that |tr A| > 2, prove that A is conjugate in SL(2,R) to a diagonal matrix
B. Determine the relationship between |tr A| and ρ(i, Bi).

(b) For a diagonal matrix B with |tr B| > 2, prove that

ρ(x,Bx) > ρ(i, Bi)

for all x ∈ H not on the imaginary axis.

(c) Assume now that |tr A| < 2. Prove that A fixes a point in H.

(d) Give an example of a matrix A in SL(2,R) that does not preserve any point or
hyperbolic line in H. Justify your answer.

Paper 4, Section II

15G Geometry
A Möbius strip in R3 is parametrized by

σ(u, v) =
(
Q(u, v) sin u,Q(u, v) cos u, v cos(u/2)

)

for (u, v) ∈ U = (0, 2π)×R, where Q ≡ Q(u, v) = 2− v sin(u/2). Show that the Gaussian
curvature is

K =
−1

(v2/4 +Q2)2

at (u, v) ∈ U .
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Paper 3, Section I

1G Groups, Rings and Modules

(a) Find all integer solutions to x2 + 5y2 = 9.

(b) Find all the irreducibles in Z[
√
−5] of norm 9.

Paper 4, Section I

2G Groups, Rings and Modules

(a) Show that every automorphism α of the dihedral group D6 is equal to conjugation
by an element of D6; that is, there is an h ∈ D6 such that

α(g) = hgh−1

for all g ∈ D6.

(b) Give an example of a non-abelian group G with an automorphism which is not equal
to conjugation by an element of G.

Paper 2, Section I

2G Groups, Rings and Modules
Let R be a principal ideal domain and x a non-zero element of R. We define a new

ring R′ as follows. We define an equivalence relation ∼ on R× {xn | n ∈ Z>0} by

(r, xn) ∼ (r′, xn
′

)

if and only if xn
′

r = xnr′. The underlying set of R′ is the set of ∼-equivalence classes. We
define addition on R′ by

[(r, xn)] + [(r′, xn
′

)] = [(xn
′

r + xnr′, xn+n′

)]

and multiplication by [(r, xn)][(r′, xn
′

)] = [(rr′, xn+n′

)].

(a) Show that R′ is a well defined ring.

(b) Prove that R′ is a principal ideal domain.
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Paper 1, Section II

10G Groups, Rings and Modules

(a) State Sylow’s theorems.

(b) Prove Sylow’s first theorem.

(c) Let G be a group of order 12. Prove that either G has a unique Sylow 3-subgroup
or G ∼= A4.

Paper 4, Section II

11G Groups, Rings and Modules

(a) State the classification theorem for finitely generated modules over a Euclidean
domain.

(b) Deduce the existence of the rational canonical form for an n × n matrix A over a
field F .

(c) Compute the rational canonical form of the matrix

A =




3/2 1 0
−1 −1/2 0
2 2 1/2




Paper 3, Section II

11G Groups, Rings and Modules

(a) State Gauss’s Lemma.

(b) State and prove Eisenstein’s criterion for the irreducibility of a polynomial.

(c) Determine whether or not the polynomial

f(X) = 2X3 + 19X2 − 54X + 3

is irreducible over Q.
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Paper 2, Section II

11G Groups, Rings and Modules

(a) Prove that every principal ideal domain is a unique factorization domain.

(b) Consider the ring R = {f(X) ∈ Q[X] | f(0) ∈ Z}.

(i) What are the units in R?

(ii) Let f(X) ∈ R be irreducible. Prove that either f(X) = ±p, for p ∈ Z a
prime, or deg(f)> 1 and f(0) = ±1.

(iii) Prove that f(X) = X is not expressible as a product of irreducibles.
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Paper 1, Section I

1E Linear Algebra
State the Rank-Nullity Theorem.

If α : V → W and β : W → X are linear maps and W is finite dimensional, show
that

dim Im(α) = dim Im(βα) + dim(Im(α) ∩Ker(β)).

If γ : U → V is another linear map, show that

dim Im(βα) + dim Im(αγ) 6 dim Im(α) + dim Im(βαγ).

Paper 2, Section I

1E Linear Algebra
Let V be a real vector space. Define the dual vector space V ∗ of V . If U is a

subspace of V , define the annihilator U0 of U . If x1, x2, . . . , xn is a basis for V , define its
dual x∗1, x

∗
2, . . . , x

∗
n and prove that it is a basis for V ∗.

If V has basis x1, x2, x3, x4 and U is the subspace spanned by

x1 + 2x2 + 3x3 + 4x4 and 5x1 + 6x2 + 7x3 + 8x4,

give a basis for U0 in terms of the dual basis x∗1, x
∗
2, x

∗
3, x

∗
4.

Paper 4, Section I

1E Linear Algebra
Define a quadratic form on a finite dimensional real vector space. What does it

mean for a quadratic form to be positive definite?

Find a basis with respect to which the quadratic form

x2 + 2xy + 2y2 + 2yz + 3z2

is diagonal. Is this quadratic form positive definite?
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Paper 1, Section II

9E Linear Algebra
Define a Jordan block Jm(λ). What does it mean for a complex n× n matrix to be

in Jordan normal form?

If A is a matrix in Jordan normal form for an endomorphism α : V → V , prove that

dimKer((α− λI)r)− dimKer((α− λI)r−1)

is the number of Jordan blocks Jm(λ) of A with m > r.

Find a matrix in Jordan normal form for Jm(λ)2. [Consider all possible values of λ.]

Find a matrix in Jordan normal form for the complex matrix




0 0 0 a1
0 0 a2 0
0 a3 0 0
a4 0 0 0




assuming it is invertible.

Paper 2, Section II

10E Linear Algebra
If X is an n×m matrix over a field, show that there are invertible matrices P and

Q such that

Q−1XP =

[
Ir 0
0 0

]

for some 0 6 r 6 min(m,n), where Ir is the identity matrix of dimension r.

For a square matrix of the form A =

[
B D
0 C

]
with B and C square matrices, prove

that det(A) = det(B) det(C).

If A ∈ Mn×n(C) and B ∈ Mm×m(C) have no common eigenvalue, show that the
linear map

L :Mn×m(C) −→Mn×m(C)

X 7−→ AX −XB

is injective.
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Paper 4, Section II

10E Linear Algebra
Let V be a finite dimensional inner-product space over C. What does it mean to

say that an endomorphism of V is self-adjoint? Prove that a self-adjoint endomorphism
has real eigenvalues and may be diagonalised.

An endomorphism α : V → V is called positive definite if it is self-adjoint and
satisfies 〈α(x), x〉 > 0 for all non-zero x ∈ V ; it is called negative definite if −α is positive
definite. Characterise the property of being positive definite in terms of eigenvalues, and
show that the sum of two positive definite endomorphisms is positive definite.

Show that a self-adjoint endomorphism α : V → V has all eigenvalues in the interval
[a, b] if and only if α − λI is positive definite for all λ < a and negative definite for all
λ > b.

Let α, β : V → V be self-adjoint endomorphisms whose eigenvalues lie in the
intervals [a, b] and [c, d] respectively. Show that all of the eigenvalues of α + β lie in
the interval [a+ c, b+ d].

Paper 3, Section II

10E Linear Algebra
State and prove the Cayley–Hamilton Theorem.

Let A be an n×n complex matrix. Using division of polynomials, show that if p(x)
is a polynomial then there is another polynomial r(x) of degree at most (n− 1) such that
p(λ) = r(λ) for each eigenvalue λ of A and such that p(A) = r(A).

Hence compute the (1, 1) entry of the matrix A1000 when

A =




2 −1 0
1 −1 1
−1 −1 1


 .
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Paper 3, Section I

9H Markov Chains
The mathematics course at the University of Barchester is a three-year one. After

the end-of-year examinations there are three possibilities:

(i) failing and leaving (probability p);

(ii) taking that year again (probability q);

(iii) going on to the next year (or graduating, if the current year is the third one)
(probability r).

Thus there are five states for a student (1st year, 2nd year, 3rd year, left without a degree,
graduated).

Write down the 5×5 transition matrix. Classify the states, assuming p, q, r ∈ (0, 1).
Find the probability that a student will eventually graduate.

Paper 4, Section I

9H Markov Chains
Let P = (pij)i,j∈S be the transition matrix for an irreducible Markov chain on the

finite state space S.

(a) What does it mean to say that a distribution π is the invariant distribution for the
chain?

(b) What does it mean to say that the chain is in detailed balance with respect to
a distribution π? Show that if the chain is in detailed balance with respect to a
distribution π then π is the invariant distribution for the chain.

(c) A symmetric random walk on a connected finite graph is the Markov chain whose
state space is the set of vertices of the graph and whose transition probabilities are

pij =

{
1/Di if j is adjacent to i
0 otherwise

where Di is the number of vertices adjacent to vertex i. Show that the random walk
is in detailed balance with respect to its invariant distribution.
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Paper 1, Section II

20H Markov Chains
A coin-tossing game is played by two players, A1 and A2. Each player has a

coin and the probability that the coin tossed by player Ai comes up heads is pi, where
0 < pi < 1, i = 1, 2. The players toss their coins according to the following scheme: A1

tosses first and then after each head, A2 pays A1 one pound and A1 has the next toss,
while after each tail, A1 pays A2 one pound and A2 has the next toss.

Define a Markov chain to describe the state of the game. Find the probability that
the game ever returns to a state where neither player has lost money.

Paper 2, Section II

20H Markov Chains
For a finite irreducible Markov chain, what is the relationship between the invariant

probability distribution and the mean recurrence times of states?

A particle moves on the 2n vertices of the hypercube, {0, 1}n, in the following way:
at each step the particle is equally likely to move to each of the n adjacent vertices,
independently of its past motion. (Two vertices are adjacent if the Euclidean distance
between them is one.) The initial vertex occupied by the particle is (0, 0, . . . , 0). Calculate
the expected number of steps until the particle

(i) first returns to (0, 0, . . . , 0),

(ii) first visits (0, 0, . . . , 0, 1),

(iii) first visits (0, 0, . . . , 0, 1, 1).
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Paper 2, Section I

5C Methods
Show that

a(x, y)

(
dy

ds

)2

− 2b(x, y)
dx

ds

dy

ds
+ c(x, y)

(
dx

ds

)2

= 0

along a characteristic curve (x(s), y(s)) of the 2nd-order pde

a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy = f(x, y) .

Paper 4, Section I

5A Methods
By using separation of variables, solve Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0 0 < x < 1, 0 < y < 1,

subject to

u(0, y) = 0 0 6 y 6 1,

u(1, y) = 0 0 6 y 6 1,

u(x, 0) = 0 0 6 x 6 1,

u(x, 1) = 2 sin(3πx) 0 6 x 6 1.

Paper 3, Section I

7A Methods

(a) Determine the Green’s function G(x; ξ) satisfying

G′′ − 4G′ + 4G = δ(x− ξ),

with G(0; ξ) = G(1; ξ) = 0. Here ′ denotes differentiation with respect to x.

(b) Using the Green’s function, solve

y′′ − 4y′ + 4y = e2x,

with y(0) = y(1) = 0.
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Paper 1, Section II

14C Methods
Define the convolution f ∗g of two functions f and g. Defining the Fourier transform

f̃ of f by

f̃(k) =

∫ ∞

−∞
e−ikx f(x) dx ,

show that
f̃ ∗ g (k) = f̃(k) g̃(k) .

Given that the Fourier transform of f(x) = 1/x is

f̃(k) = −iπ sgn(k) ,

find the Fourier transform of sin(x)/x2.
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Paper 3, Section II

15A Methods
Consider the Dirac delta function, δ(x), defined by the sampling property

∫ ∞

−∞
f(x)δ(x− x0) dx = f(x0),

for any suitable function f(x) and real constant x0.

(a) Show that δ(αx) = |α|−1δ(x) for any non-zero α ∈ R.

(b) Show that xδ′(x) = −δ(x), where ′ denotes differentiation with respect to x.

(c) Calculate ∫ ∞

−∞
f(x) δ(m)(x) dx,

where δ(m)(x) is the mth derivative of the delta function.

(d) For

γn(x) =
1

π

n

(nx)2 + 1
,

show that lim
n→∞

γn(x) = δ(x).

(e) Find expressions in terms of the delta function and its derivatives for

(i)

lim
n→∞

n3x e−x2n2

.

(ii)

lim
n→∞

1

π

∫ n

0
cos(kx) dk.

(f) Hence deduce that

lim
n→∞

1

2π

∫ n

−n
eikx dk = δ(x).

[You may assume that

∫ ∞

−∞
e−y2 dy =

√
π and

∫ ∞

−∞

sin y

y
dy = π.]
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Paper 2, Section II

16A Methods

(a) Let f(x) be a 2π-periodic function (i.e. f(x) = f(x+2π) for all x) defined on [−π, π]
by

f(x) =

{
x x ∈ [0, π]

−x x ∈ [−π, 0]

Find the Fourier series of f(x) in the form

f(x) = 1
2a0 +

∞∑

n=1

an cos(nx) +

∞∑

n=1

bn sin(nx).

(b) Find the general solution to

y′′ + 2y′ + y = f(x)

where f(x) is as given in part (a) and y(x) is 2π-periodic.
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Paper 4, Section II

17C Methods
Let Ω be a bounded region in the plane, with smooth boundary ∂Ω. Green’s second

identity states that for any smooth functions u, v on Ω

∫

Ω

(
u∇2v − v∇2u

)
dxdy =

∮

∂Ω
u (n ·∇v)− v (n ·∇u) ds ,

where n is the outward pointing normal to ∂Ω. Using this identity with v replaced by

G0(x;x0) =
1

2π
ln (‖x− x0‖) =

1

4π
ln
(
(x− x0)

2 + (y − y0)
2
)

and taking care of the singular point (x, y) = (x0, y0), show that if u solves the Poisson
equation ∇2u = −ρ then

u(x) = −
∫

Ω
G0(x;x0) ρ(x0) dx0 dy0

+

∮

∂Ω

(
u(x0)n ·∇G0(x;x0)−G0(x;x0)n ·∇u(x0)

)
ds

at any x = (x, y) ∈ Ω, where all derivatives are taken with respect to x0 = (x0, y0).

In the case that Ω is the unit disc ‖x‖ 6 1, use the method of images to show that
the solution to Laplace’s equation ∇2u = 0 inside Ω, subject to the boundary condition

u(1, θ) = δ(θ − α),

is

u(r, θ) =
1

2π

1− r2

1 + r2 − 2r cos(θ − α)
,

where (r, θ) are polar coordinates in the disc and α is a constant.

[Hint: The image of a point x0 ∈ Ω is the point y0 = x0/‖x0‖2, and then

‖x− x0‖ = ‖x0‖ ‖x− y0‖

for all x ∈ ∂Ω.]
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Paper 3, Section I

3E Metric and Topological Spaces
What does it mean to say that a topological space is connected? IfX is a topological

space and x ∈ X, show that there is a connected subspace Kx of X so that if S is any
other connected subspace containing x then S ⊆ Kx.

Show that the sets Kx partition X.

Paper 2, Section I

4E Metric and Topological Spaces
What does it mean to say that d is a metric on a set X? What does it mean to

say that a subset of X is open with respect to the metric d? Show that the collection of
subsets of X that are open with respect to d satisfies the axioms of a topology.

For X = C[0, 1], the set of continuous functions f : [0, 1] → R, show that the metrics

d1(f, g) =

∫ 1

0
|f(x)− g(x)|dx

d2(f, g) =

[∫ 1

0
|f(x)− g(x)|2 dx

]1/2

give different topologies.

Paper 1, Section II

12E Metric and Topological Spaces
What does it mean to say that a topological space is compact? Prove directly from

the definition that [0, 1] is compact. Hence show that the unit circle S1 ⊂ R2 is compact,
proving any results that you use. [You may use without proof the continuity of standard
functions.]

The set R2 has a topology T for which the closed sets are the empty set and the
finite unions of vector subspaces. Let X denote the set R2\{0} with the subspace topology
induced by T . By considering the subspace topology on S1 ⊂ R2, or otherwise, show that
X is compact.
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Paper 4, Section II

13E Metric and Topological Spaces
Let X = {2, 3, 4, 5, 6, 7, 8, . . .} and for each n ∈ X let

Un = {d ∈ X | d divides n}.

Prove that the set of unions of the sets Un forms a topology on X.

Prove or disprove each of the following:

(i) X is Hausdorff;

(ii) X is compact.

If Y and Z are topological spaces, Y is the union of closed subspaces A and B, and
f : Y → Z is a function such that both f |A : A → Z and f |B : B → Z are continuous,
show that f is continuous. Hence show that X is path-connected.
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Paper 1, Section I

6D Numerical Analysis
The Trapezoidal Rule for solving the differential equation

y′(t) = f(t, y), t ∈ [0, T ], y(0) = y0

is defined by
yn+1 = yn + 1

2h [f(tn, yn) + f(tn+1, yn+1)] ,

where h = tn+1 − tn.

Determine the minimum order of convergence k of this rule for general functions f
that are sufficiently differentiable. Show with an explicit example that there is a function
f for which the local truncation error is Ahk+1 for some constant A.

Paper 4, Section I

8D Numerical Analysis
Let

A =




1 2 1 2
2 5 5 6
1 5 13 14
2 6 14 λ


 , b =




1
3
7
µ


 ,

where λ and µ are real parameters. Find the LU factorisation of the matrix A. For what
values of λ does the equation Ax = b have a unique solution for x?

For λ = 20, use the LU decomposition with forward and backward substitution to
determine a value for µ for which a solution to Ax = b exists. Find the most general
solution to the equation in this case.
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Paper 1, Section II

18D Numerical Analysis
Show that if u ∈ Rm \ {0} then the m×m matrix transformation

Hu = I − 2
uu⊤

‖u‖2

is orthogonal. Show further that, for any two vectors a, b ∈ Rm of equal length,

Ha−ba = b.

Explain how to use such transformations to convert an m×n matrix A with m > n
into the form A = QR, where Q is an orthogonal matrix and R is an upper-triangular
matrix, and illustrate the method using the matrix

A =




1 −1 4
1 4 −2
1 4 2
1 −1 0


 .
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Paper 3, Section II

19D Numerical Analysis
Taylor’s theorem for functions f ∈ Ck+1[a, b] is given in the form

f(x) = f(a) + (x− a)f ′(a) + · · ·+ (x− a)k

k!
f (k)(a) +R(x).

Use integration by parts to show that

R(x) =
1

k!

∫ x

a
(x− θ)kf (k+1)(θ) dθ.

Let λk be a linear functional on Ck+1[a, b] such that λk[p] = 0 for p ∈ Pk. Show
that

λk[f ] =
1

k!

∫ b

a
K(θ)f (k+1)(θ) dθ, (†)

where the Peano kernel function K(θ) = λk
[
(x− θ)k+

]
. [You may assume that the

functional commutes with integration over a fixed interval.]

The error in the mid-point rule for numerical quadrature on [0, 1] is given by

e[f ] =

∫ 1

0
f(x)dx− f(12).

Show that e[p] = 0 if p is a linear polynomial. Find the Peano kernel function
corresponding to e explicitly and verify the formula (†) in the case f(x) = x2.
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Paper 2, Section II

19D Numerical Analysis
Show that the recurrence relation

p0(x) = 1,

pn+1(x) = qn+1(x)−
n∑

k=0

〈qn+1, pk〉
〈pk, pk〉

pk(x),

where 〈·, ·〉 is an inner product on real polynomials, produces a sequence of orthogonal,
monic, real polynomials pn(x) of degree exactly n of the real variable x, provided that qn
is a monic, real polynomial of degree exactly n.

Show that the choice qn+1(x) = xpn(x) leads to a three-term recurrence relation of
the form

p0(x) = 1,

p1(x) = x− α0,

pn+1(x) = (x− αn)pn(x)− βnpn−1(x),

where αn and βn are constants that should be determined in terms of the inner products
〈pn, pn〉, 〈pn−1, pn−1〉 and 〈pn, xpn〉.

Use this recurrence relation to find the first four monic Legendre polynomials, which
correspond to the inner product defined by

〈p, q〉 ≡
∫ 1

−1
p(x)q(x)dx.
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Paper 1, Section I

8H Optimisation
What is meant by a transportation problem? Illustrate the transportation algorithm

by solving the problem with three sources and three destinations described by the table

Destinations
4 3 1 10

Sources 6 10 3 8
3 5 7 8
3 9 14

where the figures in the boxes denote transportation costs, the right-hand column denotes
supplies, and the bottom row denotes requirements.

Paper 2, Section I

9H Optimisation
What does it mean to state that f : Rn → R is a convex function?

Suppose that f, g : Rn → R are convex functions, and for b ∈ R let

φ(b) = inf{f(x) : g(x) 6 b}.

Assuming φ(b) is finite for all b ∈ R, prove that the function φ is convex.

Paper 4, Section II

20H Optimisation
Given a network with a source A, a sink B, and capacities on directed edges, define

a cut. What is meant by the capacity of a cut? State the max-flow min-cut theorem. If
the capacities of edges are integral, what can be said about the maximum flow?

Consider an m × n matrix A in which each entry is either 0 or 1. We say that a
set of lines (rows or columns of the matrix) covers the matrix if each 1 belongs to some
line of the set. We say that a set of 1’s is independent if no pair of 1’s of the set lie in
the same line. Use the max-flow min-cut theorem to show that the maximal number of
independent 1’s equals the minimum number of lines that cover the matrix.
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Paper 3, Section II

21H Optimisation
State and prove the Lagrangian Sufficiency Theorem.

The manufacturers, A and B, of two competing soap powders must plan how to
allocate their advertising resources (X and Y pounds respectively) among n distinct
geographical regions. If xi > 0 and yi > 0 denote, respectively, the resources allocated to
area i by A and B then the number of packets sold by A and B in area i are

xiui
xi + yi

,
yiui
xi + yi

respectively, where ui is the total market in area i, and u1, u2, . . . , un are known constants.
The difference between the amount sold by A and B is then

n∑

i=1

xi − yi
xi + yi

ui.

A seeks to maximize this quantity, while B seeks to minimize it.

(i) If A knows B’s allocation, how should A choose x = (x1, x2, . . . , xn)?

(ii) Determine the best strategies for A and B if each assumes the other will know
its strategy and react optimally.
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Paper 4, Section I

6B Quantum Mechanics
A particle moving in one space dimension with wavefunction Ψ(x, t) obeys the time-

dependent Schrödinger equation. Write down the probability density ρ and current density
j in terms of the wavefunction and show that they obey the equation

∂j

∂x
+
∂ρ

∂t
= 0 .

Evaluate j(x, t) in the case that

Ψ(x, t) =
(
Aeikx +Be−ikx

)
e−iEt/~ ,

where E = ~2k2/2m, and A and B are constants, which may be complex.

Paper 3, Section I

8B Quantum Mechanics
What is meant by the statement that an operator is Hermitian?

Consider a particle of mass m in a real potential V (x) in one dimension. Show that
the Hamiltonian of the system is Hermitian.

Starting from the time-dependent Schrödinger equation, show that

d

dt
〈x̂〉 = 1

m
〈p̂〉, d

dt
〈p̂〉 = −〈V ′(x̂)〉,

where p̂ is the momentum operator and 〈Â〉 denotes the expectation value of the operator Â.

Paper 1, Section II

15B Quantum Mechanics
The relative motion of a neutron and proton is described by the Schrödinger equation

for a single particle of mass m under the influence of the central potential

V (r) =

{
−U r < a

0 r > a

where U and a are positive constants. Solve this equation for a spherically symmetric state
of the deuteron, which is a bound state of a proton and a neutron, giving the condition
on U for this state to exist.

[If ψ is spherically symmetric then ∇2ψ = 1
r

d2

dr2
(rψ).]
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Paper 3, Section II

16B Quantum Mechanics
What is the physical significance of the expectation value

〈Q〉 =
∫
ψ∗(x)Qψ(x)dx

of an observable Q in the normalised state ψ(x)? Let P and Q be two observables. By
considering the norm of (Q+ iλP )ψ for real values of λ, show that

〈Q2〉〈P 2〉 > 1

4
|〈[Q,P ]〉|2.

Deduce the generalised uncertainty relation

∆Q ∆P >
1

2
|〈[Q,P ]〉|,

where the uncertainty ∆Q in the state ψ(x) is defined by

(∆Q)2 = 〈(Q− 〈Q〉)2〉.

A particle of mass m moves in one dimension under the influence of the potential
1
2mω

2x2. By considering the commutator [x, p], show that every energy eigenvalue E
satisfies

E >
1
2~ω.

Paper 2, Section II

17B Quantum Mechanics
For an electron in a hydrogen atom, the stationary-state wavefunctions are of the

form ψ(r, θ, φ) = R(r)Ylm(θ, φ), where in suitable units R obeys the radial equation

d2R

dr2
+

2

r

dR

dr
− l(l + 1)

r2
R+ 2

(
E +

1

r

)
R = 0 .

Explain briefly how the terms in this equation arise.

This radial equation has bound-state solutions of energy E = En, where
En = − 1

2n2 (n = 1, 2, 3, . . . ). Show that when l = n − 1, there is a solution of the form

R(r) = rαe−r/n, and determine α. Find the expectation value 〈r〉 in this state.

Determine the total degeneracy of the energy level with energy En.
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Paper 1, Section I

7H Statistics
X1, X2, . . . ,Xn form a random sample from a distribution whose probability density

function is

f(x; θ) =





2x

θ2
0 6 x 6 θ

0 otherwise,

where the value of the positive parameter θ is unknown. Determine the maximum
likelihood estimator of the median of this distribution.

Paper 2, Section I

8H Statistics
Define a simple hypothesis. Define the terms size and power for a test of one simple

hypothesis against another. State the Neyman-Pearson lemma.

There is a single observation of a random variable X which has a probability density
function f(x). Construct a best test of size 0.05 for the null hypothesis

H0 : f(x) = 1
2 , −1 6 x 6 1,

against the alternative hypothesis

H1 : f(x) =
3

4
(1− x2), −1 6 x 6 1.

Calculate the power of your test.
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Paper 1, Section II

19H Statistics

(a) Consider the general linear model Y = Xθ + ε where X is a known n× p matrix, θ
is an unknown p× 1 vector of parameters, and ε is an n × 1 vector of independent
N(0, σ2) random variables with unknown variances σ2. Show that, provided the
matrix X is of rank p, the least squares estimate of θ is

θ̂ = (XTX)−1XTY.

Let
ε̂ = Y −Xθ̂.

What is the distribution of ε̂Tε̂? Write down, in terms of ε̂Tε̂, an unbiased estimator
of σ2.

(b) Four points on the ground form the vertices of a plane quadrilateral with interior
angles θ1, θ2, θ3, θ4, so that θ1+ θ2+ θ3+ θ4 = 2π. Aerial observations Z1, Z2, Z3, Z4

are made of these angles, where the observations are subject to independent errors
distributed as N(0, σ2) random variables.

(i) Represent the preceding model as a general linear model with observations
(Z1, Z2, Z3, Z4 − 2π) and unknown parameters (θ1, θ2, θ3).

(ii) Find the least squares estimates θ̂1, θ̂2, θ̂3.

(iii) Determine an unbiased estimator of σ2. What is its distribution?
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Paper 4, Section II

19H Statistics
There is widespread agreement amongst the managers of the Reliable Motor

Company that the number X of faulty cars produced in a month has a binomial
distribution

P (X = s) =

(
n

s

)
ps(1− p)n−s (s = 0, 1, . . . , n; 0 6 p 6 1),

where n is the total number of cars produced in a month. There is, however, some dispute
about the parameter p. The general manager has a prior distribution for p which is
uniform, while the more pessimistic production manager has a prior distribution with
density 2p, both on the interval [0, 1].

In a particular month, s faulty cars are produced. Show that if the general manager’s
loss function is (p̂−p)2, where p̂ is her estimate and p the true value, then her best estimate
of p is

p̂ =
s+ 1

n+ 2
.

The production manager has responsibilities different from those of the general manager,
and a different loss function given by (1−p)(p̂−p)2. Find his best estimate of p and show
that it is greater than that of the general manager unless s > 1

2n.

[You may use the fact that for non-negative integers α, β,

∫ 1

0
pα(1− p)βdp =

α!β!

(α+ β + 1)!
. ]
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Paper 3, Section II

20H Statistics
A treatment is suggested for a particular illness. The results of treating a number

of patients chosen at random from those in a hospital suffering from the illness are shown
in the following table, in which the entries a, b, c, d are numbers of patients.

Recovery Non-recovery
Untreated a b
Treated c d

Describe the use of Pearson’s χ2 statistic in testing whether the treatment affects
recovery, and outline a justification derived from the generalised likelihood ratio statistic.
Show that

χ2 =
(ad− bc)2(a+ b+ c+ d)

(a+ b)(c+ d)(a+ c)(b + d)
.

[Hint: You may find it helpful to observe that a(a+ b+ c+ d)− (a+ b)(a+ c) = ad− bc.]

Comment on the use of this statistical technique when

a = 50, b = 10, c = 15, d = 5.
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Paper 1, Section I

4B Variational Principles
Find, using a Lagrange multiplier, the four stationary points in R3 of the function

x2 + y2 + z2 subject to the constraint x2 + 2y2 − z2 = 1. By sketching sections of the
constraint surface in each of the coordinate planes, or otherwise, identify the nature of the
constrained stationary points.

How would the location of the stationary points differ if, instead, the function
x2 + 2y2 − z2 were subject to the constraint x2 + y2 + z2 = 1?

Paper 3, Section I

6B Variational Principles
For a particle of unit mass moving freely on a unit sphere, the Lagrangian in polar

coordinates is

L =
1

2
θ̇2 +

1

2
sin2 θ φ̇2 .

Determine the equations of motion. Show that l = sin2 θ φ̇ is a conserved quantity, and
use this result to simplify the equation of motion for θ. Deduce that

h = θ̇2 +
l2

sin2 θ

is a conserved quantity. What is the interpretation of h?

Paper 2, Section II

15B Variational Principles
Derive the Euler-Lagrange equation for the integral

I[y] =

∫ x1

x0

f(y, y′, y′′, x) dx,

when y(x) and y′(x) take given values at the fixed endpoints.

Show that the only function y(x) with y(0) = 1, y′(0) = 2 and y(x) → 0 as x→ ∞
for which the integral

I[y] =

∫ ∞

0

(
y2 + (y′)2 + (y′ + y′′)2

)
dx

is stationary is (3x+ 1)e−x.
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Paper 4, Section II

16B Variational Principles

(a) A two-dimensional oscillator has action

S =

∫ t1

t0

{
1

2
ẋ2 +

1

2
ẏ2 − 1

2
ω2x2 − 1

2
ω2y2

}
dt .

Find the equations of motion as the Euler-Lagrange equations associated with S,
and use them to show that

J = ẋy − ẏx

is conserved. Write down the general solution of the equations of motion in terms of
sinωt and cosωt, and evaluate J in terms of the coefficients that arise in the general
solution.

(b) Another kind of oscillator has action

S̃ =

∫ t1

t0

{
1

2
ẋ2 +

1

2
ẏ2 − 1

4
αx4 − 1

2
βx2y2 − 1

4
αy4

}
dt ,

where α and β are real constants. Find the equations of motion and use these to
show that in general J = ẋy − ẏx is not conserved. Find the special value of the
ratio β/α for which J is conserved. Explain what is special about the action S̃ in
this case, and state the interpretation of J .
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