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SECTION I

1G Number Theory
Show that, for x > 2 a real number,

∏

p6x,
p is prime

(
1− 1

p

)−1

> log x .

Hence prove that ∑

p6x,
p is prime

1

p
> log log x+ c ,

where c is a constant you should make explicit.

2F Topics In Analysis
If x ∈ (0, 1], set

x =
1

N(x) + T (x)
,

where N(x) is an integer and 1 > T (x) > 0. Let N(0) = T (0) = 0.

If x is also irrational, write down the continued fraction expansion in terms of
NT j(x) (where NT 0(x) = N(x) ).

Let X be a random variable taking values in [0, 1] with probability density function

f(x) =
1

(log 2)(1 + x)
.

Show that T (X) has the same distribution as X.

3G Coding & Cryptography
Describe the RSA system with public key (N, e) and private key d.

Give a simple example of how the system is vulnerable to a homomorphism attack.

Describe the El-Gamal signature scheme and explain how this can defeat a homo-
morphism attack.
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4H Automata and Formal Languages

(a) Describe the process for converting a deterministic finite-state automaton D into
a regular expression R defining the same language, L(D) = L(R). [You need only
outline the steps, without proof, but you should clearly define all terminology you
introduce.]

(b) Consider the language L over the alphabet {0, 1} defined via

L := {w01n | w ∈ {0, 1}∗, n ∈ K} ∪ {1}∗.

Show that L satisfies the pumping lemma for regular languages but is not a regular
language itself.

5J Statistical Modelling
A Cambridge scientist is testing approaches to slow the spread of a species of moth

in certain trees. Two groups of 30 trees were treated with different organic pesticides,
and a third group of 30 trees was kept under control conditions. At the end of the
summer the trees are classified according to the level of leaf damage, obtaining the following
contingency table.

> xtabs(count~group+damage.level,data=treeConditions)

damage.level

group Severe.Damage Moderate.Damage Some.Damage

Control 22 5 3

Treatment 1 18 4 8

Treatment 2 14 3 13

Which of the following Generalised Linear Model fitting commands is appropriate
for these data? Why? Describe the model being fit.

(a) > fit <- glm(count~group+damage.level,data=treeConditions,family=poisson)

(b) > fit <- glm(count~group+damage.level,data=treeConditions,family=multinomial)

(c) > fit <- glm(damage.level~group,data=treeConditions,family=binomial)

(d) > fit <- glm(damage.level~group,data=treeConditions,family=binomial,

weights=count)

Part II, Paper 4 [TURN OVER



4

6B Mathematical Biology
Consider an epidemic model with host demographics (natural births and deaths).

The system is given by

dS

dt
= −βIS − µS + µN ,

dI

dt
= +βIS − νI − µI ,

where S(t) are the susceptibles, I(t) are the infecteds, N is the total population size
and the parameters β, µ and ν are positive. The basic reproduction ratio is defined as
R0 = βN/(µ + ν).

Show that the system has an endemic equilibrium (where the disease is present) for
R0 > 1. Show that the endemic equilibrium is stable.

Interpret the meaning of the case ν ≫ µ and show that in this case the approximate
period of (decaying) oscillation around the endemic equilibrium is given by

T =
2π√

µν(R0 − 1)
.

Suppose now a vaccine is introduced which is given to some proportion of the
population at birth, but not enough to eradicate the disease. What will be the effect
on the period of (decaying) oscillations?

7E Further Complex Methods
Consider the differential equation

z
d2y

dz2
− 2

dy

dz
+ zy = 0 . (⋆)

Laplace’s method finds a solution of this differential equation by writing y(z) in the
form

y(z) =

∫

C
eztf(t)dt ,

where C is a closed contour.

Determine f(t). Hence find two linearly independent real solutions of (⋆) for z real.
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8E Classical Dynamics
Consider the Poisson bracket structure on R3 given by

{x, y} = z, {y, z} = x, {z, x} = y

and show that {f, ρ2} = 0, where ρ2 = x2 + y2 + z2 and f : R3 → R is any polynomial
function on R3.

Let H = (Ax2 + By2 + Cz2)/2, where A,B,C are positive constants. Find the
explicit form of Hamilton’s equations

ṙ = {r,H}, where r = (x, y, z).

Find a condition on A,B,C such that the oscillation described by

x = 1 + α(t), y = β(t), z = γ(t)

is linearly unstable, where α(t), β(t), γ(t) are small.

9C Cosmology

(a) By considering a spherically symmetric star in hydrostatic equilibrium derive the
pressure support equation

dP

dr
= −GM(r)ρ

r2
,

where r is the radial distance from the centre of the star, M(r) is the stellar mass
contained inside that radius, and P (r) and ρ(r) are the pressure and density at
radius r respectively.

(b) Propose, and briefly justify, boundary conditions for this differential equation, both
at the centre of the star r = 0, and at the stellar surface r = R.

Suppose that P = Kρ2 for some K > 0. Show that the density satisfies the linear
differential equation

1

x2
∂

∂x

(
x2

∂ρ

∂x

)
= −ρ

where x = αr, for some constant α, is a rescaled radial coordinate. Find α.
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SECTION II

10G Number Theory

(a) State Dirichlet’s theorem on primes in arithmetic progression.

(b) Let d be the discriminant of a binary quadratic form, and let p be an odd prime.
Show that p is represented by some binary quadratic form of discriminant d if and
only if x2 ≡ d (mod p) is soluble.

(c) Let f(x, y) = x2 + 15y2 and g(x, y) = 3x2 + 5y2. Show that f and g each represent
infinitely many primes. Are there any primes represented by both f and g?

11F Topics In Analysis

(a) Suppose that γ : [0, 1] → C is continuous with γ(0) = γ(1) and γ(t) 6= 0 for
all t ∈ [0, 1]. Show that if γ(0) = |γ(0)| exp(iθ0) (with θ0 real) we can define a
continuous function θ : [0, 1] → R such that θ(0) = θ0 and γ(t) = |γ(t)| exp

(
iθ(t)

)
.

Hence define the winding number w(γ) = w(0, γ) of γ around 0.

(b) Show that w(γ) can take any integer value.

(c) If γ1 and γ2 satisfy the requirements of the definition, and (γ1 × γ2)(t) = γ1(t)γ2(t),
show that

w(γ1 × γ2) = w(γ1) + w(γ2).

(d) If γ1 and γ2 satisfy the requirements of the definition and |γ1(t) − γ2(t)| < |γ1(t)|
for all t ∈ [0, 1], show that

w(γ1) = w(γ2).

(e) State and prove a theorem that says that winding number is unchanged under an
appropriate homotopy.
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12J Statistical Modelling
The dataset diesel records the number of diesel cars which go through a block of

Hills Road in 6 disjoint periods of 30 minutes, between 8AM and 11AM. The measurements
are repeated each day for 10 days. Answer the following questions based on the code below,
which is shown with partial output.

(a) Can we reject the model fit.1 at a 1% level? Justify your answer.

(b) What is the difference between the deviance of the models fit.2 and fit.3?

(c) Which of fit.2 and fit.3 would you use to perform variable selection by backward
stepwise selection? Why?

(d) How does the final plot differ from what you expect under the model in fit.2?
Provide a possible explanation and suggest a better model.

> head(diesel)

period num.cars day

1 1 69 1

2 2 97 1

3 3 103 1

4 4 99 1

5 5 67 1

6 6 91 1

> fit.1 = glm(num.cars~period,data=diesel,family=poisson)

> summary(fit.1)

Deviance Residuals:

Min 1Q Median 3Q Max

-4.0188 -1.4837 -0.2117 1.6257 4.5965

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.628535 0.029288 158.035 <2e-16 ***

period -0.006073 0.007551 -0.804 0.421

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 262.36 on 59 degrees of freedom

Residual deviance: 261.72 on 58 degrees of freedom

AIC: 651.2

> diesel$period.factor = factor(diesel$period)

> fit.2 = glm(num.cars~period.factor,data=diesel,family=poisson)

> summary(fit.2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
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(Intercept) 4.36818 0.03560 122.698 < 2e-16 ***

period.factor2 0.35655 0.04642 7.681 1.58e-14 ***

period.factor3 0.41262 0.04590 8.991 < 2e-16 ***

period.factor4 0.36274 0.04636 7.824 5.10e-15 ***

period.factor5 0.06501 0.04955 1.312 0.189481

period.factor6 0.16334 0.04841 3.374 0.000741 ***

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

> fit.3 = glm(num.cars~(period>1)+(period>2)+(period>3)+(period>4)+(period>5),

data=diesel,family=poisson)

> summary(fit.3)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.36818 0.03560 122.698 < 2e-16 ***

period > 1TRUE 0.35655 0.04642 7.681 1.58e-14 ***

period > 2TRUE 0.05607 0.04155 1.350 0.1771

period > 3TRUE -0.04988 0.04148 -1.202 0.2292

period > 4TRUE -0.29773 0.04549 -6.545 5.96e-11 ***

period > 5TRUE 0.09833 0.04758 2.066 0.0388 *

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

> C = matrix(nrow=6,ncol=2)

> for (period in 1:6) {

nums = diesel$num.cars[diesel$period == period]

C[period,] = c(mean(nums),var(nums))

}

plot(C[,1],C[,2])
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13B Mathematical Biology
An activator-inhibitor system is described by the equations

∂u

∂t
= u(c+ u− v) +

∂2u

∂x2
,

∂v

∂t
= v(au− bv) + d

∂2v

∂x2
,

where a, b, c, d > 0.

Find and sketch the range of a, b for which the spatially homogeneous system has
a stable stationary solution with u > 0 and v > 0.

Considering spatial perturbations of the form cos(kx) about the solution found
above, find conditions for the system to be unstable. Sketch this region in the (a, b)-plane
for fixed d (for a value of d such that the region is non-empty).

Show that kc, the critical wavenumber at the onset of the instability, is given by

kc =

√
2ac

d− a
.

14E Classical Dynamics
Explain how geodesics of a Riemannian metric

g = gab(x
c)dxadxb

arise from the kinetic Lagrangian

L =
1

2
gab(x

c)ẋaẋb,

where a, b = 1, . . . , n.

Find geodesics of the metric on the upper half plane

Σ = {(x, y) ∈ R2, y > 0}

with the metric

g =
dx2 + dy2

y2

and sketch the geodesic containing the points (2, 3) and (10, 3).

[Hint: Consider dy/dx.]
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15H Logic and Set Theory
Prove that every set has a transitive closure. [If you apply the Axiom of Replacement

to a function-class F , you must explain clearly why F is indeed a function-class.]

State the Axiom of Foundation and the Principle of ǫ-Induction, and show that they
are equivalent (in the presence of the other axioms of ZFC).

State the ǫ-Recursion Theorem.

Sets Cα are defined for each ordinal α by recursion, as follows: C0 = ∅, Cα+1 is the
set of all countable subsets of Cα, and Cλ = ∪α<λ Cα for λ a non-zero limit. Does there
exist an α with Cα+1 = Cα? Justify your answer.

16H Graph Theory
Let G be a graph of maximum degree ∆. Show the following:

(i) Every eigenvalue λ of G satisfies |λ| 6 ∆.

(ii) If G is regular then ∆ is an eigenvalue.

(iii) If G is regular and connected then the multiplicity of ∆ as an eigenvalue is 1.

(iv) If G is regular and not connected then the multiplicity of ∆ as an eigenvalue is
greater than 1.

Let A be the adjacency matrix of the Petersen graph. Explain why A2+A−2I = J ,
where I is the identity matrix and J is the all-1 matrix. Find, with multiplicities, the
eigenvalues of the Petersen graph.

17I Galois Theory

(a) State the Fundamental Theorem of Galois Theory.

(b) What does it mean for an extension L of Q to be cyclotomic? Show that a cyclotomic
extension L of Q is a Galois extension and prove that its Galois group is Abelian.

(c) What is the Galois group G of Q(η) over Q, where η is a primitive 7th root of
unity? Identify the intermediate subfields M , with Q 6 M 6 Q(η), in terms of η,
and identify subgroups of G to which they correspond. Justify your answers.
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18G Representation Theory
Let G =SU(2) and let Vn be the vector space of complex homogeneous polynomials

of degree n in two variables.

(a) Prove that Vn has the structure of an irreducible representation for G.

(b) State and prove the Clebsch–Gordan theorem.

(c) Quoting without proof any properties of symmetric and exterior powers which you
need, decompose S2Vn and Λ2Vn (n > 1) into irreducible G-spaces.

19H Number Fields

(a) Write down OK , when K = Q(
√
δ), and δ ≡ 2 or 3 (mod 4). [You need not prove

your answer.]

Let L = Q(
√
2,
√
δ), where δ ≡ 3 (mod 4) is a square-free integer. Find an integral

basis of OL. [Hint: Begin by considering the relative traces trL/K , for K a quadratic
subfield of L.]

(b) Compute the ideal class group of Q(
√
−14).

20I Algebraic Topology
Recall that RPn is real projective n-space, the quotient of Sn obtained by identifying
antipodal points. Consider the standard embedding of Sn as the unit sphere in Rn+1.

(a) For n odd, show that there exists a continuous map f : Sn → Sn such that f(x) is
orthogonal to x, for all x ∈ Sn.

(b) Exhibit a triangulation of RPn.

(c) Describe the map Hn(S
n) → Hn(S

n) induced by the antipodal map, justifying your
answer.

(d) Show that, for n even, there is no continuous map f : Sn → Sn such that f(x) is
orthogonal to x for all x ∈ Sn.
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21F Linear Analysis
Let H be a complex Hilbert space with inner product (·, ·) and let T : H → H be a

bounded linear map.

(i) Define the spectrum σ(T ), the point spectrum σp(T ), the continuous spectrum σc(T ),
and the residual spectrum σr(T ).

(ii) Show that T ∗T is self-adjoint and that σ(T ∗T ) ⊂ [0,∞). Show that if T is compact
then so is T ∗T .

(iii) Assume that T is compact. Prove that T has a singular value decomposition: for
N < ∞ or N = ∞, there exist orthonormal systems (ui)

N
i=1 ⊂ H and (vi)

N
i=1 ⊂ H

and (λi)
N
i=1 ⊂ [0,∞) such that, for any x ∈ H,

Tx =
N∑

i=1

λi(ui, x)vi.

[You may use the spectral theorem for compact self-adjoint linear operators.]
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22F Analysis of Functions
Consider Rn with the Lebesgue measure. Denote by Ff(ξ) =

∫
Rn e

−2iπx·ξf(x) dx the

Fourier transform of f ∈ L1(Rn) and by f̂ the Fourier–Plancherel transform of f ∈ L2(Rn).

Let χR(ξ) :=

(
1− |ξ|

R

)
χ|ξ|6R for R > 0 and define for s ∈ R+

Hs(Rn) :=
{
f ∈ L2(Rn)

∣∣∣ (1 + | · |2)s/2f̂(·) ∈ L2(Rn)
}
.

(i) Prove thatHs(Rn) is a vector subspace of L2(Rn), and is a Hilbert space for the inner

product 〈f, g〉 :=
∫

Rn

(1 + |ξ|2)sf̂(ξ)ĝ(ξ) dξ, where z denotes the complex conjugate

of z ∈ C.

(ii) Construct a function f ∈ Hs(R), s ∈ (0, 1/2), that is not almost everywhere equal
to a continuous function.

(iii) For f ∈ L1(Rn), prove that FR : x 7→
∫

Rn

Ff(ξ)χR(ξ)e
2iπx·ξ dξ is a well-defined

function and that FR ∈ L1(Rn) converges to f in L1(Rn) as R → +∞.

[Hint: Prove that FR = KR ∗ f where KR is an approximation of the unit as
R → +∞.]

(iv) Deduce that if f ∈ L1(Rn) and (1 + | · |2)s/2Ff(·) ∈ L2(Rn) then f ∈ Hs(Rn).

[Hint: Prove that: (1) there is a sequence Rk → +∞ such that KRk
∗ f converges

to f almost everywhere; (2) KR ∗ f is uniformly bounded in L2(Rn) as R → +∞.]

23I Algebraic Geometry

(a) Let X and Y be non-singular projective curves over a field k and let ϕ : X → Y be
a non-constant morphism. Define the ramification degree eP of ϕ at a point P ∈ X.

(b) Suppose char k 6= 2. Let X = Z(f) be the plane cubic with f = x0x
2
2 − x31 + x20x1,

and let Y = P1. Explain how the projection

(x0 : x1 : x2) 7→ (x0 : x1)

defines a morphism ϕ : X → Y . Determine the degree of ϕ and the ramification
degrees eP for all P ∈ X.

(c) Let X be a non-singular projective curve and let P ∈ X. Show that there is a
non-constant rational function on X which is regular on X \ {P}.
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24I Differential Geometry
Let S ⊂ R3 be a surface and p ∈ S. Define the exponential map expp and compute

its differential d expp |0. Deduce that expp is a local diffeomorphism.

Give an example of a surface S and a point p ∈ S for which the exponential map
expp fails to be defined globally on TpS. Can this failure be remedied by extending the

surface? In other words, for any such S, is there always a surface S ⊂ Ŝ ⊂ R3 such that
the exponential map êxpp defined with respect to Ŝ is globally defined on TpS = TpŜ ?

State the version of the Gauss–Bonnet theorem with boundary term for a surface
S ⊂ R3 and a closed disc D ⊂ S whose boundary ∂D can be parametrized as a smooth
closed curve in S.

Let S ⊂ R3 be a flat surface, i.e. K = 0. Can there exist a closed disc D ⊂ S, whose
boundary ∂D can be parametrized as a smooth closed curve, and a surface S̃ ⊂ R3 such
that all of the following hold:

(i) (S \D) ∪ ∂D ⊂ S̃;

(ii) letting D̃ be (S̃ \ (S \D))∪ ∂D, we have that D̃ is a closed disc in S̃ with boundary
∂D̃ = ∂D;

(iii) the Gaussian curvature K̃ of S̃ satisfies K̃ > 0, and there exists a p ∈ S̃ such that
K̃(p) > 0?

Justify your answer.

25J Probability and Measure

(a) Suppose that (E, E , µ) is a finite measure space and θ : E → E is a measurable map.
Prove that µθ(A) = µ(θ−1(A)) defines a measure on (E, E).

(b) Suppose that A is a π-system which generates E . Using Dynkin’s lemma, prove that
θ is measure-preserving if and only if µθ(A) = µ(A) for all A ∈ A.

(c) State Birkhoff’s ergodic theorem and the maximal ergodic lemma.

(d) Consider the case (E, E , µ) = ([0, 1),B([0, 1)), µ) where µ is Lebesgue measure on
[0, 1). Let θ : [0, 1) → [0, 1) be the following map. If x =

∑∞
n=1 2

−nωn is the
binary expansion of x (where we disallow infinite sequences of 1s), then θ(x) =∑∞

n=1 2
−n(ωn−11n∈E + ωn+11n∈O) where E and O are respectively the even and odd

elements of N.

(i) Prove that θ is measure-preserving. [You may assume that θ is measurable.]

(ii) Prove or disprove: θ is ergodic.
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26K Applied Probability

(a) Give the definition of an M/M/1 queue. Prove that if λ is the arrival rate and µ the
service rate and λ < µ, then the length of the queue is a positive recurrent Markov
chain. What is the equilibrium distribution?

If the queue is in equilibrium and a customer arrives at some time t, what is the
distribution of the waiting time (time spent waiting in the queue plus service time)?

(b) We now modify the above queue: on completion of service a customer leaves with
probability δ, or goes to the back of the queue with probability 1 − δ. Find the
distribution of the total time a customer spends being served.

Hence show that equilibrium is possible if λ < δµ and find the stationary distribu-
tion.

Show that, in equilibrium, the departure process is Poisson.

[You may use relevant theorems provided you state them clearly.]

27K Principles of Statistics
For the statistical model {Nd(θ,Σ), θ ∈ Rd}, where Σ is a known, positive-definite

d × d matrix, we want to estimate θ based on n i.i.d. observations X1, . . . ,Xn with
distribution Nd(θ,Σ).

(a) Derive the maximum likelihood estimator θ̂n of θ. What is the distribution of θ̂n?

(b) For α ∈ (0, 1), construct a confidence region Cα
n such that Pθ(θ ∈ Cα

n ) = 1− α.

(c) For Σ = Id, compute the maximum likelihood estimator of θ for the following
parameter spaces:

(i) Θ = {θ : ‖θ‖2 = 1}.
(ii) Θ = {θ : v⊤θ = 0} for some unit vector v ∈ Rd.

(d) For Σ = Id, we want to test the null hypothesis Θ0 = {0} (i.e. θ = 0) against
the composite alternative Θ1 = Rd \ {0}. Compute the likelihood ratio statistic
Λ(Θ1,Θ0) and give its distribution under the null hypothesis. Compare this result
with the statement of Wilks’ theorem.
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28J Stochastic Financial Models

(a) Describe the (Cox–Ross–Rubinstein) binomial model. When is the model arbitrage-
free? How is the equivalent martingale measure characterised in this case?

(b) What is the price and the hedging strategy for any given contingent claim C in the
binomial model?

(c) For any fixed 0 < t < T and K > 0, the payoff function of a forward-start-option is
given by

(
S1
T

S1
t

−K

)+

.

Find a formula for the price of the forward-start-option in the binomial model.

29K Optimization and Control
A file of X gigabytes (GB) is to be transmitted over a communications link. At

each time t the sender can choose a transmission rate u(t) within the range [0, 1] GB per
second. The charge for transmitting at rate u(t) at time t is u(t)p(t). The function p is
fully known at time t = 0. If it takes a total time T to transmit the file then there is a
delay cost of γT 2, γ > 0. Thus u and T are to be chosen to minimize

∫ T

0
u(t)p(t)dt+ γT 2,

where u(t) ∈ [0, 1], dx(t)/dt = −u(t), x(0) = X and x(T ) = 0. Using Pontryagin’s
maximum principle, or otherwise, show that a property of the optimal policy is that there
exists p∗ such that u(t) = 1 if p(t) < p∗ and u(t) = 0 if p(t) > p∗.

Show that the optimal p∗ and T are related by p∗ = p(T ) + 2γT .

Suppose p(t) = t+1/t and X = 1. Show that it is optimal to transmit at a constant
rate u(t) = 1 between times T − 1 6 t 6 T , where T is the unique positive solution to the
equation

1

(T − 1)T
= 2γT + 1 .
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30E Asymptotic Methods
Consider solutions to the equation

d2y

dx2
=

(
1

4
+

µ2 − 1
4

x2

)
y (⋆)

of the form
y(x) = exp

[
S0(x) + S1(x) + S2(x) + . . .

]
,

with the assumption that, for large positive x, the function Sj(x) is small compared to
Sj−1(x) for all j = 1, 2 . . .

Obtain equations for the Sj(x), j = 0, 1, 2 . . . , which are formally equivalent to (⋆).
Solve explicitly for S0 and S1. Show that it is consistent to assume that Sj(x) = cjx

−(j−1)

for some constants cj . Give a recursion relation for the cj .

Deduce that there exist two linearly independent solutions to (⋆) with asymptotic
expansions as x → +∞ of the form

y±(x) ∼ e±x/2
(
1 +

∞∑

j=1

A±
j x

−j
)
.

Determine a recursion relation for the A±
j . ComputeA±

1 andA±
2 .
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31A Dynamical Systems
Consider the one-dimensional map F : R → R defined by

xi+1 = F (xi;µ) = xi(ax
2
i + bxi + µ),

where a and b are constants, µ is a parameter and a 6= 0.

(a) Find the fixed points of F and determine the linear stability of x = 0. Hence show
that there are bifurcations at µ = 1, at µ = −1 and, if b 6= 0, at µ = 1 + b2/(4a).

Sketch the bifurcation diagram for each of the cases:

(i) a > b = 0, (ii) a, b > 0 and (iii) a, b < 0.

In each case show the locus and stability of the fixed points in the (µ, x)-plane, and
state the type of each bifurcation. [Assume that there are no further bifurcations
in the region sketched.]

(b) For the case F (x) = x(µ− x2) (i.e. a = −1, b = 0), you may assume that

F 2(x) = x+ x(µ− 1− x2)(µ + 1− x2)(1 − µx2 + x4).

Show that there are at most three 2-cycles and determine when they exist. By
considering F ′(xi)F

′(xi+1), or otherwise, show further that one 2-cycle is always
unstable when it exists and that the others are unstable when µ >

√
5. Sketch the

bifurcation diagram showing the locus and stability of the fixed points and 2-cycles.
State briefly what you would expect to occur for µ >

√
5.
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32C Principles of Quantum Mechanics
The Hamiltonian for a quantum system in the Schrödinger picture is

H0 + λV (t) ,

where H0 is independent of time and the parameter λ is small. Define the interaction
picture corresponding to this Hamiltonian and derive a time evolution equation for
interaction picture states.

Let |n〉 and |m〉 be eigenstates of H0 with distinct eigenvalues En and Em respec-
tively. Show that if the system was in the state |n〉 in the remote past, then the probability
of measuring it to be in a different state |m〉 at a time t is

λ2

~2

∣∣∣∣
∫ t

−∞
dt′〈m|V (t′)|n〉ei(Em−En)t′/~

∣∣∣∣
2

+ O(λ3) .

Let the system be a simple harmonic oscillator with H0 = ~ω(a†a + 1
2 ), where

[a, a†] = 1. Let |0〉 be the ground state which obeys a|0〉 = 0. Suppose

V (t) = e−p|t|(a+ a†),

with p > 0. In the remote past the system was in the ground state. Find the probability, to
lowest non-trivial order in λ, for the system to be in the first excited state in the far future.
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33C Applications of Quantum Mechanics

(a) In one dimension, a particle of mass m is scattered by a potential V (x) where
V (x) → 0 as |x| → ∞. For wavenumber k > 0, the incoming (I) and outgoing (O)
asymptotic plane wave states with positive (+) and negative (−) parity are given
by

I+(x) = e−ik|x| , I−(x) = sign(x) e−ik|x| ,

O+(x) = e+ik|x| , O−(x) = −sign(x) e+ik|x| .

(i) Explain how this basis may be used to define the S-matrix,

SP =

(
S++ S+−

S−+ S−−

)
.

(ii) For what choice of potential would you expect S+− = S−+ = 0? Why?

(b) The potential V (x) is given by

V (x) = V0

[
δ(x− a) + δ(x+ a)

]

with V0 a constant.

(i) Show that

S−−(k) = e−2ika

[
(2k − iU0)e

ika + iU0e
−ika

(2k + iU0)e−ika − iU0eika

]
,

where U0 = 2mV0/~
2. Verify that |S−−|2 = 1. Explain the physical meaning

of this result.

(ii) For V0 < 0, by considering the poles or zeros of S−−(k), show that there exists
one bound state of negative parity if aU0 < −1.

(iii) For V0 > 0 and aU0 ≫ 1, show that S−−(k) has a pole at

ka = π + α− iγ ,

where α and γ are real and

α = − π

aU0
+O

(
1

(aU0)2

)
and γ =

(
π

aU0

)2

+O

(
1

(aU0)3

)
.

Explain the physical significance of this result.
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34D Statistical Physics
The van der Waals equation of state is

p =
kT

v − b
− a

v2
,

where p is the pressure, v = V/N is the volume divided by the number of particles, T is
the temperature, k is Boltzmann’s constant and a, b are positive constants.

(i) Prove that the Gibbs free energy G = E+pV −TS satisfies G = µN . Hence obtain
an expression for (∂µ/∂p)T,N and use it to explain the Maxwell construction for
determining the pressure at which the gas and liquid phases can coexist at a given
temperature.

(ii) Explain what is meant by the critical point and determine the values pc, vc, Tc

corresponding to this point.

(iii) By defining p̄ = p/pc, v̄ = v/vc and T̄ = T/Tc, derive the law of corresponding
states:

p̄ =
8T̄

3v̄ − 1
− 3

v̄2
.

(iv) To investigate the behaviour near the critical point, let T̄ = 1 + t and v̄ = 1 + φ,
where t and φ are small. Expand p̄ to cubic order in φ and hence show that

(
∂p̄

∂φ

)

t

= −9

2
φ2 +O(φ3) + t [−6 +O(φ)] .

At fixed small t, let φl(t) and φg(t) be the values of φ corresponding to the liquid
and gas phases on the co-existence curve. By changing the integration variable from
p to φ, use the Maxwell construction to show that φl(t) = −φg(t). Deduce that, as
the critical point is approached along the co-existence curve,

v̄gas − v̄liquid ∼ (Tc − T )1/2 .
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35D Electrodynamics
A dielectric material has a real, frequency-independent relative permittivity ǫr with

|ǫr − 1| ≪ 1. In this case, the macroscopic polarization that develops when the dielectric
is placed in an external electric field Eext(t,x) is P(t,x) ≈ ǫ0(ǫr − 1)Eext(t,x). Explain
briefly why the associated bound current density is

Jbound(t,x) ≈ ǫ0(ǫr − 1)
∂Eext(t,x)

∂t
.

[You should ignore any magnetic response of the dielectric.]

A sphere of such a dielectric, with radius a, is centred on x = 0. The sphere scatters
an incident plane electromagnetic wave with electric field

E(t,x) = E0e
i(k·x−ωt) ,

where ω = c|k| and E0 is a constant vector. Working in the Lorenz gauge, show that
at large distances r = |x|, for which both r ≫ a and ka2/r ≪ 2π, the magnetic vector
potential Ascatt(t,x) of the scattered radiation is

Ascatt(t,x) ≈ −iωE0
ei(kr−ωt)

r

(ǫr − 1)

4πc2

∫

|x′|6a
eiq·x

′

d3x′ ,

where q = k− kx̂ with x̂ = x/r.

In the far-field, where kr ≫ 1, the electric and magnetic fields of the scattered
radiation are given by

Escatt(t,x) ≈ −iωx̂× [x̂×Ascatt(t,x)] ,

Bscatt(t,x) ≈ ikx̂×Ascatt(t,x) .

By calculating the Poynting vector of the scattered and incident radiation, show that
the ratio of the time-averaged power scattered per unit solid angle to the time-averaged
incident power per unit area (i.e. the differential cross-section) is

dσ

dΩ
= (ǫr − 1)2k4

(
sin(qa)− qa cos(qa)

q3

)2

|x̂× Ê0|2 ,

where Ê0 = E0/|E0| and q = |q|.
[You may assume that, in the Lorenz gauge, the retarded potential due to a localised current
distribution is

A(t,x) =
µ0

4π

∫
J(tret,x

′)

|x− x′| d3x′ ,

where the retarded time tret = t− |x− x′|/c.]
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36D General Relativity

(a) In the transverse traceless gauge, a plane gravitational wave propagating in the
z direction is described by a perturbation hαβ of the Minkowski metric ηαβ =
diag(−1, 1, 1, 1) in Cartesian coordinates xα = (t, x, y, z), where

hαβ = Hαβe
ikµxµ

, where kµ = ω(1, 0, 0, 1) ,

and Hαβ is a constant matrix. Spacetime indices in this question are raised or
lowered with the Minkowski metric.

The energy-momentum tensor of a gravitational wave is defined to be

τµν =
1

32π
(∂µh

αβ)(∂νhαβ) .

Show that ∂ντµν = 1
2∂µτ

ν
ν and hence, or otherwise, show that energy and

momentum are conserved.

(b) A point mass m undergoes harmonic motion along the z-axis with frequency ω and
amplitude L. Compute the energy flux emitted in gravitational radiation.

[Hint: The quadrupole formula for time-averaged energy flux radiated in gravita-
tional waves is 〈

dE

dt

〉
=

1

5
〈
...
Qij

...
Qij〉

where Qij is the reduced quadrupole tensor.]

37B Fluid Dynamics II
A horizontal layer of inviscid fluid of density ρ1 occupying 0 < y < h flows with

velocity (U, 0) above a horizontal layer of inviscid fluid of density ρ2 > ρ1 occupying
−h < y < 0 and flowing with velocity (−U, 0), in Cartesian coordinates (x, y). There are
rigid boundaries at y = ±h. The interface between the two layers is perturbed to position
y = Re(Aeikx+σt).

Write down the full set of equations and boundary conditions governing this flow.
Derive the linearised boundary conditions appropriate in the limit A → 0. Solve the
linearised equations to show that the perturbation to the interface grows exponentially in
time if

U2 >
ρ22 − ρ21
ρ1ρ2

g

4k
tanh kh.

Sketch the right-hand side of this inequality as a function of k. Thereby deduce the
minimum value of U that makes the system unstable for all wavelengths.
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38B Waves
Consider the Rossby-wave equation

∂

∂t

(
∂2

∂x2
− ℓ2

)
ϕ+ β

∂ϕ

∂x
= 0 ,

where ℓ > 0 and β > 0 are real constants. Find and sketch the dispersion relation for
waves with wavenumber k and frequency ω(k). Find and sketch the phase velocity c(k)
and the group velocity cg(k), and identify in which direction(s) the wave crests travel, and
the corresponding direction(s) of the group velocity.

Write down the solution with initial value

ϕ(x, 0) =

∫ ∞

−∞
A(k)eikxdk ,

where A(k) is real and A(−k) = A(k). Use the method of stationary phase to obtain
leading-order approximations to ϕ(x, t) for large t, with x/t having the constant value V ,
for

(i) 0 < V < β/8ℓ2,

(ii) −β/ℓ2 < V 6 0,

where the solutions for the stationary points should be left in implicit form. [It is helpful
to note that ω(−k) = −ω(k).]

Briefly discuss the nature of the solution for V > β/8ℓ2 and V < −β/ℓ2. [Detailed
calculations are not required.]

[Hint: You may assume that

∫ ∞

−∞
e±iγu2

du =

(
π

γ

) 1

2

e±iπ/4

for γ > 0.]
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39A Numerical Analysis

(a) The diffusion equation

∂u

∂t
=

∂2u

∂x2
, 0 6 x 6 1, 0 6 t 6 T,

is approximated by the Crank–Nicolson scheme

un+1
m − 1

2
µ
(
un+1
m−1 − 2un+1

m + un+1
m+1

)
= unm +

1

2
µ
(
unm−1 − 2unm + unm+1

)
,

with m = 1, . . . ,M . Here µ = k/h2, k = ∆t, h = ∆x = 1
M+1 , and unm is an

approximation to u(mh,nk). Assuming that u(0, t) = u(1, t) = 0, show that the
above scheme can be written in the form

Bun+1 = Cun, 0 6 n 6 T/k − 1 ,

where un = [un1 , . . . , u
n
M ]T and the real matrices B and C should be found. Using

matrix analysis, find the range of µ > 0 for which the scheme is stable.

[Hint: All Toeplitz symmetric tridiagonal (TST) matrices have the same set of
orthogonal eigenvectors, and a TST matrix with the elements ai,i = a and ai,i±1 = b
has the eigenvalues λk = a+ 2b cos πk

M+1 . ]

(b) The wave equation
∂2u

∂t2
=

∂2u

∂x2
, x ∈ R, t > 0,

with given initial conditions for u and ∂u/∂t, is approximated by the scheme

un+1
m − 2unm + un−1

m = µ(unm+1 − 2unm + unm−1) ,

with the Courant number now µ = k2/h2. Applying the Fourier technique, find the
range of µ > 0 for which the method is stable.

END OF PAPER
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