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Paper 1, Section I

3E Analysis I
Prove that an increasing sequence in R that is bounded above converges.

Let f : R → (0,∞) be a decreasing function. Let x1 = 1 and xn+1 = xn + f(xn).
Prove that xn → ∞ as n → ∞.

Paper 1, Section I

4D Analysis I
Define the radius of convergence R of a complex power series

∑

anz
n. Prove that

∑

anz
n converges whenever |z| < R and diverges whenever |z| > R.

If |an| 6 |bn| for all n does it follow that the radius of convergence of
∑

anz
n is at

least that of
∑

bnz
n? Justify your answer.

Paper 1, Section II

9F Analysis I

(a) Let f : R → R be a function, and let x ∈ R. Define what it means for f to be
continuous at x. Show that f is continuous at x if and only if f(xn) → f(x) for
every sequence (xn) with xn → x.

(b) Let f : R → R be a non-constant polynomial. Show that its image {f(x) : x ∈ R}
is either the real line R, the interval [a,∞) for some a ∈ R, or the interval (−∞, a]
for some a ∈ R.

(c) Let α > 1, let f : (0,∞) → R be continuous, and assume that f(x) = f(xα) holds
for all x > 0. Show that f must be constant.

Is this also true when the condition that f be continuous is dropped?
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Paper 1, Section II

10F Analysis I

(a) Let f : R → R be differentiable at x0 ∈ R. Show that f is continuous at x0.

(b) State the Mean Value Theorem. Prove the following inequalities:

| cos(e−x)− cos(e−y)| 6 |x− y| for x, y > 0

and
log(1 + x) 6

x√
1 + x

for x > 0.

(c) Determine at which points the following functions from R to R are differentiable,
and find their derivatives at the points at which they are differentiable:

f(x) =

{

|x|x if x 6= 0

1 if x = 0,
g(x) = cos(|x|), h(x) = x|x|.

(d) Determine the points at which the following function from R to R is continuous:

f(x) =

{

0 if x 6∈ Q or x = 0

1/q if x = p/q where p ∈ Z \ {0} and q ∈ N are relatively prime.

Paper 1, Section II

11E Analysis I
State and prove the Comparison Test for real series.

Assume 0 6 xn < 1 for all n ∈ N. Show that if
∑

xn converges, then so do
∑

x2n
and

∑ xn

1−xn
. In each case, does the converse hold? Justify your answers.

Let (xn) be a decreasing sequence of positive reals. Show that if
∑

xn converges,
then nxn → 0 as n → ∞. Does the converse hold? If

∑

xn converges, must it be the case
that (n log n)xn → 0 as n → ∞? Justify your answers.
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Paper 1, Section II

12D Analysis I
(a) Let q1, q2, . . . be a fixed enumeration of the rationals in [0, 1]. For positive reals

a1, a2, . . ., define a function f from [0, 1] to R by setting f(qn) = an for each n and f(x) = 0
for x irrational. Prove that if an → 0 then f is Riemann integrable. If an 6→ 0, can f be
Riemann integrable? Justify your answer.

(b) State and prove the Fundamental Theorem of Calculus.

Let f be a differentiable function from R to R, and set g(x) = f ′(x) for 0 6 x 6 1.
Must g be Riemann integrable on [0, 1]?

Part IA, 2018 List of Questions



5

Paper 2, Section I

1B Differential Equations
Consider the following difference equation for real un:

un+1 = aun(1− u2n)

where a is a real constant.

For −∞ < a < ∞ find the steady-state solutions, i.e. those with un+1 = un for all n,
and determine their stability, making it clear how the number of solutions and the stability
properties vary with a. [You need not consider in detail particular values of a which sepa-
rate intervals with different stability properties.]

Paper 2, Section I

2B Differential Equations
Show that for given P (x, y), Q(x, y) there is a function F (x, y) such that, for any

function y(x),

P (x, y) +Q(x, y)
dy

dx
=

d

dx
F (x, y)

if and only if
∂P

∂y
=

∂Q

∂x
.

Now solve the equation

(2y + 3x)
dy

dx
+ 4x3 + 3y = 0 .

Paper 2, Section II

5B Differential Equations
By choosing a suitable basis, solve the equation

(

1 2
1 0

)(

ẋ
ẏ

)

+

(

−2 5
2 −1

)(

x
y

)

= e−4t

(

3b
2

)

+ e−t

(

−3
c− 1

)

,

subject to the initial conditions x(0) = 0, y(0) = 0.

Explain briefly what happens in the cases b = 2 or c = 2.
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Paper 2, Section II

6B Differential Equations
The function u(x, y) satisfies the partial differential equation

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
= 0,

where a, b and c are non-zero constants.

Defining the variables ξ = αx + y and η = βx + y, where α and β are constants,
and writing v(ξ, η) = u(x, y) show that

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
= A(α, β)

∂2v

∂ξ2
+B(α, β)

∂2v

∂ξ∂η
+ C(α, β)

∂2v

∂η2
,

where you should determine the functions A(α, β), B(α, β) and C(α, β).

If the quadratic as2 + bs+ c = 0 has distinct real roots then show that α and β can
be chosen such that A(α, β) = C(α, β) = 0 and B(α, β) 6= 0.

If the quadratic as2 + bs + c = 0 has a repeated root then show that α and β can
be chosen such that A(α, β) = B(α, β) = 0 and C(α, β) 6= 0.

Hence find the general solutions of the equations

(i)
∂2u

∂x2
+ 3

∂2u

∂x∂y
+ 2

∂2u

∂y2
= 0

and

(ii)
∂2u

∂x2
+ 2

∂2u

∂x∂y
+

∂2u

∂y2
= 0.
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Paper 2, Section II

7B Differential Equations
Consider the differential equation

x2
d2y

dx2
+ x

dy

dx
− (x2 + α2)y = 0.

What values of x are ordinary points of the differential equation? What values of
x are singular points of the differential equation, and are they regular singular points or
irregular singular points? Give clear definitions of these terms to support your answers.

For α not equal to an integer there are two linearly independent power series
solutions about x = 0. Give the forms of the two power series and the recurrence relations
that specify the relation between successive coefficients. Give explicitly the first three
terms in each power series.

For α equal to an integer explain carefully why the forms you have specified do not

give two linearly independent power series solutions. Show that for such values of α there
is (up to multiplication by a constant) one power series solution, and give the recurrence
relation between coefficients. Give explicitly the first three terms.

If y1(x) is a solution of the above second-order differential equation then

y2(x) = y1(x)

∫ x

c

1

s[y1(s)]2
ds,

where c is an arbitrarily chosen constant, is a second solution that is linearly independent
of y1(x). For the case α = 1, taking y1(x) to be a power series, explain why the second
solution y2(x) is not a power series.

[You may assume that any power series you use are convergent.]
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Paper 2, Section II

8B Differential Equations
The temperature T in an oven is controlled by a heater which provides heat at rate

Q(t). The temperature of a pizza in the oven is U . Room temperature is the constant
value Tr .

T and U satisfy the coupled differential equations

dT

dt
= −a(T − Tr) +Q(t)

dU

dt
= −b(U − T )

where a and b are positive constants. Briefly explain the various terms appearing in the
above equations.

Heating may be provided by a short-lived pulse at t = 0, with Q(t) = Q1(t) = δ(t) or
by constant heating over a finite period 0 < t < τ , with Q(t) = Q2(t) = τ−1(H(t)−H(t−
τ)), where δ(t) and H(t) are respectively the Dirac delta function and the Heaviside step
function. Again briefly, explain how the given formulae for Q1(t) and Q2(t) are consistent
with their description and why the total heat supplied by the two heating protocols is the
same.

For t < 0, T = U = Tr. Find the solutions for T (t) and U(t) for t > 0, for each of
Q(t) = Q1(t) and Q(t) = Q2(t), denoted respectively by T1(t) and U1(t), and T2(t) and
U2(t). Explain clearly any assumptions that you make about continuity of the solutions
in time.

Show that the solutions T2(t) and U2(t) tend respectively to T1(t) and U1(t) in the
limit as τ → 0 and explain why.
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Paper 4, Section I

3A Dynamics and Relativity
(a) Define an inertial frame.

(b) Specify three different types of Galilean transformation on inertial frames whose
space coordinates are x and whose time coordinate is t.

(c) State the Principle of Galilean Relativity.

(d) Write down the equation of motion for a particle in one dimension x in a potential
V (x). Prove that energy is conserved. A particle is at position x0 at time t0. Find an
expression for time t as a function of x in terms of an integral involving V .

(e) Write down the x values of any equilibria and state (without justification)
whether they are stable or unstable for:

(i) V (x) = (x2 − 4)2

(ii) V (x) = e−1/x2

for x 6= 0 and V (0) = 0.

Paper 4, Section I

4A Dynamics and Relativity
Explain what is meant by a central force acting on a particle moving in three

dimensions.

Show that the angular momentum of a particle about the origin for a central force
is conserved, and hence that its path lies in a plane.

Show that, in the approximation in which the Sun is regarded as fixed and only
its gravitational field is considered, a straight line joining the Sun and an orbiting planet
sweeps out equal areas in equal time (Kepler’s second law).
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Paper 4, Section II

9A Dynamics and Relativity
Consider a rigid body, whose shape and density distribution are rotationally

symmetric about a horizontal axis. The body has mass M , radius a and moment of inertia
I about its axis of rotational symmetry and is rolling down a non-slip slope inclined at an
angle α to the horizontal. By considering its energy, calculate the acceleration of the disc
down the slope in terms of the quantities introduced above and g, the acceleration due to
gravity.

(a) A sphere with density proportional to rc (where r is distance to the sphere’s
centre and c is a positive constant) is launched up a non-slip slope of constant incline at
the same time, level and speed as a vertical disc of constant density. Find c such that the
sphere and the disc return to their launch points at the same time.

(b) Two spherical glass marbles of equal radius are released from rest at time t = 0
on an inclined non-slip slope of constant incline from the same level. The glass in each
marble is of constant and equal density, but the second marble has two spherical air
bubbles in it whose radii are half the radius of the marbles, initially centred directly above
and below the marble’s centre, respectively. Each bubble is centred half-way between the
centre of the marble and its surface. At a later time t, find the ratio of the distance
travelled by the first marble and the second. [ You may state without proof any theorems
that you use and neglect the mass of air in the bubbles. ]
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Paper 4, Section II

10A Dynamics and Relativity
Define the 4-momentum P of a particle of rest mass m and velocity u. Calculate

the power series expansion of the component P 0 for small |u|/c (where c is the speed of
light in vacuo) up to and including terms of order |u|4, and interpret the first two terms.

(a) At CERN, anti-protons are made by colliding a moving proton with another
proton at rest in a fixed target. The collision in question produces three protons and an
anti-proton. Assume that the rest mass of a proton is identical to the rest mass of an
anti-proton. What is the smallest possible speed of the incoming proton (measured in the
laboratory frame)?

(b) A moving particle of rest mass M decays into N particles with 4-momenta Qi,
and rest masses mi, where i = 1, 2, . . . , N . Show that

M =
1

c

√

√

√

√

√

(

N
∑

i=1

Qi

)

·





N
∑

j=1

Qj



.

Thus, show that

M >

N
∑

i=1

mi.

(c) A particle A decays into particle B and a massless particle 1. Particle B
subsequently decays into particle C and a massless particle 2. Show that

0 6 (Q1 +Q2) · (Q1 +Q2) 6
(m2

A −m2
B)(m

2
B −m2

C)c
2

m2
B

,

where Q1 and Q2 are the 4-momenta of particles 1 and 2 respectively and mA,mB ,mC

are the masses of particles A, B and C respectively.
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Paper 4, Section II

11A Dynamics and Relativity
Write down the Lorentz force law for a charge q travelling at velocity v in an electric

field E and magnetic field B.

In a space station which is in an inertial frame, an experiment is performed in vacuo
where a ball is released from rest a distance h from a wall. The ball has charge q > 0
and at time t, it is a distance z(t) from the wall. A constant electric field of magnitude E
points toward the wall in a perpendicular direction, but there is no magnetic field. Find
the speed of the ball on its first impact.

Every time the ball bounces, its speed is reduced by a factor γ < 1. Show that the
total distance travelled by the ball before it comes to rest is

L = h
q1(γ)

q2(γ)

where q1 and q2 are quadratic functions which you should find explicitly.

A gas leak fills the apparatus with an atmosphere and the experiment is repeated.
The ball now experiences an additional drag force D = −α|v|v, where v is the instanta-
neous velocity of the ball and α > 0. Solve the system before the first bounce, finding an
explicit solution for the distance z(t) between the ball and the wall as a function of time
of the form

z(t) = h−Af(Bt)

where f is a function and A and B are dimensional constants, all of which you should find
explicitly.

Paper 4, Section II

12A Dynamics and Relativity
The position x = (x, y, z) and velocity ẋ of a particle of mass m are measured in

a frame which rotates at constant angular velocity ω with respect to an inertial frame.
The particle is subject to a force F = −9m|ω|2x. What is the equation of motion of the
particle?

Find the trajectory of the particle in the coordinates (x, y, z) if ω = (0, 0, ω) and at
t = 0, x = (1, 0, 0) and ẋ = (0, 0, 0).

Find the maximum value of the speed |ẋ| of the particle and the times at which it
travels at this speed.

[Hint: You may find using the variable ξ = x+ iy helpful.]
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Paper 3, Section I

1D Groups
Find the order and the sign of the permutation (13)(2457)(815) ∈ S8.

How many elements of S6 have order 6? And how many have order 3?

What is the greatest order of any element of A9?

Paper 3, Section I

2D Groups
Prove that every member of O(3) is a product of at most three reflections.

Is every member of O(3) a product of at most two reflections? Justify your answer.

Paper 3, Section II

5D Groups
Define the sign of a permutation σ ∈ Sn. You should show that it is well-defined,

and also that it is multiplicative (in other words, that it gives a homomorphism from Sn

to {±1}).
Show also that (for n > 2) this is the only surjective homomorphism from Sn to

{±1}.

Paper 3, Section II

6D Groups
Let g be an element of a group G. We define a map g∗ from G to G by sending x

to gxg−1. Show that g∗ is an automorphism of G (that is, an isomorphism from G to G).

Now let A denote the group of automorphisms of G (with the group operation being
composition), and define a map θ from G to A by setting θ(g) = g∗. Show that θ is a
homomorphism. What is the kernel of θ?

Prove that the image of θ is a normal subgroup of A.

Show that if G is cyclic then A is abelian. If G is abelian, must A be abelian?
Justify your answer.
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Paper 3, Section II

7D Groups
Define the quotient group G/H, where H is a normal subgroup of a group G. You

should check that your definition is well-defined. Explain why, for G finite, the greatest
order of any element of G/H is at most the greatest order of any element of G.

Show that a subgroup H of a group G is normal if and only if there is a
homomorphism from G to some group whose kernel is H.

A group is called metacyclic if it has a cyclic normal subgroup H such that G/H is
cyclic. Show that every dihedral group is metacyclic.

Which groups of order 8 are metacyclic? Is A4 metacyclic? For which n 6 5 is Sn

metacyclic?

Paper 3, Section II

8D Groups
State and prove the Direct Product Theorem.

Is the group O(3) isomorphic to SO(3)× C2? Is O(2) isomorphic to SO(2)× C2?

Let U(2) denote the group of all invertible 2×2 complex matrices A with AA
T
= I,

and let SU(2) be the subgroup of U(2) consisting of those matrices with determinant 1.

Determine the centre of U(2).

Write down a surjective homomorphism from U(2) to the group T of all unit-length
complex numbers whose kernel is SU(2). Is U(2) isomorphic to SU(2) × T ?
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Paper 4, Section I

1E Numbers and Sets
State Fermat’s theorem.

Let p be a prime such that p ≡ 3 (mod 4). Prove that there is no solution to
x2 ≡ −1 (mod p).

Show that there are infinitely many primes congruent to 1 (mod 4).

Paper 4, Section I

2E Numbers and Sets
Given n ∈ N, show that

√
n is either an integer or irrational.

Let α and β be irrational numbers and q be rational. Which of α+ q, α+β, αβ, αq

and αβ must be irrational? Justify your answers. [Hint: For the last part consider
√
2
√
2
.]

Paper 4, Section II

5E Numbers and Sets
Let n be a positive integer. Show that for any a coprime to n, there is a unique b

(mod n) such that ab ≡ 1 (mod n). Show also that if a and b are integers coprime to n,
then ab is also coprime to n. [Any version of Bezout’s theorem may be used without proof
provided it is clearly stated.]

State and prove Wilson’s theorem.

Let n be a positive integer and p be a prime. Show that the exponent of p in the
prime factorisation of n! is given by

∑∞
i=1

⌊

n
pi

⌋

where ⌊x⌋ denotes the integer part of x.

Evaluate 20! (mod 23) and 1000! (mod 10249).

Let p be a prime and 0 < k < pm. Let ℓ be the exponent of p in the prime
factorisation of k. Find the exponent of p in the prime factorisation of

(

pm

k

)

, in terms of
m and ℓ.
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Paper 4, Section II

6E Numbers and Sets
For n ∈ N let Qn = {0, 1}n denote the set of all 0 -1 sequences of length n. We define

the distance d(x, y) between two elements x and y of Qn to be the number of coordinates
in which they differ. Show that d(x, z) 6 d(x, y) + d(y, z) for all x, y, z ∈ Qn.

For x ∈ Qn and 1 6 j 6 n let B(x, j) = {y ∈ Qn : d(y, x) 6 j}. Show that
|B(x, j)| =∑j

i=0

(n
i

)

.

A subset C of Qn is called a k-code if d(x, y) > 2k + 1 for all x, y ∈ C with x 6= y.
Let M(n, k) be the maximum possible value of |C| for a k-code C in Qn. Show that

2n

(

2k
∑

i=0

(

n

i

)

)−1

6 M(n, k) 6 2n

(

k
∑

i=0

(

n

i

)

)−1

.

Find M(4, 1), carefully justifying your answer.

Paper 4, Section II

7E Numbers and Sets
Let n ∈ N and A1, . . . , An be subsets of a finite set X. Let 0 6 t 6 n. Show that if

x ∈ X belongs to Ai for exactly m values of i, then

∑

S⊂{1,...,n}

(|S|
t

)

(−1)|S|−t1AS
(x) =

{

0 if m 6= t

1 if m = t

where AS =
⋂

i∈S Ai with the convention that A∅ = X, and 1AS
denotes the indicator

function of AS . [Hint: Set M = {i : x ∈ Ai} and consider for which S ⊂ {1, . . . , n} one

has 1AS
(x) = 1.]

Use this to show that the number of elements of X that belong to Ai for exactly t
values of i is

∑

S⊂{1,...,n}

(|S|
t

)

(−1)|S|−t|AS | .

Deduce the Inclusion-Exclusion Principle.

Using the Inclusion-Exclusion Principle, prove a formula for the Euler totient
function ϕ(N) in terms of the distinct prime factors of N .

A Carmichael number is a composite number n such that xn−1 ≡ 1 (mod n) for
every integer x coprime to n. Show that if n = q1q2 . . . qk is the product of k > 2 distinct
primes q1, . . . , qk satisfying qj − 1 | n− 1 for j = 1, . . . , k, then n is a Carmichael number.
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Paper 4, Section II

8E Numbers and Sets
Define what it means for a set to be countable.

Show that for any set X, there is no surjection from X onto the power set P(X).
Deduce that the set {0, 1}N of all infinite 0 -1 sequences is uncountable.

Let L be the set of sequences (Fn)
∞
n=0 of subsets F0 ⊂ F1 ⊂ F2 ⊂ . . . of N such that

|Fn| = n for all n ∈ N and
⋃

n Fn = N. Let L0 consist of all members (Fn)
∞
n=0 of L for

which n ∈ Fn for all but finitely many n ∈ N. Let L1 consist of all members (Fn)
∞
n=0 of

L for which n ∈ Fn+1 for all but finitely many n ∈ N. For each of L0 and L1 determine
whether it is countable or uncountable. Justify your answers.
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Paper 2, Section I

3F Probability
Let X and Y be independent Poisson random variables with parameters λ and µ

respectively.

(i) Show that X + Y is Poisson with parameter λ+ µ.

(ii) Show that the conditional distribution of X given X + Y = n is binomial, and find
its parameters.

Paper 2, Section I

4F Probability

(a) State the Cauchy–Schwarz inequality and Markov’s inequality. State and prove
Jensen’s inequality.

(b) For a discrete random variable X, show that Var(X) = 0 implies that X is constant,
i.e. there is x ∈ R such that P(X = x) = 1.
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Paper 2, Section II

9F Probability

(a) Let Y and Z be independent discrete random variables taking values in sets S1 and
S2 respectively, and let F : S1 × S2 → R be a function.

Let E(z) = EF (Y, z). Show that

EE(Z) = EF (Y,Z) .

Let V (z) = E(F (Y, z)2)− (EF (Y, z))2. Show that

VarF (Y,Z) = EV (Z) + VarE(Z) .

(b) Let X1, . . . ,Xn be independent Bernoulli(p) random variables. For any function
F : {0, 1} → R, show that

VarF (X1) = p(1− p)(F (1) − F (0))2 .

Let {0, 1}n denote the set of all 0 -1 sequences of length n. By induction, or
otherwise, show that for any function F : {0, 1}n → R,

VarF (X) 6 p(1− p)

n
∑

i=1

E((F (X) − F (Xi))2)

where X = (X1, . . . ,Xn) and Xi = (X1, . . . ,Xi−1, 1−Xi,Xi+1, . . . ,Xn).

Paper 2, Section II

10F Probability

(a) Let X and Y be independent random variables taking values ±1, each with
probability 1

2
, and let Z = XY . Show that X, Y and Z are pairwise independent.

Are they independent?

(b) Let X and Y be discrete random variables with mean 0, variance 1, covariance ρ.
Show that Emax{X2, Y 2} 6 1 +

√

1− ρ2.

(c) Let X1,X2,X3 be discrete random variables. Writing aij = P(Xi > Xj), show that
min{a12, a23, a31} 6

2

3
.
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Paper 2, Section II

11F Probability

(a) Consider a Galton–Watson process (Xn). Prove that the extinction probability q is
the smallest non-negative solution of the equation q = F (q) where F (t) = E(tX1).
[You should prove any properties of Galton–Watson processes that you use.]

In the case of a Galton–Watson process with

P(X1 = 1) = 1/4, P(X1 = 3) = 3/4,

find the mean population size and compute the extinction probability.

(b) For each n ∈ N, let Yn be a random variable with distribution Poisson(n). Show
that

Yn − n√
n

→ Z

in distribution, where Z is a standard normal random variable.

Deduce that

lim
n→∞

e−n
n
∑

k=0

nk

k!
=

1

2
.

Paper 2, Section II

12F Probability
For a symmetric simple random walk (Xn) on Z starting at 0, let Mn = maxi6nXi.

(i) For m > 0 and x ∈ Z, show that

P(Mn > m,Xn = x) =

{

P(Xn = x) if x > m

P(Xn = 2m− x) if x < m.

(ii) For m > 0, show that P(Mn > m) = P(Xn = m) + 2
∑

x>m P(Xn = x) and that

P(Mn = m) = P(Xn = m) + P(Xn = m+ 1).

(iii) Prove that E(M2
n) < E(X2

n).
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Paper 3, Section I

3C Vector Calculus
Derive a formula for the curvature of the two-dimensional curve x(u) = (u, f(u)).

Verify your result for the semicircle with radius a given by f(u) =
√
a2 − u2.

Paper 3, Section I

4C Vector Calculus
In plane polar coordinates (r, θ), the orthonormal basis vectors er and eθ satisfy

∂er
∂r

=
∂eθ
∂r

= 0,
∂er
∂θ

= eθ,
∂eθ
∂θ

= −er, and ∇ = er
∂

∂r
+ eθ

1

r

∂

∂θ
.

Hence derive the expression ∇ ·∇φ =
1

r

∂

∂r

(

r
∂φ

∂r

)

+
1

r2
∂2φ

∂θ2
for the Laplacian operator ∇2.

Calculate the Laplacian of φ(r, θ) = αrβ cos(γθ), where α, β and γ are constants.
Hence find all solutions to the equation

∇2φ = 0 in 0 6 r 6 a, with ∂φ/∂r = cos(2θ) on r = a .

Explain briefly how you know that there are no other solutions.

Paper 3, Section II

9C Vector Calculus
Given a one-to-one mapping u = u(x, y) and v = v(x, y) between the region D in the

(x, y)-plane and the region D′ in the (u, v)-plane, state the formula for transforming the
integral

∫∫

D f(x, y) dx dy into an integral over D′, with the Jacobian expressed explicitly
in terms of the partial derivatives of u and v.

Let D be the region x2+y2 6 1, y > 0 and consider the change of variables u = x+y
and v = x2 + y2. Sketch D, the curves of constant u and the curves of constant v in the
(x, y)-plane. Find and sketch the image D′ of D in the (u, v)-plane.

Calculate I =
∫∫

D(x + y) dx dy using this change of variables. Check your answer
by calculating I directly.
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Paper 3, Section II

10C Vector Calculus
State the formula of Stokes’s theorem, specifying any orientation where needed.

Let F = (y2z, xz + 2xyz, 0). Calculate ∇× F and verify that ∇ ·∇× F = 0.

Sketch the surface S defined as the union of the surface z = −1, 1 6 x2 + y2 6 4
and the surface x2 + y2 + z = 3, 1 6 x2 + y2 6 4.

Verify Stokes’s theorem for F on S.

Paper 3, Section II

11C Vector Calculus
Use Maxwell’s equations,

∇ ·E = ρ, ∇ ·B = 0, ∇×E = −∂B

∂t
, ∇×B = J+

∂E

∂t
,

to derive expressions for
∂2E

∂t2
−∇2E and

∂2B

∂t2
−∇2B in terms of ρ and J.

Now suppose that there exists a scalar potential φ such that E = −∇φ, and φ → 0
as r → ∞. If ρ = ρ(r) is spherically symmetric, calculate E using Gauss’s flux method,
i.e. by integrating a suitable equation inside a sphere centred at the origin. Use your result
to find E and φ in the case when ρ = 1 for r < a and ρ = 0 otherwise.

For each integer n > 0, let Sn be the sphere of radius 4−n centred at the point
(1 − 4−n, 0, 0). Suppose that ρ vanishes outside S0, and has the constant value 2n in the
volume between Sn and Sn+1 for n > 0. Calculate E and φ at the point (1, 0, 0).
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Paper 3, Section II

12C Vector Calculus
(a) Suppose that a tensor Tij can be decomposed as

Tij = Sij + ǫijkVk , (∗)

where Sij is symmetric. Obtain expressions for Sij and Vk in terms of Tij, and check that
(∗) is satisfied.

(b) State the most general form of an isotropic tensor of rank k for k = 0, 1, 2, 3,
and verify that your answers are isotropic.

(c) The general form of an isotropic tensor of rank 4 is

Tijkl = αδijδkl + βδikδjl + γδilδjk .

Suppose that Aij and Bij satisfy the linear relationship Aij = TijklBkl, where Tijkl is
isotropic. Express Bij in terms of Aij , assuming that β2 6= γ2 and 3α + β + γ 6= 0. If
instead β = −γ 6= 0 and α 6= 0, find all Bij such that Aij = 0.

(d) Suppose that Cij andDij satisfy the quadratic relationship Cij = TijklmnDklDmn,
where Tijklmn is an isotropic tensor of rank 6. If Cij is symmetric and Dij is antisymmet-
ric, find the most general non-zero form of TijklmnDklDmn and prove that there are only
two independent terms. [Hint: You do not need to use the general form of an isotropic

tensor of rank 6.]
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Paper 1, Section I

1C Vectors and Matrices
For z, w ∈ C define the principal value of zw. State de Moivre’s theorem.

Hence solve the equations

(i) z6 =
√
3 + i, (ii) z1/6 =

√
3 + i, (iii) i z =

√
3 + i, (iv)

(

e5iπ/2
)z

=
√
3 + i .

[In each expression, the principal value is to be taken.]

Paper 1, Section I

2A Vectors and Matrices
The map Φ(x) = α(n · x)n − n × (n × x) is defined for x ∈ R3, where n is a unit

vector in R3 and α is a real constant.

(i) Find the values of α for which the inverse map Φ−1 exists, as well as the inverse
map itself in these cases.

(ii) When Φ is not invertible, find its image and kernel. What is the value of the
rank and the value of the nullity of Φ?

(iii) Let y = Φ(x). Find the components Aij of the matrix A such that yi = Aijxj.
When Φ is invertible, find the components of the matrix B such that xi = Bijyj.

Paper 1, Section II

5C Vectors and Matrices
Let x,y ∈ Rn be non-zero real vectors. Define the inner product x · y in terms of

the components xi and yi, and define the norm |x|. Prove that x ·y 6 |x| |y|. When does
equality hold? Express the angle between x and y in terms of their inner product.

Use suffix notation to expand (a× b) · (b× c).

Let a,b, c be given unit vectors in R3, and let m = (a × b) + (b × c) + (c × a).
Obtain expressions for the angle between m and each of a, b and c, in terms of a, b, c
and |m|. Calculate |m| for the particular case when the angles between a, b and c are all
equal to θ, and check your result for an example with θ = 0 and an example with θ = π/2.

Consider three planes in R3 passing through the points p, q and r, respectively,
with unit normals a, b and c, respectively. State a condition that must be satisfied for
the three planes to intersect at a single point, and find the intersection point.
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Paper 1, Section II

6B Vectors and Matrices

(a) Consider the matrix

R =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1





representing a rotation about the z-axis through an angle θ.

Show that R has three eigenvalues in C each with modulus 1, of which one is real and
two are complex (in general), and give the relation of the real eigenvector and the two
complex eigenvalues to the properties of the rotation.

Now consider the rotation composed of a rotation by angle π/2 about the z-axis
followed by a rotation by angle π/2 about the x-axis. Determine the rotation axis n
and the magnitude of the angle of rotation φ.

(b) A surface in R3 is given by

7x2 + 4xy + 3y2 + 2xz + 3z2 = 1.

By considering a suitable eigenvalue problem, show that the surface is an ellipsoid,
find the lengths of its semi-axes and find the position of the two points on the surface
that are closest to the origin.
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Paper 1, Section II

7B Vectors and Matrices
Let A be a real symmetric n× n matrix.

(a) Prove the following:

(i) Each eigenvalue of A is real and there is a corresponding real eigenvector.

(ii) Eigenvectors corresponding to different eigenvalues are orthogonal.

(iii) If there are n distinct eigenvalues then the matrix is diagonalisable.

Assuming that A has n distinct eigenvalues, explain briefly how to choose (up to an

arbitrary scalar factor) the vector v such that
vTAv

vT v
is maximised.

(b) A scalar λ and a non-zero vector v such that

Av = λBv

are called, for a specified n× n matrix B, respectively a generalised eigenvalue and a
generalised eigenvector of A.

Assume the matrix B is real, symmetric and positive definite (i.e. (u∗)TBu > 0 for all
non-zero complex vectors u).

Prove the following:

(i) If λ is a generalised eigenvalue of A then it is a root of det(A− λB) = 0.

(ii) Each generalised eigenvalue of A is real and there is a corresponding real
generalised eigenvector.

(iii) Two generalised eigenvectors u, v, corresponding to different generalised eigen-
values, are orthogonal in the sense that uTBv = 0.

(c) Find, up to an arbitrary scalar factor, the vector v such that the value of F (v) =
vTAv

vTBv
is maximised, and the corresponding value of F (v), where

A =





4 2 0
2 3 0
0 0 10



 and B =





2 1 0
1 1 0
0 0 3



 .
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Paper 1, Section II

8A Vectors and Matrices
What is the definition of an orthogonal matrix M?

Write down a 2×2 matrix R representing the rotation of a 2-dimensional vector
(x, y) by an angle θ around the origin. Show that R is indeed orthogonal.

Take a matrix

A =

(

a b
b c

)

where a, b, c are real. Suppose that the 2×2 matrix B = RART is diagonal. Determine all
possible values of θ.

Show that the diagonal entries of B are the eigenvalues of A and express them in
terms of the determinant and trace of A.

Using the above results, or otherwise, find the elements of the matrix

(

1 2
2 1

)2N

as a function of N , where N is a natural number.
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