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SECTION I

1G Number Theory
State and prove Legendre’s formula for π(x). Use it to compute π(42).

2F Topics In Analysis
Are the following statements true or false? Give reasons, quoting any theorems that

you need.

(i) There is a sequence of polynomials Pn with Pn(t) → sin t uniformly on R as n→ ∞.

(ii) If f : R → R is continuous, then there is a sequence of polynomials Qn with
Qn(t) → f(t) for each t ∈ R as n→ ∞.

(iii) If g : [1,∞) → R is continuous with g(t) → 0 as t→ ∞, then there is a sequence of
polynomials Rn with Rn(1/t) → g(t) uniformly on [1,∞) as n→ ∞.

3G Coding & Cryptography
Prove that a decipherable code with prescribed word lengths exists if and only if

there is a prefix-free code with the same word lengths.

4H Automata and Formal Languages

(a) Give explicit examples, with justification, of a language over some finite alphabet
Σ which is:

(i) context-free, but not regular;

(ii) recursive, but not context-free.

(b) Give explicit examples, with justification, of a subset of N which is:

(i) recursively enumerable, but not recursive;

(ii) neither recursively enumerable, nor having recursively enumerable comple-
ment in N.

Part II, Paper 2
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5J Statistical Modelling
A statistician is interested in the power of a t-test with level 5% in linear regression;

that is, the probability of rejecting the null hypothesis β0 = 0 with this test under an
alternative with β0 > 0.

(a) State the distribution of the least-squares estimator β̂0, and hence state the form of
the t-test statistic used.

(b) Prove that the power does not depend on the other coefficients βj for j > 0.

6B Mathematical Biology
A bacterial nutrient uptake model is represented by the reaction system

2S + E
k1−−−−−→ C

C
k2−−−−−→ 2S + E

C
k3−−−−−→ E + 2P

where the ki are rate constants. Let s, e, c and p represent the concentrations of S, E, C
and P respectively. Initially s = s0, e = e0, c = 0 and p = 0. Write down the governing
differential equation system for the concentrations.

Either by using the differential equations or directly from the reaction system above,
find two invariant quantities. Use these to simplify the system to

ṡ = −2k1s
2(e0 − c) + 2k2c ,

ċ = k1s
2(e0 − c)− (k2 + k3)c .

By setting u = s/s0 and v = c/e0 and rescaling time, show that the system can be
written as

u′ = −2u2(1− v) + 2(µ − λ)v ,

ǫv′ = u2(1− v)− µv ,

where ǫ = e0/s0 and µ and λ should be given. Give the initial conditions for u and v.

[Hint: Note that 2X is equivalent to X+X in reaction systems.]

Part II, Paper 2 [TURN OVER
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7E Further Complex Methods
Euler’s formula for the Gamma function is

Γ(z) =
1

z

∞∏

n=1

(
1 +

1

n

)z (
1 +

z

n

)−1
.

Use Euler’s formula to show

Γ(2z)

22zΓ(z)Γ(z + 1
2)

= C,

where C is a constant.

Evaluate C.

[Hint: You may use Γ(z)Γ(1 − z) = π/ sin(πz).]

8E Classical Dynamics
Derive the Lagrange equations from the principle of stationary action

S[q] =

∫ t1

t0

L(qi(t), q̇i(t), t)dt, δS = 0,

where the end points qi(t0) and qi(t1) are fixed.

Let φ and A be a scalar and a vector, respectively, depending on r = (x, y, z).
Consider the Lagrangian

L =
mṙ2

2
− (φ− ṙ ·A),

and show that the resulting Euler–Lagrange equations are invariant under the transfor-
mations

φ→ φ+ α
∂F

∂t
, A → A+∇F,

where F = F (r, t) is an arbitrary function, and α is a constant which should be determined.

Part II, Paper 2
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9C Cosmology
In a homogeneous and isotropic universe (Λ = 0), the acceleration equation for the

scale factor a(t) is given by

ä

a
= −4πG

3

(
ρ+ 3P/c2

)
,

where ρ(t) is the mass density and P (t) is the pressure.

If the matter content of the universe obeys the strong energy condition ρ+3P/c2 > 0,
show that the acceleration equation can be rewritten as Ḣ + H2 6 0, with Hubble
parameter H(t) = ȧ/a. Show that

H >
1

H−1
0 + t− t0

,

where H0 = H(t0) is the measured value today at t = t0. Hence, or otherwise, show that

a(t) 6 1 +H0(t− t0) .

Use this inequality to find an upper bound on the age of the universe.
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SECTION II

10F Topics In Analysis
State and prove Baire’s category theorem for complete metric spaces. Give an

example to show that it may fail if the metric space is not complete.

Let fn : [0, 1] → R be a sequence of continuous functions such that fn(x) converges
for all x ∈ [0, 1]. Show that if ǫ > 0 is fixed we can find an N > 0 and a non-empty open
interval J ⊆ [0, 1] such that |fn(x)− fm(x)| 6 ǫ for all x ∈ J and all n, m > N .

Let g : [0, 1] → R be defined by

g(x) =

{
1 if x is rational,

0 if x is irrational.

Show that we cannot find continuous functions gn : [0, 1] → R with gn(x) → g(x) for each
x ∈ [0, 1] as n→ ∞.

Define a sequence of continuous functions hn : [0, 1] → R and a discontinuous
function h : [0, 1] → R with hn(x) → h(x) for each x ∈ [0, 1] as n→ ∞.

11G Coding & Cryptography
Define the entropy, H(X), of a random variable X. State and prove Gibbs’

inequality.

Hence, or otherwise, show that H(p1, p2, p3) 6 H(p1, 1−p1)+(1−p1) and determine
when equality occurs.

Show that the Discrete Memoryless Channel with channel matrix

(
1− α− β α β

α 1− α− β β

)

has capacity C = (1− β)(1 − log(1− β)) + (1− α− β) log(1− α− β) + α logα.

Part II, Paper 2
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12E Further Complex Methods
The hypergeometric equation is represented by the Papperitz symbol

P





0 1 ∞
0 0 a z

1− c c− a− b b



 (∗)

and has solution y0(z) = F (a, b, c; z).

Functions y1(z) and y2(z) are defined by

y1(z) = F (a, b, a+ b+ 1− c; 1− z)

and
y2(z) = (1− z)c−a−bF (c− a, c− b, c− a− b+ 1; 1 − z),

where c− a− b is not an integer.

Show that y1(z) and y2(z) obey the hypergeometric equation (∗).
Explain why y0(z) can be written in the form

y0(z) = Ay1(z) +By2(z),

where A and B are independent of z but depend on a, b and c.

Suppose that

F (a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−adt

with Re(c) > Re(b) > 0 and | arg(1− z)| < π. Find expressions for A and B.

13E Classical Dynamics
Show that an object’s inertia tensor about a point displaced from the centre of mass

by a vector c is given by

(Ic)ab = (I0)ab +M(|c|2δab − cacb),

where M is the total mass of the object, and (I0)ab is the inertia tensor about the centre
of mass.

Find the inertia tensor of a cube of uniform density, with edge of length L, about
one of its vertices.
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14H Logic and Set Theory
Give the inductive and synthetic definitions of ordinal addition, and prove that they

are equivalent.

Which of the following are always true for ordinals α, β and γ and which can be
false? Give proofs or counterexamples as appropriate.

(i) α+ β = β + α

(ii) (α+ β)γ = αγ + βγ

(iii) α(β + γ) = αβ + αγ

(iv) If αβ = βα then α2β2 = β2α2

(v) If α2β2 = β2α2 then αβ = βα

[In parts (iv) and (v) you may assume without proof that ordinal multiplication is
associative.]

15H Graph Theory
State and prove Hall’s theorem about matchings in bipartite graphs.

Let A = (aij) be an n × n matrix, with all entries non-negative reals, such that
every row sum and every column sum is 1. By applying Hall’s theorem, show that there
is a permutation σ of {1, . . . , n} such that aiσ(i) > 0 for all i.

16I Galois Theory

(a) Define what it means for a finite field extension L of a field K to be separable. Show
that L is of the form K(α) for some α ∈ L.

(b) Let p and q be distinct prime numbers. Let L = Q(
√
p,
√−q). Express L in the

form Q(α) and find the minimal polynomial of α over Q.

(c) Give an example of a field extension K 6 L of finite degree, where L is not of the
form K(α). Justify your answer.

Part II, Paper 2
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17G Representation Theory
In this question you may assume the following result. Let χ be a character of a

finite group G and let g ∈ G. If χ(g) is a rational number, then χ(g) is an integer.

(a) If a and b are positive integers, we denote their highest common factor by (a, b).
Let g be an element of order n in the finite group G. Suppose that g is conjugate
to gi for all i with 1 6 i 6 n and (i, n) = 1. Prove that χ(g) is an integer for all
characters χ of G.

[You may use the following result without proof. Let ω be an nth root of unity.
Then ∑

1 6 i 6 n,
(i, n) = 1

ωi

is an integer.]

Deduce that all the character values of symmetric groups are integers.

(b) Let G be a group of odd order.

Let χ be an irreducible character of G with χ = χ̄. Prove that

〈χ, 1G〉 =
1

|G| (χ(1) + 2α),

where α is an algebraic integer. Deduce that χ = 1G.

18H Number Fields

(a) Let L be a number field, OL the ring of integers in L, O∗
L the units in OL, r the

number of real embeddings of L, and s the number of pairs of complex embeddings
of L.

Define a group homomorphism O∗
L → Rr+s−1 with finite kernel, and prove that the

image is a discrete subgroup of Rr+s−1.

(b) Let K = Q(
√
d) where d > 1 is a square-free integer. What is the structure of the

group of units of K? Show that if d is divisible by a prime p ≡ 3 (mod 4) then every
unit of K has norm +1. Find an example of K with a unit of norm −1.
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19I Algebraic Topology

(a) (i) Define the push-out of the following diagram of groups.

H

i2
��

i1
// G1

G2

When is a push-out a free product with amalgamation?

(ii) State the Seifert–van Kampen theorem.

(b) Let X = RP 2 ∨ S1 (recalling that RP 2 is the real projective plane), and let x ∈ X.

(i) Compute the fundamental group π1(X,x) of the space X.

(ii) Show that there is a surjective homomorphism φ : π1(X,x) → S3, where S3
is the symmetric group on three elements.

(c) Let X̂ → X be the covering space corresponding to the kernel of φ.

(i) Draw X̂ and justify your answer carefully.

(ii) Does X̂ retract to a graph? Justify your answer briefly.

(iii) Does X̂ deformation retract to a graph? Justify your answer briefly.

20F Linear Analysis

(a) Let X be a normed vector space and Y ⊂ X a closed subspace with Y 6= X. Show
that Y is nowhere dense in X.

(b) State any version of the Baire Category theorem.

(c) Let X be an infinite-dimensional Banach space. Show that X cannot have a
countable algebraic basis, i.e. there is no countable subset (xk)k∈N ⊂ X such that
every x ∈ X can be written as a finite linear combination of elements of (xk).

Part II, Paper 2
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21F Riemann Surfaces
Let f be a non-constant elliptic function with respect to a lattice Λ ⊂ C. Let P be

a fundamental parallelogram whose boundary contains no zeros or poles of f . Show that
the number of zeros of f in P is the same as the number of poles of f in P , both counted
with multiplicities.

Suppose additionally that f is even. Show that there exists a rational function Q(z)
such that f = Q(℘), where ℘ is the Weierstrass ℘-function.

Suppose f is a non-constant elliptic function with respect to a lattice Λ ⊂ C, and
F is a meromorphic antiderivative of f , so that F ′ = f . Is it necessarily true that F is an
elliptic function? Justify your answer.

[You may use standard properties of the Weierstrass ℘-function throughout.]

22I Algebraic Geometry
Let k be an algebraically closed field of any characteristic.

(a) Define what it means for a variety X to be non-singular at a point P ∈ X.

(b) LetX ⊆ Pn be a hypersurface Z(f) for f ∈ k[x0, . . . , xn] an irreducible homogeneous
polynomial. Show that the set of singular points of X is Z(I), where I ⊆
k[x0, . . . , xn] is the ideal generated by ∂f/∂x0, . . . , ∂f/∂xn.

(c) Consider the projective plane curve corresponding to the affine curve in A2 given
by the equation

x4 + x2y2 + y2 + 1 = 0.

Find the singular points of this projective curve if char k 6= 2. What goes wrong if
char k = 2?

Part II, Paper 2 [TURN OVER
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23I Differential Geometry
Let α : I → R3 be a regular smooth curve. Define the curvature k and torsion τ of

α and derive the Frenet formulae. Give the assumption which must hold for torsion to be
well-defined, and state the Fundamental Theorem for curves in R3.

Let α be as above and α̃ : I → R3 be another regular smooth curve with curvature
k̃ and torsion τ̃ . Suppose k̃(s) = k(s) 6= 0 and τ̃(s) = τ(s) for all s ∈ I, and that there
exists a non-empty open subinterval J ⊂ I such that α̃|J = α|J . Show that α̃ = α.

Now let S ⊂ R3 be an oriented surface and let α : I → S ⊂ R3 be a regular
smooth curve contained in S. Define normal curvature and geodesic curvature. When is
α a geodesic? Give an example of a surface S and a geodesic α whose normal curvature
vanishes identically. Must such a surface S contain a piece of a plane? Can such a geodesic
be a simple closed curve? Justify your answers.

Show that if α is a geodesic and the Gaussian curvature of S satisfies K > 0, then
we have the inequality k(s) 6 2|H(α(s))|, where H denotes the mean curvature of S and
k the curvature of α. Give an example where this inequality is sharp.

24J Probability and Measure

(a) Give the definition of the Fourier transform f̂ of a function f ∈ L1(Rd).

(b) Explain what it means for Fourier inversion to hold.

(c) Prove that Fourier inversion holds for gt(x) = (2πt)−d/2e−‖x‖2/(2t). Show all of
the steps in your computation. Deduce that Fourier inversion holds for Gaussian
convolutions, i.e. any function of the form f ∗ gt where t > 0 and f ∈ L1(Rd).

(d) Prove that any function f for which Fourier inversion holds has a bounded, continuous
version. In other words, there exists g bounded and continuous such that f(x) = g(x)
for a.e. x ∈ Rd.

(e) Does Fourier inversion hold for f = 1[0,1]?

Part II, Paper 2
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25K Applied Probability

(a) Give the definition of a Poisson process on R+. Let X be a Poisson process on R+.
Show that conditional on {Xt = n}, the jump times J1, . . . , Jn have joint density
function

f(t1, . . . , tn) =
n!

tn
1(0 6 t1 6 . . . 6 tn 6 t) ,

where 1(A) is the indicator of the set A.

(b) Let N be a Poisson process on R+ with intensity λ and jump times {Jk}. If
g : R+ → R is a real function, we define for all t > 0

R(g)[0, t] = {g(Jk) : k ∈ N, Jk 6 t}.

Show that for all t > 0 the following is true

P(0 ∈ R(g)[0, t]) = 1− exp

(
−λ

∫ t

0
1(g(s) = 0) ds

)
.

26K Principles of Statistics
We consider the problem of estimating θ in the model {f(x, θ) : θ ∈ (0,∞)}, where

f(x, θ) = (1− α)(x− θ)−α1{x ∈ [θ, θ + 1]} .

Here 1{A} is the indicator of the set A, and α ∈ (0, 1) is known. This estimation is based
on a sample of n i.i.d. X1, . . . ,Xn, and we denote by X(1) < . . . < X(n) the ordered sample.

(a) Compute the mean and the variance of X1. Construct an unbiased estimator of θ
taking the form θ̃n = X̄n + c(α), where X̄n = n−1

∑n
i=1Xi, specifying c(α).

(b) Show that θ̃n is consistent and find the limit in distribution of
√
n(θ̃n − θ). Justify

your answer, citing theorems that you use.

(c) Find the maximum likelihood estimator θ̂n of θ. Compute P(θ̂n − θ > t) for all real
t. Is θ̂n unbiased?

(d) For t > 0, show that P(nβ(θ̂n − θ) > t) has a limit in (0, 1) for some β > 0. Give
explicitly the value of β and the limit. Why should one favour using θ̂n over θ̃n?
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27J Stochastic Financial Models

(a) What is a Brownian motion?

(b) Let (Bt, t > 0) be a Brownian motion. Show that the process B̃t := 1
cBc2t,

c ∈ R \ {0}, is also a Brownian motion.

(c) Let Z := supt>0Bt. Show that cZ
(d)
= Z for all c > 0 (i.e. cZ and Z have the same

laws). Conclude that Z ∈ {0,+∞} a.s.

(d) Show that P[Z = +∞] = 1.

28K Optimization and Control
During each of N time periods a venture capitalist, Vicky, is presented with an

investment opportunity for which the rate of return for that period is a random variable;
the rates of return in successive periods are independent identically distributed random
variables with distributions concentrated on [−1,∞). Thus, if xn is Vicky’s capital at
period n, then xn+1 = (1 − pn)xn + pnxn(1 + Rn), where pn ∈ [0, 1] is the proportion of
her capital she chooses to invest at period n, and Rn is the rate of return for period n.
Vicky desires to maximize her expected yield over N periods, where the yield is defined

as
(
xN

x0

) 1

N − 1, and x0 and xN are respectively her initial and final capital.

(a) Express the problem of finding an optimal policy in a dynamic programming frame-
work.

(b) Show that in each time period, the optimal strategy can be expressed in terms of the
quantity p∗ which solves the optimization problem maxp E(1 + pR1)

1/N . Show that
p∗ > 0 if ER1 > 0. [Do not calculate p∗ explicitly.]

(c) Compare her optimal policy with the policy which maximizes her expected final
capital xN .

Part II, Paper 2
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29E Asymptotic Methods
Consider the function

fν(x) ≡
1

2π

∫

C
exp

[
−ix sin z + iνz

]
dz,

where the contour C is the boundary of the half-strip {z : −π < Re z < π and Im z > 0 },
taken anti-clockwise.

Use integration by parts and the method of stationary phase to:

(i) Obtain the leading term for fν(x) coming from the vertical lines z = ±π + iy (0 <
y < +∞) for large x > 0.

(ii) Show that the leading term in the asymptotic expansion of the function fν(x) for
large positive x is √

2

πx
cos

(
x− 1

2
νπ − π

4

)
,

and obtain an estimate for the remainder as O(x−a) for some a to be determined.

30A Dynamical Systems

(a) State Liapunov’s first theorem and La Salle’s invariance principle. Use these results
to show that the fixed point at the origin of the system

ẍ+ kẋ+ sin3 x = 0 , k > 0,

is asymptotically stable.

(b) State the Poincaré–Bendixson theorem. Show that the forced damped pendulum

θ̇ = p, ṗ = −kp− sin θ + F , k > 0, (∗)

with F > 1, has a periodic orbit that encircles the cylindrical phase space
(θ, p) ∈ R[mod 2π]× R, and that it is unique.

[You may assume that the Poincaré–Bendixson theorem also holds on a cylinder,
and comment, without proof, on the use of any other standard results.]

(c) Now consider (∗) for F, k = O(ǫ), where ǫ ≪ 1. Use the energy-balance method to
show that there is a homoclinic orbit in p > 0 if F = Fh(k), where Fh ≈ 4k/π > 0.

Explain briefly why there is no homoclinic orbit in p 6 0 for F > 0.
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31A Integrable Systems
Let U and V be non-singular N × N matrices depending on (x, t, λ) which are

periodic in x with period 2π. Consider the associated linear problem

Ψx = UΨ, Ψt = VΨ ,

for the vector Ψ = Ψ(x, t;λ). On the assumption that these equations are compatible,
derive the zero curvature equation for (U, V ).

Let W =W (x, t, λ) denote the N ×N matrix satisfying

Wx = UW, W (0, t, λ) = IN ,

where IN is the N ×N identity matrix. You should assume W is unique. By considering
(Wt − VW )x, show that the matrix w(t, λ) =W (2π, t, λ) satisfies the Lax equation

wt = [v,w], v(t, λ) ≡ V (2π, t, λ).

Deduce that
{
tr
(
wk

)}
k>1

are first integrals.

By considering the matrices

1

2iλ

[
cosu −i sinu
i sin u − cos u

]
,

i

2

[
2λ ux
ux −2λ

]
,

show that the periodic Sine-Gordon equation uxt = sinu has infinitely many first integrals.
[You need not prove anything about independence.]
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32C Principles of Quantum Mechanics
Let σ = (σ1, σ2, σ3) be a set of Hermitian operators obeying

[σi, σj ] = 2iǫijkσk and (n · σ)2 = 1, (∗)

where n is any unit vector. Show that (∗) implies that

(a · σ)(b · σ) = a · b+ i(a× b) · σ,

for any vectors a and b. Explain, with reference to the properties (∗), how σ can be
related to the intrinsic angular momentum S for a particle of spin 1

2 .

Show that the operators P± = 1
2(1± n · σ) are Hermitian and obey

P 2
± = P±, P+P− = P−P+ = 0.

Show how P± can be used to write any state |χ〉 as a linear combination of eigenstates
of n · σ. Use this to deduce that if the system is in a normalised state |χ〉 when n · σ is
measured, then the results ±1 will be obtained with probabilities

‖P±|χ〉‖2 =
1

2
(1± 〈χ|n · σ|χ〉).

If |χ〉 is a state corresponding to the system having spin up along a direction defined by
a unit vector m, show that a measurement will find the system to have spin up along n
with probability 1

2(1 + n ·m).
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33C Applications of Quantum Mechanics
Give an account of the variational method for establishing an upper bound on the

ground-state energy of a Hamiltonian H with a discrete spectrum H|n〉 = En|n〉, where
En 6 En+1, n = 0, 1, 2 . . ..

A particle of mass m moves in the three-dimensional potential

V (r) = −Ae
−µr

r
,

where A,µ > 0 are constants and r is the distance to the origin. Using the normalised
variational wavefunction

ψ(r) =

√
α3

π
e−αr ,

show that the expected energy is given by

E(α) =
~2α2

2m
− 4Aα3

(µ+ 2α)2
.

Explain why there is necessarily a bound state when µ < Am/~2. What can you say about
the existence of a bound state when µ > Am/~2?

[Hint: The Laplacian in spherical polar coordinates is

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
.

]
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34D Statistical Physics

(a) The entropy of a thermodynamic ensemble is defined by the formula

S = −k
∑

n

p(n) log p(n) ,

where k is the Boltzmann constant. Explain what is meant by p(n) in this formula.
Write down an expression for p(n) in the grand canonical ensemble, defining any
variables you need. Hence show that the entropy S is related to the grand canonical
partition function Z(T, µ, V ) by

S = k

[
∂

∂T
(T logZ)

]

µ,V

.

(b) Consider a gas of non-interacting fermions with single-particle energy levels ǫi.

(i) Show that the grand canonical partition function Z is given by

logZ =
∑

i

log
(
1 + e−(ǫi−µ)/(kT )

)
.

(ii) Assume that the energy levels are continuous with density of states
g(ǫ) = AV ǫa, where A and a are positive constants. Prove that

logZ = V T bf(µ/T )

and give expressions for the constant b and the function f .

(iii) The gas is isolated and undergoes a reversible adiabatic change. By consid-
ering the ratio S/N , prove that µ/T remains constant. Deduce that V T c

and pV d remain constant in this process, where c and d are constants whose
values you should determine.
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35D General Relativity
(a) The Friedmann–Robertson–Walker metric is given by

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

]
,

where k = −1, 0,+1 and a(t) is the scale factor.

For k = +1, show that this metric can be written in the form

ds2 = −dt2 + γijdx
idxj = −dt2 + a2(t)

[
dχ2 + sin2 χ(dθ2 + sin2 θ dφ2)

]
.

Calculate the equatorial circumference (θ = π/2) of the submanifold defined by constant
t and χ.

Calculate the proper volume, defined by
∫ √

det γ d3x, of the hypersurface defined
by constant t.

(b) The Friedmann equations are

3

(
ȧ2 + k

a2

)
− Λ = 8πρ ,

2aä+ ȧ2 + k

a2
− Λ = −8πP ,

where ρ(t) is the energy density, P (t) is the pressure, Λ is the cosmological constant and
dot denotes d/dt.

The Einstein static universe has vanishing pressure, P (t) = 0. Determine a, k and
Λ as a function of the density ρ.

The Einstein static universe with a = a0 and ρ = ρ0 is perturbed by radiation such
that

a = a0 + δa(t) , ρ = ρ0 + δρ(t) , P =
1

3
δρ(t) ,

where δa ≪ a0 and δρ ≪ ρ0. Show that the Einstein static universe is unstable to this
perturbation.

Part II, Paper 2



21

36B Fluid Dynamics II
A cylinder of radius a falls at speed U without rotating through viscous fluid

adjacent to a vertical plane wall, with its axis horizontal and parallel to the wall. The
distance between the cylinder and the wall is h0 ≪ a. Use lubrication theory in a frame
of reference moving with the cylinder to determine that the two-dimensional volume flux
between the cylinder and the wall is

q =
2h0U

3

upwards, relative to the cylinder.

Determine an expression for the viscous shear stress on the cylinder. Use this to
calculate the viscous force and hence the torque on the cylinder. If the cylinder is free to
rotate, what does your result say about the sense of rotation of the cylinder?

[Hint: You may quote the following integrals:

∫ ∞

−∞

dt

1 + t2
= π,

∫ ∞

−∞

dt

(1 + t2)2
=
π

2
,

∫ ∞

−∞

dt

(1 + t2)3
=

3π

8
.

]
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37B Waves
Show that, for a one-dimensional flow of a perfect gas (with γ > 1) at constant en-

tropy, the Riemann invariants R± = u±2(c−c0)/(γ−1) are constant along characteristics
dx/dt = u± c.

Define a simple wave. Show that in a right-propagating simple wave

∂u

∂t
+

(
c0 +

1
2(γ + 1)u

) ∂u
∂x

= 0 .

In some circumstances, dissipative effects may be modelled by

∂u

∂t
+

(
c0 +

1
2(γ + 1)u

) ∂u
∂x

= −αu ,

where α is a positive constant. Suppose also that u is prescribed at t = 0 for all x, say
u(x, 0) = u0(x). Demonstrate that, unless a shock develops, a solution of the form

u(x, t) = u0(ξ)e
−αt

can be found, where, for each x and t, ξ is determined implicitly as the solution of the
equation

x− c0t = ξ +
γ + 1

2α

(
1− e−αt

)
u0(ξ) .

Deduce that, despite the presence of dissipative effects, a shock will still form at some
(x, t) unless α > αc, where

αc =
1
2(γ + 1)maxu′

0
<0 |u′0(ξ)| .
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38A Numerical Analysis
The Poisson equation ∇2u = f in the unit square Ω = [0, 1] × [0, 1], equipped with

the zero Dirichlet boundary conditions on ∂Ω, is discretized with the nine-point formula:

Γ9[ui,j] := −10

3
ui,j +

2

3
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1)

+
1

6
(ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1) = h2fi,j,

where 1 6 i, j 6 m, ui,j ≈ u(ih, jh), and (ih, jh) are the grid points with h = 1
m+1 .

(i) Find the order of the local truncation error ηi,j of the approximation.

(ii) Prove that the order of the truncation error is smaller if f satisfies the Laplace
equation ∇2f = 0.

(iii) Show that the modified nine-point scheme

Γ9[ui,j] = h2fi,j +
1

12
h2Γ5[fi,j]

:= h2fi,j +
1

12
h2(fi+1,j + fi−1,j + fi,j+1 + fi,j−1 − 4fi,j)

has a truncation error of the same order as in part (ii).

(iv) Let (ui,j)
m
i,j=1 be a solution to the m2 × m2 system of linear equations Au = b

arising from the modified nine-point scheme in part (iii). Further, let u(x, y) be the
exact solution and let ei,j := ui,j − u(ih, jh) be the error of approximation at grid
points. Prove that there exists a constant c such that

‖e‖2 :=




m∑

i,j=1

|ei,j |2


1/2

< ch3, h→ 0.

[Hint: The nine-point discretization of ∇2u can be written as

Γ9[u] = (Γ5 +
1
6
∆2

x∆
2
y)u = (∆2

x +∆2
y +

1
6
∆2

x∆
2
y)u ,

where Γ5[u] = (∆2
x +∆2

y)u is the five-point discretization and

∆2
x u(x, y) := u(x− h, y)− 2u(x, y) + u(x+ h, y),

∆2
y u(x, y) := u(x, y − h)− 2u(x, y) + u(x, y + h) .

]

[Hint: The matrix A of the nine-point scheme is symmetric, with the eigenvalues

λk,ℓ = − 4 sin2 kπh
2

− 4 sin2 ℓπh
2

+ 8
3
sin2 kπh

2
sin2 ℓπh

2
, 1 6 k, ℓ 6 m.

]
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END OF PAPER
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