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SECTION I

1G Number Theory
Explain what is meant by an Euler pseudoprime and a strong pseudoprime. Show

that 65 is an Euler pseudoprime to the base b if and only if b2 ≡ ±1 (mod 65). How many
such bases are there? Show that the bases for which 65 is a strong pseudoprime do not form
a subgroup of (Z/65Z)×.

2F Topics In Analysis

(a) Suppose that g : R2 → R2 is a continuous function such that there exists a K > 0
with ‖g(x) − x‖ 6 K for all x ∈ R2. By constructing a suitable map f from the
closed unit disc into itself, show that there exists a t ∈ R2 with g(t) = 0.

(b) Show that g is surjective.

(c) Show that the result of part (b) may be false if we drop the condition that g is
continuous.

3G Coding & Cryptography
Find and describe all binary cyclic codes of length 7. Pair each code with its dual

code. Justify your answer.

4H Automata and Formal Languages

(a) Define what it means for a context-free grammar (CFG) to be in Chomsky normal

form (CNF). Give an example, with justification, of a context-free language (CFL)
which is not defined by any CFG in CNF.

(b) Show that the intersection of two CFLs need not be a CFL.

(c) Let L be a CFL over an alphabet Σ. Show that Σ∗ \ L need not be a CFL.

Part II, Paper 3
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5J Statistical Modelling
For Fisher’s method of Iteratively Reweighted Least-Squares and Newton–Raphson

optimisation of the log-likelihood, the vector of parameters β is updated using an iteration

β(m+1) = β(m) +M(β(m))−1U(β(m)) ,

for a specific function M . How is M defined in each method?

Prove that they are identical in a Generalised Linear Model with the canonical link
function.

6B Mathematical Biology
A stochastic birth-death process has a master equation given by

dp(n, t)

dt
= λ [p(n− 1, t)− p(n, t)] + β [(n + 1) p(n + 1, t)− n p(n, t)] ,

where p(n, t) is the probability that there are n individuals in the population at time t for
n = 0, 1, 2, . . . and p(n, t) = 0 for n < 0.

Give the corresponding Fokker–Planck equation for this system.

Use this Fokker–Planck equation to find expressions for d
dt〈x〉 and d

dt〈x2〉.
[Hint: The general form for a Fokker–Planck equation in P (x, t) is

∂P

∂t
= − ∂

∂x
(AP ) +

1

2

∂2

∂x2
(BP ) .

You may use this general form, stating how A(x) and B(x) are constructed. Alternatively,

you may derive a Fokker–Plank equation directly by working from the master equation.]

7E Further Complex Methods
Find all the singular points of the differential equation

z
d2y

dz2
+ (2− z)

dy

dz
− y = 0

and determine whether they are regular or irregular singular points.

By writing y(z) = f(z)/z, find two linearly independent solutions to this equation.

Comment on the relationship of your solutions to the nature of the singular points
of the original differential equation.

Part II, Paper 3 [TURN OVER
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8E Classical Dynamics
Define an integrable system with 2n-dimensional phase space. Define angle-action

variables.

Consider a two-dimensional phase space with the Hamiltonian

H =
p2

2m
+

1

2
q2k,

where k is a positive integer and the mass m = m(t) changes slowly in time. Use the fact
that the action is an adiabatic invariant to show that the energy varies in time as mc,
where c is a constant which should be found.

9C Cosmology

(a) In the early universe electrons, protons and neutral hydrogen are in thermal
equilibrium and interact via,

e− + p+ ⇌ H + γ .

The non-relativistic number density of particles in thermal equlibrium is

ni = gi

(
2πmikT

h2

) 3

2

exp

(
µi −mic

2

kT

)
,

where, for each species i, gi is the number of degrees of freedom, mi is its mass, and
µi is its chemical potential. [You may assume ge = gp = 2 and gH = 4.]

Stating any assumptions required, use these expressions to derive the Saha equation
which governs the relative abundances of electrons, protons and hydrogen,

nenp
nH

=

(
2πmekT

h2

) 3

2

exp

(
− I

kT

)
,

where I is the binding energy of hydrogen, which should be defined.

(b) Naively, we might expect that the majority of electrons and protons combine to form
neutral hydrogen once the temperature drops below the binding energy, i.e. kT . I.
In fact recombination does not happen until a much lower temperature, when
kT ≈ 0.03I. Briefly explain why this is.

[Hint: It may help to consider the relative abundances of particles in the early

universe.]
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SECTION II

10G Number Theory
Let d be a positive integer which is not a square. Assume that the continued fraction

expansion of
√
d takes the form [a0, a1, a2, . . . , am].

(a) Define the convergents pn/qn, and show that pn and qn are coprime.

(b) The complete quotients θn may be written in the form (
√
d+ rn)/sn, where rn and

sn are rational numbers. Use the relation

√
d =

θnpn−1 + pn−2

θnqn−1 + qn−2

to find formulae for rn and sn in terms of the p’s and q’s. Deduce that rn and sn
are integers.

(c) Prove that Pell’s equation x2 − dy2 = 1 has infinitely many solutions in integers x
and y.

(d) Find integers x and y satisfying x2 − 67y2 = −2.

11H Automata and formal languages

(a) Given A,B ⊆ N, define a many-one reduction of A to B. Show that if B is
recursively enumerable (r.e.) and A 6m B then A is also recursively enumerable.

(b) State the s-m-n theorem, and use it to prove that a set X ⊆ N is r.e. if and only if
X 6m K.

(c) Consider the sets of integers P,Q ⊆ N defined via

P := {n ∈ N | n codes a program and Wn is finite}
Q := {n ∈ N | n codes a program and Wn is recursive}.

Show that P 6m Q.

Part II, Paper 3 [TURN OVER
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12B Mathematical Biology
In a discrete-time model, adults and larvae of a population at time n are represented

by an and bn respectively. The model is represented by the equations

an+1 = (1− k)an +
bn

1 + an
,

bn+1 = µan .

You may assume that k ∈ (0, 1) and µ > 0. Give an explanation of what each of
the terms represents, and hence give a description of the population model.

By combining the equations to describe the dynamics purely in terms of the adults,
find all equilibria of the system. Show that the equilibrium with the population absent
(a = 0) is unstable exactly when there exists an equilibrium with the population present
(a > 0).

Give the condition on µ and k for the equilibrium with a > 0 to be stable, and
sketch the corresponding region in the (k, µ) plane.

What happens to the population close to the boundaries of this region?

If this model was modified to include stochastic effects, briefly describe qualitatively
the likely dynamics near the boundaries of the region found above.

Part II, Paper 3
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13C Cosmology

(a) The scalar moment of inertia for a system of N particles is given by

I =

N∑

i=1

mi ri · ri ,

wheremi is the particle’s mass and ri is a vector giving the particle’s position. Show
that, for non-relativistic particles,

1

2

d2I

dt2
= 2K +

N∑

i=1

Fi · ri

where K is the total kinetic energy of the system and Fi is the total force on particle
i.

Assume that any two particles i and j interact gravitationally with potential energy

Vij = −Gmimj

|ri − rj |
.

Show that

N∑

i=1

Fi · ri = V ,

where V is the total potential energy of the system. Use the above to prove the
virial theorem.

(b) Consider an approximately spherical overdensity of stationary non-interacting mas-
sive particles with initial constant density ρi and initial radius Ri. Assuming the
system evolves until it reaches a stable virial equilibrium, what will the final ρ and
R be in terms of their initial values? Would this virial solution be stable if our
particles were baryonic rather than non-interacting? Explain your answer.

14H Logic and Set Theory
State and prove Zorn’s Lemma. [You may assume Hartogs’ Lemma.] Indicate clearly

where in your proof you have made use of the Axiom of Choice.

Show that R has a basis as a vector space over Q.

Let V be a vector space over Q. Show that all bases of V have the same cardinality.

[Hint: How does the cardinality of V relate to the cardinality of a given basis?]
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15H Graph Theory
Define the Ramsey numbers R(s, t) for integers s, t > 2. Show that R(s, t) exists for

all s, t > 2. Show also that R(s, s) 6 4s for all s > 2.

Let t > 2 be fixed. Give a red-blue colouring of the edges of K2t−2 for which there
is no red Kt and no blue odd cycle. Show, however, that for any red-blue colouring of the
edges of K2t−1 there must exist either a red Kt or a blue odd cycle.

16I Galois Theory

(a) Let F be a finite field of characteristic p. Show that F is a finite Galois extension
of the field Fp of p elements, and that the Galois group of F over Fp is cyclic.

(b) Find the Galois groups of the following polynomials:

(i) t4 + 1 over F3.

(ii) t3 − t− 2 over F5.

(iii) t4 − 1 over F7.

17G Representation Theory

(a) State Burnside’s paqb theorem.

(b) Let P be a non-trivial group of prime power order. Show that if H is a non-trivial
normal subgroup of P , then H ∩ Z(P ) 6= {1}.
Deduce that a non-abelian simple group cannot have an abelian subgroup of prime
power index.

(c) Let ρ be a representation of the finite group G over C. Show that δ : g 7→ det(ρ(g))
is a linear character of G. Assume that δ(g) = −1 for some g ∈ G. Show that G
has a normal subgroup of index 2.

Now let E be a group of order 2k, where k is an odd integer. By considering the
regular representation of E, or otherwise, show that E has a normal subgroup of
index 2.

Deduce that if H is a non-abelian simple group of order less than 80, then H has
order 60.

Part II, Paper 3
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18I Algebraic Topology
The n-torus is the product of n circles:

T n = S1 × . . .× S1
︸ ︷︷ ︸

n times

.

For all n > 1 and 0 6 k 6 n, compute Hk(T
n).

[You may assume that relevant spaces are triangulable, but you should state carefully any
version of any theorem that you use.]

19F Linear Analysis
Let K be a non-empty compact Hausdorff space and let C(K) be the space of

real-valued continuous functions on K.

(i) State the real version of the Stone–Weierstrass theorem.

(ii) Let A be a closed subalgebra of C(K). Prove that f ∈ A and g ∈ A implies that
m ∈ A where the function m : K → R is defined by m(x) = max{f(x), g(x)}. [You
may use without proof that f ∈ A implies |f | ∈ A.]

(iii) Prove that K is normal and state Urysohn’s Lemma.

(iv) For any x ∈ K, define δx ∈ C(K)∗ by δx(f) = f(x) for f ∈ C(K). Justifying your
answer carefully, find

inf
x 6=y

‖δx − δy‖.

20F Analysis of Functions
Denote by C0(R

n) the space of continuous complex-valued functions on Rn converg-
ing to zero at infinity. Denote by Ff(ξ) =

∫
Rn
e−2iπx·ξf(x) dx the Fourier transform of

f ∈ L1(Rn).

(i) Prove that the image of L1(Rn) under F is included and dense in C0(R
n), and that

F : L1(Rn) → C0(R
n) is injective. [Fourier inversion can be used without proof

when properly stated.]

(ii) Calculate the Fourier transform of χ[a,b], the characteristic function of [a, b] ⊂ R.

(iii) Prove that gn := χ[−n,n] ∗χ[−1,1] belongs to C0(R) and is the Fourier transform of a
function hn ∈ L1(R), which you should determine.

(iv) Using the functions hn, gn and the open mapping theorem, deduce that the Fourier
transform is not surjective from L1(R) to C0(R).
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21F Riemann Surfaces
Let n > 2 be a positive even integer. Consider the subspace R of C2 given by the

equation w2 = zn − 1, where (z, w) are coordinates in C2, and let π : R → C be the
restriction of the projection map to the first factor. Show that R has the structure of a
Riemann surface in such a way that π becomes an analytic map. If τ denotes projection
onto the second factor, show that τ is also analytic. [You may assume that R is connected.]

Find the ramification points and the branch points of both π and τ . Compute the
ramification indices at the ramification points.

Assume that, by adding finitely many points, it is possible to compactify R to a
Riemann surface R such that π extends to an analytic map π : R→ C∞. Find the genus
of R (as a function of n).

22I Algebraic Geometry

(a) Define what it means to give a rational map between algebraic varieties. Define a
birational map.

(b) Let
X = Z(y2 − x2(x− 1)) ⊆ A2.

Define a birational map from X to A1. [Hint: Consider lines through the origin.]

(c) Let Y ⊆ A3 be the surface given by the equation

x21x2 + x22x3 + x23x1 = 0.

Consider the blow-up X ⊆ A3×P2 of A3 at the origin, i.e. the subvariety of A3×P2

defined by the equations xiyj = xjyi for 1 6 i < j 6 3, with y1, y2, y3 coordinates
on P2. Let ϕ : X → A3 be the projection and E = ϕ−1(0). Recall that the proper
transform Ỹ of Y is the closure of ϕ−1(Y ) \ E in X. Give equations for Ỹ , and
describe the fibres of the morphism ϕ|

Ỹ
: Ỹ → Y .

Part II, Paper 3
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23I Differential Geometry
Let S ⊂ RN be a manifold and let α : [a, b] → S ⊂ RN be a smooth regular curve

on S. Define the total length L(α) and the arc length parameter s. Show that α can be
reparametrized by arc length.

Let S ⊂ R3 denote a regular surface, let p, q ∈ S be distinct points and let
α : [a, b] → S be a smooth regular curve such that α(a) = p, α(b) = q. We say that α is
length minimising if for all smooth regular curves α̃ : [a, b] → S with α̃(a) = p, α̃(b) = q,
we have L(α̃) > L(α). By deriving a formula for the derivative of the energy functional
corresponding to a variation of α, show that a length minimising curve is necessarily a
geodesic. [You may use the following fact: given a smooth vector field V (t) along α with
V (a) = V (b) = 0, there exists a variation α(s, t) of α such that ∂sα(s, t)|s=0 = V (t).]

Let S2 ⊂ R3 denote the unit sphere and let S denote the surface S2 \ (0, 0, 1). For
which pairs of points p, q ∈ S does there exist a length minimising smooth regular curve
α : [a, b] → S with α(a) = p and α(b) = q? Justify your answer.

24J Probability and Measure

(a) Suppose that X = (Xn) is a sequence of random variables on a probability space
(Ω,F ,P). Give the definition of what it means for X to be uniformly integrable.

(b) State and prove Hölder’s inequality.

(c) Explain what it means for a family of random variables to be Lp bounded. Prove that
an Lp bounded sequence is uniformly integrable provided p > 1.

(d) Prove or disprove: every sequence which is L1 bounded is uniformly integrable.
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25K Applied Probability

(a) Define the Moran model and Kingman’s n-coalescent. Define Kingman’s infinite

coalescent.

Show that Kingman’s infinite coalescent comes down from infinity. In other words,
with probability one, the number of blocks of Πt is finite at any time t > 0.

(b) Give the definition of a renewal process.

Let (Xi) denote the sequence of inter-arrival times of the renewal process N .
Suppose that E[X1] > 0.

Prove that P(N(t) → ∞ as t→ ∞) = 1.

Prove that E
[
eθN(t)

]
<∞ for some strictly positive θ.

[Hint: Consider the renewal process with inter-arrival times X ′
k = ε1(Xk > ε) for

some suitable ε > 0.]

26K Principles of Statistics
We consider the problem of estimating an unknown θ0 in a statistical model

{f(x, θ) , θ ∈ Θ} where Θ ⊂ R, based on n i.i.d. observations X1, . . . ,Xn whose
distribution has p.d.f. f(x, θ0).

In all the parts below you may assume that the model satisfies necessary regularity
conditions.

(a) Define the score function Sn of θ. Prove that Sn(θ0) has mean 0.

(b) Define the Fisher Information I(θ). Show that it can also be expressed as

I(θ) = −Eθ

[ d2
dθ2

log f(X1, θ)
]
.

(c) Define the maximum likelihood estimator θ̂n of θ. Give without proof the limits of
θ̂n and of

√
n(θ̂n − θ0) (in a manner which you should specify). [Be as precise as

possible when describing a distribution.]

(d) Let ψ : Θ → R be a continuously differentiable function, and θ̃n another estimator
of θ0 such that |θ̂n − θ̃n| 6 1/n with probability 1. Give the limits of ψ(θ̃n) and of√
n(ψ(θ̃n)− ψ(θ0)) (in a manner which you should specify).
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27J Stochastic Financial Models

(a) State the fundamental theorem of asset pricing for a multi-period model.

Consider a market model in which there is no arbitrage, the prices for all European
put and call options are already known and there is a riskless asset S0 = (S0

t )t∈{0,...,T}

with S0
t = (1 + r)t for some r > 0. The holder of a so-called ‘chooser option’ C(K, t0, T )

has the right to choose at a preassigned time t0 ∈ {0, 1, . . . , T} between a European call
and a European put option on the same asset S1, both with the same strike price K and
the same maturity T . [We assume that at time t0 the holder will take the option having
the higher price at that time.]

(b) Show that the payoff function of the chooser option is given by

C(K, t0, T ) =

{
(S1

T −K)+ if S1
t0 > K(1 + r)t0−T ,

(K − S1
T )

+ otherwise.

(c) Show that the price π(C(K, t0, T )) of the chooser option C(K, t0, T ) is given by

π(C(K, t0, T )) = π
(
EC(K,T )

)
+ π

(
EP

(
K(1 + r)t0−T , t0

))
,

where π
(
EC(K,T )

)
and π

(
EP (K,T )

)
denote the price of a European call and put

option, respectively, with strike K and maturity T .
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28K Optimization and Control
A particle follows a discrete-time trajectory on R given by

xt+1 = (Axt + ut)ξt + ǫt

for t = 1, 2, . . . , T . Here T > 2 is a fixed integer, A is a real constant, xt and ut are
the position of the particle and control action at time t, respectively, and (ξt, ǫt)

T
t=1 is a

sequence of independent random vectors with

E ξt = E ǫt = 0, var(ξt) = Vξ > 0, var(ǫt) = Vǫ > 0 and cov(ξt, ǫt) = 0 .

Find the optimal control, i.e. the control action ut, defined as a function of
(x1, . . . , xt;u1, . . . , ut−1), that minimizes

T∑

t=1

x2t + c

T−1∑

t=1

u2t ,

where c > 0 is given.

On which of Vǫ and Vξ does the optimal control depend?

Find the limiting form of the optimal control as T → ∞, and the minimal average
cost per unit time.

29E Asymptotic Methods
Consider the integral representation for the modified Bessel function

I0(x) =
1

2πi

∮

C
t−1 exp

[
ix

2

(
t− 1

t

)]
dt,

where C is a simple closed contour containing the origin, taken anti-clockwise.

Use the method of steepest descent to determine the full asymptotic expansion of
I0(x) for large real positive x .

Part II, Paper 3
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30A Dynamical Systems
State, without proof, the centre manifold theorem. Show that the fixed point at the

origin of the system

ẋ = y − x+ ax3 ,

ẏ = rx− y − yz ,

ż = xy − z ,

where a 6= 1 is a constant, is nonhyperbolic at r = 1. What are the dimensions of the
linear stable and (non-extended) centre subspaces at this point?

Make the substitutions 2u = x+y, 2v = x−y and µ = r−1 and derive the resultant
equations for u̇, v̇ and ż.

The extended centre manifold is given by

v = V (u, µ), z = Z(u, µ) ,

where V and Z can be expanded as power series about u = µ = 0. What is known about
V and Z from the centre manifold theorem? Assuming that µ = O(u2), determine Z to
O(u2) and V to O(u3). Hence obtain the evolution equation on the centre manifold correct
to O(u3), and identify the type of bifurcation distinguishing between the cases a > 1 and
a < 1.

If now a = 1, assume that µ = O(u4) and extend your calculations of Z to O(u4) and
of the dynamics on the centre manifold to O(u5). Hence sketch the bifurcation diagram
in the neighbourhood of u = µ = 0.
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31A Integrable Systems
Let u = u(x, t) be a smooth solution to the KdV equation

ut + uxxx − 6uux = 0

which decays rapidly as |x| → ∞ and let L = −∂2x + u be the associated Schrödinger
operator. You may assume L and A = 4∂3x − 3(u∂x + ∂xu) constitute a Lax pair for KdV.

Consider a solution to Lϕ = k2ϕ which has the asymptotic form

ϕ(x, k, t) =

{
e−ikx, as x→ −∞,

a(k, t)e−ikx + b(k, t)eikx, as x→ +∞.

Find evolution equations for a and b. Deduce that a(k, t) is t-independent.

By writing ϕ in the form

ϕ(x, k, t) = exp

[
−ikx+

∫ x

−∞
S(y, k, t) dy

]
, S(x, k, t) =

∞∑

n=1

Sn(x, t)

(2ik)n
,

show that

a(k, t) = exp

[∫ ∞

−∞
S(x, k, t) dx

]
.

Deduce that {
∫∞
−∞ Sn(x, t) dx}∞n=1 are first integrals of KdV.

By writing a differential equation for S = X + iY (with X,Y real), show that these
first integrals are trivial when n is even.
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32C Principles of Quantum Mechanics
The angular momentum operators J = (J1, J2, J3) obey the commutation relations

[J3, J±] = ±J± ,

[J+, J−] = 2J3 ,

where J± = J1 ± iJ2.

A quantum mechanical system involves the operators a, a†, b and b† such that

[a, a†] = [b, b†] = 1 ,

[a, b] = [a†, b] = [a, b†] = [a†, b†] = 0.

Define K+ = a†b, K− = ab† and K3 = 1
2 (a

†a − b†b). Show that K± and K3 obey
the same commutation relations as J± and J3.

Suppose that the system is in the state |0〉 such that a|0〉 = b|0〉 = 0. Show that
(a†)2|0〉 is an eigenstate of K3. Let K2 = 1

2(K+K− +K−K+) +K2
3 . Show that (a†)2|0〉

is an eigenstate of K2 and find the eigenvalue. How many other states do you expect to
find with same value of K2? Find them.

33C Applications of Quantum Mechanics
A particle of mass m and charge q moving in a uniform magnetic field B = ∇×A =

(0, 0, B) is described by the Hamiltonian

H =
1

2m
(p− qA)2

where p is the canonical momentum, which obeys [xi, pj ] = i~δij . The mechanical

momentum is defined as π = p− qA. Show that

[πx, πy] = iq~B .

Define

a =
1√
2q~B

(πx + iπy) and a† =
1√

2q~B
(πx − iπy) .

Derive the commutation relation obeyed by a and a†. Write the Hamiltonian in terms of
a and a† and hence solve for the spectrum.

In symmetric gauge, states in the lowest Landau level with kz = 0 have wavefunc-
tions

ψ(x, y) = (x+ iy)M e−qBr2/4~

where r2 = x2 + y2 and M is a positive integer. By considering the profiles of these
wavefunctions, estimate how many lowest Landau level states can fit in a disc of radius R.
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34D Statistical Physics

(a) Describe the Carnot cycle using plots in the (p, V )-plane and the (T, S)-plane. In
which steps of the cycle is heat absorbed or emitted by the gas? In which steps is
work done on, or by, the gas?

(b) An ideal monatomic gas undergoes a reversible cycle described by a triangle in the
(p, V )-plane with vertices at the points A,B,C with coordinates (p0, V0), (2p0, V0)
and (p0, 2V0) respectively. The cycle is traversed in the order ABCA.

(i) Write down the equation of state and an expression for the internal energy of
the gas.

(ii) Derive an expression relating TdS to dp and dV . Use your expression to
calculate the heat supplied to, or emitted by, the gas along AB and CA.

(iii) Show that heat is supplied to the gas along part of the line BC, and is emitted
by the gas along the other part of the line.

(iv) Calculate the efficiency η = W/Q where W is the total work done by the
cycle and Q is the total heat supplied.
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35D Electrodynamics
By considering the force per unit volume f = ρE+J×B on a charge density ρ and

current density J due to an electric field E and magnetic field B, show that

∂gi
∂t

+
∂σij
∂xj

= −fi ,

where g = ǫ0E×B and the symmetric tensor σij should be specified.

Give the physical interpretation of g and σij and explain how σij can be used to
calculate the net electromagnetic force exerted on the charges and currents within some
region of space in static situations.

The plane x = 0 carries a uniform charge σ per unit area and a current K per unit
length along the z-direction. The plane x = d carries the opposite charge and current.
Show that between these planes

σij =
σ2

2ǫ0




−1 0 0
0 1 0
0 0 1


+

µ0K
2

2




1 0 0
0 −1 0
0 0 1


 , (∗)

and σij = 0 for x < 0 and x > d.

Use (∗) to find the electromagnetic force per unit area exerted on the charges and
currents in the x = 0 plane. Show that your result agrees with direct calculation of the
force per unit area based on the Lorentz force law.

If the current K is due to the motion of the charge σ with speed v, is it possible for
the force between the planes to be repulsive?

36D General Relativity
Let M be a two-dimensional manifold with metric g of signature −+.

(i) Let p ∈ M. Use normal coordinates at the point p to show that one can choose two
null vectors V, W that form a basis of the vector space Tp(M).

(ii) Consider the interval I ⊂ R. Let γ : I → M be a null curve through p and U 6= 0
be the tangent vector to γ at p. Show that the vector U is either parallel to V or
parallel to W.

(iii) Show that every null curve in M is a null geodesic.

[Hint: You may wish to consider the acceleration aα = Uβ∇βU
α.]

(iv) By providing an example, show that not every null curve in four-dimensional
Minkowski spacetime is a null geodesic.
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37B Fluid Dynamics II
A spherical bubble of radius a moves with velocity U through a viscous fluid that is

at rest far from the bubble. The pressure and velocity fields outside the bubble are given
by

p = µ
a

r3
U · x and u =

a

2r
U+

a

2r3
(U · x)x ,

respectively, where µ is the dynamic viscosity of the fluid, x is the position vector from
the centre of the bubble and r = |x|. Using suffix notation, or otherwise, show that these
fields satisfy the Stokes equations.

Obtain an expression for the stress tensor for the fluid outside the bubble and show
that the velocity field above also satisfies all the appropriate boundary conditions.

Compute the drag force on the bubble.

[Hint: You may use ∫

S
ninj dS =

4

3
πa2δij ,

where the integral is taken over the surface of a sphere of radius a and n is the outward

unit normal to the surface.]
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38B Waves
Waves propagating in a slowly-varying medium satisfy the local dispersion relation

ω = Ω(k;x, t) in the standard notation. Derive the ray-tracing equations

dxi
dt

=
∂Ω

∂ki
,

dki
dt

= − ∂Ω

∂xi
,

dω

dt
=
∂Ω

∂t

governing the evolution of a wave packet specified by ϕ(x, t) = A(x, t; ε)eiθ(x,t)/ε, where
0 < ε≪ 1. A formal justification is not required, but the meaning of the d/dt notation
should be carefully explained.

The dispersion relation for two-dimensional, small amplitude, internal waves of
wavenumber k = (k, 0,m), relative to Cartesian coordinates (x, y, z) with z vertical,
propagating in an inviscid, incompressible, stratified fluid that would otherwise be at
rest, is given by

ω2 =
N2k2

k2 +m2
,

where N is the Brunt–Väisälä frequency and where you may assume that k > 0 and
ω > 0. Derive the modified dispersion relation if the fluid is not at rest, and instead has
a slowly-varying mean flow (U(z), 0, 0).

In the case that U ′(z) > 0, U(0) = 0 and N is constant, show that a disturbance
with wavenumber k = (k, 0, 0) generated at z = 0 will propagate upwards but cannot go
higher than a critical level z = zc, where U(zc) is equal to the apparent wave speed in the
x-direction. Find expressions for the vertical wave number m as z → zc from below, and
show that it takes an infinite time for the wave to reach the critical level.
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39A Numerical Analysis
Let A be a real symmetric n × n matrix with real and distinct eigenvalues

0 = λ1 < · · · < λn−1 = 1 < λn and a corresponding orthogonal basis of normalized
real eigenvectors (wi)

n
i=1.

To estimate the eigenvector wn of A whose eigenvalue is λn, the power method with
shifts is employed which has the following form:

y = (A− skI)x
(k), x(k+1) = y/‖y‖ , sk ∈ R, k = 0, 1, 2, . . .

Three versions of this method are considered:

(i) no shift: sk ≡ 0;

(ii) single shift: sk ≡ 1
2 ;

(iii) double shift: s2ℓ ≡ s0 =
1
4(2 +

√
2), s2ℓ+1 ≡ s1 =

1
4 (2−

√
2).

Assume that λn = 1+ ǫ, where ǫ > 0 is very small, so that the terms O(ǫ2) are negligible,
and that x(0) contains substantial components of all the eigenvectors.

By considering the approximation after 2m iterations in the form

x(2m) = ±wn +O(ρ2m) (m→ ∞),

find ρ as a function of ǫ for each of the three versions of the method.

Compare the convergence rates of the three versions of the method, with reference
to the number of iterations needed to achieve a prescribed accuracy.

END OF PAPER
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