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SECTION I

1E Groups, Rings and Modules
Let R be a commutative ring and let M be an R-module. Show that M is a finitely

generated R-module if and only if there exists a surjective R-module homomorphism
Rn →M for some n.

Find an example of a Z-module M such that there is no surjective Z-module
homomorphism Z → M but there is a surjective Z-module homomorphism Z2 → M
which is not an isomorphism. Justify your answer.

2G Analysis II
What does it mean to say that a metric space is complete? Which of the following

metric spaces are complete? Briefly justify your answers.

(i) [0, 1] with the Euclidean metric.

(ii) Q with the Euclidean metric.

(iii) The subset
{ (0, 0) } ∪ { (x, sin(1/x)) | x > 0 } ⊂ R2

with the metric induced from the Euclidean metric on R2.

Write down a metric on R with respect to which R is not complete, justifying your answer.

[You may assume throughout that R is complete with respect to the Euclidean

metric.]

3E Metric and Topological Spaces
Let X and Y be topological spaces.

(a) Define what is meant by the product topology on X × Y . Define the projection

maps p : X × Y → X and q : X × Y → Y and show they are continuous.

(b) Consider ∆ = {(x, x) | x ∈ X} in X ×X. Show that X is Hausdorff if and only
if ∆ is a closed subset of X ×X in the product topology.

Part IB, Paper 3



3

4A Complex Methods
By using the Laplace transform, show that the solution to

y′′ − 4y′ + 3y = t e−3t,

subject to the conditions y(0) = 0 and y′(0) = 1, is given by

y(t) =
37

72
e3t − 17

32
et +

(
5

288
+

1

24
t

)
e−3t

when t > 0.

5G Geometry
Let

π(x, y, z) =
x+ iy

1− z

be stereographic projection from the unit sphere S2 in R3 to the Riemann sphere C∞.
Show that if r is a rotation of S2, then πrπ−1 is a Möbius transformation of C∞ which
can be represented by an element of SU(2). (You may assume without proof any result
about generation of SO(3) by a particular set of rotations, but should state it carefully.)

6D Variational Principles
(a) A Pringle crisp can be defined as the surface

z = xy with x2 + y2 6 1.

Use the method of Lagrange multipliers to find the minimum and maximum values of z
on the boundary of the Pringle crisp and the (x, y) positions where these occur.

(b) A farmer wishes to construct a grain silo in the form of a hollow vertical cylinder
of radius r and height h with a hollow hemispherical cap of radius r on top of the cylinder.
The walls of the cylinder cost £x per unit area to construct and the surface of the cap
costs £2x per unit area to construct. Given that a total volume V is desired for the silo,
what values of r and h should be chosen to minimise the cost?

7A Methods
Using the substitution u(x, y) = v(x, y)e−x

2

, find u(x, y) that satisfies

ux + xuy + 2xu = e−x
2

with boundary data u(0, y) = y e−y
2

.
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8B Quantum Mechanics
A particle of mass m is confined to a one-dimensional box 0 6 x 6 a. The potential

V (x) is zero inside the box and infinite outside.

(a) Find the allowed energies of the particle and the normalised energy eigenstates.

(b) At time t = 0 the particle has wavefunction ψ0 that is uniform in the left half

of the box i.e. ψ0(x) =
√

2

a
for 0 < x < a/2 and ψ0(x) = 0 for a/2 < x < a. Find

the probability that a measurement of energy at time t = 0 will yield a value less than
5~2π2/(2ma2).

9H Markov Chains
(a) What does it mean to say that a Markov chain is reversible?

(b) Let G be a finite connected graph on n vertices. What does it mean to say
that X is a simple random walk on G?

Find the unique invariant distribution π of X.

Show that X is reversible when X0 ∼ π.

[You may use, without proof, results about detailed balance equations, but you should

state them clearly.]
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SECTION II

10F Linear Algebra
Let f be a quadratic form on a finite-dimensional real vector space V . Prove that

there exists a diagonal basis for f , meaning a basis with respect to which the matrix of f
is diagonal.

Define the rank r and signature s of f in terms of this matrix. Prove that r and s
are independent of the choice of diagonal basis.

In terms of r, s, and the dimension n of V , what is the greatest dimension of a
subspace on which f is zero?

Now let f be the quadratic form on R3 given by f(x, y, z) = x2 − y2. For which
points v in R3 is it the case that there is some diagonal basis for f containing v?

11E Groups, Rings and Modules
(a) Define what is meant by a Euclidean domain. Show that every Euclidean domain

is a principal ideal domain.

(b) Let p ∈ Z be a prime number and let f ∈ Z[x] be a monic polynomial of positive
degree. Show that the quotient ring Z[x]/(p, f) is finite.

(c) Let α ∈ Z[
√
−1] and let P be a non-zero prime ideal of Z[α]. Show that the

quotient Z[α]/P is a finite ring.

12G Analysis II
What is a contraction map on a metric space X? State and prove the contraction

mapping theorem.

Let (X, d) be a complete non-empty metric space. Show that if f : X → X is a map
for which some iterate fk (k > 1) is a contraction map, then f has a unique fixed point.
Show that f itself need not be a contraction map.

Let f : [0,∞) → [0,∞) be the function

f(x) =
1

3

(
x+ sinx+

1

x+ 1

)
.

Show that f has a unique fixed point.
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13F Complex Analysis
Let f be an entire function. Prove Taylor’s theorem, that there exist complex

numbers c0, c1, . . . such that f(z) =
∑∞

n=0
cnz

n for all z. [You may assume Cauchy’s
Integral Formula.]

For a positive real r, let Mr = sup{|f(z)| : |z| = r}. Explain why we have

|cn| 6
Mr

rn

for all n.

Now let n and r be fixed. For which entire functions f do we have |cn| =
Mr

rn
?

14G Geometry
Let σ : U → R3 be a parametrised surface, where U ⊂ R2 is an open set.

(a) Explain what are the first and second fundamental forms of the surface, and
what is its Gaussian curvature. Compute the Gaussian curvature of the hyperboloid
σ(x, y) = (x, y, xy).

(b) Let a(x) and b(x) be parametrised curves in R3, and assume that

σ(x, y) = a(x) + yb(x).

Find a formula for the first fundamental form, and show that the Gaussian curvature
vanishes if and only if

a′ · (b× b′) = 0 .

15A Methods
Let L be the linear differential operator

L y = y′′′ − y′′ − 2y′

where ′ denotes differentiation with respect to x.

Find the Green’s function, G(x; ξ), for L satisfying the homogeneous boundary
conditions G(0; ξ) = 0, G′(0; ξ) = 0, G′′(0; ξ) = 0.

Using the Green’s function, solve

Ly = exΘ(x− 1)

with boundary conditions y(0) = 1, y′(0) = −1, y′′(0) = 0. Here Θ(x) is the Heaviside
step function having value 0 for x < 0 and 1 for x > 0.
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16B Quantum Mechanics
(a) Given the position and momentum operators x̂i = xi and p̂i = −i~ ∂/∂xi (for

i = 1, 2, 3) in three dimensions, define the angular momentum operators L̂i and the total
angular momentum L̂2.
Show that L̂3 is Hermitian.

(b) Derive the generalised uncertainty relation for the observables L̂3 and x̂1 in the
form

∆ψL̂3 ∆ψx̂1 >M

for any state ψ and a suitable expression M that you should determine. [Hint: It may be

useful to consider the operator L̂3 + iλx̂1.]

(c) Consider a particle with wavefunction

ψ = K(x1 + x2 + 2x3)e
−αr

where r =
√
x2
1
+ x2

2
+ x2

3
and K and α are real positive constants.

Show that ψ is an eigenstate of total angular momentum L̂2 and find the corresponding
angular momentum quantum number l. Find also the expectation value of a measurement
of L̂3 on the state ψ.

17C Electromagnetism

(i) Two point charges, of opposite sign and unequal magnitude, are placed at two
different locations. Show that the combined electrostatic potential vanishes on a
sphere that encloses only the charge of smaller magnitude.

(ii) A grounded, conducting sphere of radius a is centred at the origin. A point charge q
is located outside the sphere at position vector p. Formulate the differential equation
and boundary conditions for the electrostatic potential outside the sphere. Using
the result of part (i) or otherwise, show that the electric field outside the sphere is
identical to that generated (in the absence of any conductors) by the point charge
q and an image charge q′ located inside the sphere at position vector p′, provided
that p′ and q′ are chosen correctly.

Calculate the magnitude and direction of the force experienced by the charge q.
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18D Fluid Dynamics
Use Euler’s equations to derive the vorticity equation

Dωωω

Dt
= ωωω · ∇u,

where u is the fluid velocity and ωωω is the vorticity.

Consider axisymmetric, incompressible, inviscid flow between two rigid plates at
z = h(t) and z = −h(t) in cylindrical polar coordinates (r, θ, z), where t is time. Using
mass conservation, or otherwise, find the complete flow field whose radial component is
independent of z.

Now suppose that the flow has angular velocity Ω = Ω(t)ez and that Ω = Ω0 when
h = h0. Use the vorticity equation to determine the angular velocity for subsequent times
as a function of h. What physical principle does your result illustrate?

19C Numerical Analysis
Let pn ∈ Pn be the nth monic orthogonal polynomial with respect to the inner

product

〈f, g〉 =
∫ b

a

w(x)f(x)g(x) dx

on C[a, b], where w is a positive weight function.

Prove that, for n > 1, pn has n distinct zeros in the interval (a, b).

Let c1, c2, . . . , cn ∈ [a, b] be n distinct points. Show that the quadrature formula

∫ b

a

w(x)f(x) dx ≈
n∑

i=1

bif(ci)

is exact for all f ∈ Pn−1 if the weights bi are chosen to be

bi =

∫ b

a

w(x)

n∏

j=1

j 6=i

x− cj
ci − cj

dx .

Show further that the quadrature formula is exact for all f ∈ P2n−1 if the nodes ci are
chosen to be the zeros of pn (Gaussian quadrature). [Hint: Write f as qpn + r, where
q, r ∈ Pn−1.]

Use the Peano kernel theorem to write an integral expression for the approximation
error of Gaussian quadrature for sufficiently differentiable functions. (You should give a
formal expression for the Peano kernel but are not required to evaluate it.)
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20H Statistics
Consider the general linear model

Y = Xβ + ε,

where X is a known n × p matrix of full rank p < n, ε ∼ Nn(0, σ
2I) with σ2 known and

β ∈ Rp is an unknown vector.

(a) State without proof the Gauss–Markov theorem.

Find the maximum likelihood estimator β̂ for β. Is it unbiased?

Let β∗ be any unbiased estimator for β which is linear in (Yi). Show that

var(tT β̂) 6 var(tTβ∗)

for all t ∈ Rp.

(b) Suppose now that p = 1 and that β and σ2 are both unknown. Find the
maximum likelihood estimator for σ2. What is the joint distribution of β̂ and σ̂2 in this
case? Justify your answer.

21H Optimisation
(a) Explain what is meant by a two-person zero-sum game with payoff matrix

A = (aij : 1 6 i 6 m, 1 6 j 6 n) and define what is an optimal strategy (also known as a
maximin strategy) for each player.

(b) Suppose the payoff matrix A is antisymmetric, i.e. m = n and aij = −aji for all
i, j. What is the value of the game? Justify your answer.

(c) Consider the following two-person zero-sum game. Let n > 3. Both players
simultaneously call out one of the numbers {1, . . . , n}. If the numbers differ by one, the
player with the higher number wins £1 from the other player. If the players’ choices
differ by 2 or more, the player with the higher number pays £2 to the other player. In
the event of a tie, no money changes hands.

Write down the payoff matrix.

For the case when n = 3 find the value of the game and an optimal strategy for
each player.

Find the value of the game and an optimal strategy for each player for all n.

[You may use results from the course provided you state them clearly.]

END OF PAPER
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