
MATHEMATICAL TRIPOS Part IB

Wednesday, 7 June, 2017 9:00 am to 12:00 pm

PAPER 2

Before you begin read these instructions carefully.

The examination paper is divided into two sections. Each question in Section II

carries twice the number of marks of each question in Section I. Section II questions

also carry an alpha or beta quality mark and Section I questions carry a beta quality

mark.

Candidates may obtain credit from attempts on at most four questions from Section

I and at most six questions from Section II.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise, you place yourself at a grave disadvantage.

At the end of the examination:

Tie up your answers in separate bundles labelled A, B, . . . , H according to the

examiner letter affixed to each question, including in the same bundle questions

from Sections I and II with the same examiner letter.

Attach a completed gold cover sheet to each bundle.

You must also complete a green master cover sheet listing all the questions you have

attempted.

Every cover sheet must bear your examination number and desk number.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS

Gold cover sheet None

Green master cover sheet

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.



2

SECTION I

1F Linear Algebra
State and prove the Rank–Nullity theorem.

Let α be a linear map from R
3 to R

3 of rank 2. Give an example to show that R3

may be the direct sum of the kernel of α and the image of α, and also an example where
this is not the case.

2E Groups, Rings and Modules
(a) Define what is meant by a unique factorisation domain and by a principal ideal

domain. State Gauss’s lemma and Eisenstein’s criterion, without proof.

(b) Find an example, with justification, of a ring R and a subring S such that

(i) R is a principal ideal domain, and

(ii) S is a unique factorisation domain but not a principal ideal domain.

3G Analysis II
Let X ⊂ R. What does it mean to say that a sequence of real-valued functions on

X is uniformly convergent?

Let f, fn (n > 1): R → R be functions.

(a) Show that if each fn is continuous, and (fn) converges uniformly on R to f , then
f is also continuous.

(b) Suppose that, for every M > 0, (fn) converges uniformly on [−M,M ]. Need
(fn) converge uniformly on R? Justify your answer.

4E Metric and Topological Spaces
Let f : (X, d) → (Y, e) be a function between metric spaces.

(a) Give the ǫ-δ definition for f to be continuous. Show that f is continuous if and
only if f−1(U) is an open subset of X for each open subset U of Y .

(b) Give an example of f such that f is not continuous but f(V ) is an open subset
of Y for every open subset V of X.
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5B Methods
Expand f(x) = x as a Fourier series on −π < x < π.

By integrating the series show that x2 on −π < x < π can be written as

x2 =
a0
2

+

∞
∑

n=1

an cosnx ,

where an, n = 1, 2, . . ., should be determined and

a0 = 8

∞
∑

n=1

(−1)n−1

n2
.

By evaluating a0 another way show that

∞
∑

n=1

(−1)n−1

n2
=
π2

12
.

6C Electromagnetism
State Gauss’s Law in the context of electrostatics.

A spherically symmetric capacitor consists of two conductors in the form of
concentric spherical shells of radii a and b, with b > a. The inner sphere carries a charge
Q and the outer sphere carries a charge −Q. Determine the electric field E and the
electrostatic potential φ in the regions r < a, a < r < b and r > b. Show that the
capacitance is

C =
4πǫ0ab

b− a

and calculate the electrostatic energy of the system in terms of Q and C.

7D Fluid Dynamics
From Euler’s equations describing steady inviscid fluid flow under the action of a

conservative force, derive Bernoulli’s equation for the pressure along a streamline of the
flow, defining all variables that you introduce.

Water fills an inverted, open, circular cone (radius increasing upwards) of half angle
π/4 to a height h0 above its apex. At time t = 0, the tip of the cone is removed to leave
a small hole of radius ǫ ≪ h0. Assuming that the flow is approximately steady while the
depth of water h(t) is much larger than ǫ, show that the time taken for the water to drain
is approximately

(

2

25

h50
ǫ4g

)1/2

.
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8H Statistics
(a) Define a 100γ% confidence interval for an unknown parameter θ.

(b) Let X1, . . . ,Xn be i.i.d. random variables with distribution N(µ, 1) with µ
unknown. Find a 95% confidence interval for µ.

[You may use the fact that Φ(1.96) ≃ 0.975.]

(c) Let U1, U2 be independent U [θ − 1, θ + 1] with θ to be estimated. Find a 50%
confidence interval for θ.

Suppose that we have two observations u1 = 10 and u2 = 11.5. What might be a
better interval to report in this case?

9H Optimisation
Consider the following optimisation problem

P : min f(x) subject to g(x) = b, x ∈ X.

(a) Write down the Lagrangian for this problem. State the Lagrange sufficiency
theorem.

(b) Formulate the dual problem. State and prove the weak duality property.
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SECTION II

10F Linear Algebra
Let α : U → V and β : V → W be linear maps between finite-dimensional real

vector spaces.

Show that the rank r(βα) satisfies r(βα) 6 min(r(β), r(α)). Show also that
r(βα) > r(α) + r(β) − dimV . For each of these two inequalities, give examples to show
that we may or may not have equality.

Now let V have dimension 2n and let α : V → V be a linear map of rank 2n − 2
such that αn = 0. Find the rank of αk for each 1 6 k 6 n− 1.

11E Groups, Rings and Modules
Let R be a commutative ring.

(a) Let N be the set of nilpotent elements of R, that is,

N = {r ∈ R | rn = 0 for some n ∈ N}.

Show that N is an ideal of R.

(b) Assume R is Noetherian and assume S ⊂ R is a non-empty subset such that if
s, t ∈ S, then st ∈ S. Let I be an ideal of R disjoint from S. Show that there is a prime
ideal P of R containing I and disjoint from S.

(c) Again assume R is Noetherian and let N be as in part (a). Let P be the set of
all prime ideals of R. Show that

N =
⋂

P∈P

P.

Part IB, Paper 2 [TURN OVER



6

12G Analysis II
Let V be a real vector space. What is a norm on V ? Show that if ‖−‖ is a norm on

V , then the maps Tv : x 7→ x+ v (for v ∈ V ) and ma : x 7→ ax (for a ∈ R) are continuous
with respect to the norm.

Let B ⊂ V be a subset containing 0. Show that there exists at most one norm on
V for which B is the open unit ball.

Suppose that B satisfies the following two properties:

• if v ∈ V is a nonzero vector, then the line Rv ⊂ V meets B in a set of the form
{tv : −λ < t < λ} for some λ > 0;

• if x, y ∈ B and s, t > 0 then (s + t)−1(sx+ ty) ∈ B.

Show that there exists a norm ‖−‖B for which B is the open unit ball.

Identify ‖−‖B in the following two cases:

(i) V = R
n, B = { (x1, . . . , xn) ∈ R

n : −1 < xi < 1 for all i }.

(ii) V = R
2, B the interior of the square with vertices (±1, 0), (0,±1).

Let C ⊂ R
2 be the set

C = { (x1, x2) ∈ R
2 : |x1| < 1, |x2| < 1, and (|x1| − 1)2 + (|x2| − 1)2 > 1 } .

Is there a norm on R
2 for which C is the open unit ball? Justify your answer.

13A Complex Analysis or Complex Methods
State the residue theorem.

By considering
∮

C

z1/2 log z

1 + z2
dz

with C a suitably chosen contour in the upper half plane or otherwise, evaluate the real
integrals

∫

∞

0

x1/2 log x

1 + x2
dx

and

∫

∞

0

x1/2

1 + x2
dx

where x1/2 is taken to be the positive square root.
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14G Geometry
Let H = {x ∈ R

n | u · x = c } be a hyperplane in R
n, where u is a unit vector and

c is a constant. Show that the reflection map

x 7→ x− 2(u · x− c)u

is an isometry of Rn which fixes H pointwise.

Let p, q be distinct points in R
n. Show that there is a unique reflection R mapping

p to q, and that R ∈ O(n) if and only if p and q are equidistant from the origin.

Show that every isometry of Rn can be written as a product of at most n+1 reflec-
tions. Give an example of an isometry of R2 which cannot be written as a product of fewer
than 3 reflections.

15D Variational Principles
A proto-planet of mass m in a uniform galactic dust cloud has kinetic and potential

energies

T =
1

2
mṙ2 +

1

2
mr2φ̇2, V = kmr2

where k is constant. State Hamilton’s principle and use it to determine the equations of
motion for the proto-planet.

Write down two conserved quantities of the motion and state why their existence
illustrates Noether’s theorem.

Determine the Hamiltonian H(p,x) of this system, where p = (pr, pφ), x = (r, φ)
and (pr, pφ) are the conjugate momenta corresponding to (r, φ).

Write down Hamilton’s equations for this system and use them to show that

mr̈ = −V ′
eff(r), where Veff(r) = m

(

h2

2m2r2
+ kr2

)

and h is a constant. With the aid of a diagram, explain why there is a stable circular
orbit.

Part IB, Paper 2 [TURN OVER



8

16A Methods
Laplace’s equation for φ in cylindrical coordinates (r, θ, z), is

1

r

∂

∂r

(

r
∂φ

∂r

)

+
1

r2
∂2φ

∂θ2
+
∂2φ

∂z2
= 0.

Use separation of variables to find an expression for the general solution to Laplace’s
equation in cylindrical coordinates that is 2π-periodic in θ.

Find the bounded solution φ(r, θ, z) that satisfies

∇2φ = 0 z > 0, 0 6 r 6 1,

φ(1, θ, z) = e−4z(cos θ + sin 2θ) + 2 e−z sin 2θ.

17B Quantum Mechanics
(a) The potential for the one-dimensional harmonic oscillator is V (x) = 1

2mω
2x2. By

considering the associated time-independent Schrödinger equation for the wavefunction
ψ(x) with substitutions

ξ =
(mω

~

)1/2
x and ψ(x) = f(ξ)e−ξ2/2,

show that the allowed energy levels are given by En = (n+ 1
2 )~ω for n = 0, 1, 2, . . .. [You

may assume without proof that f must be a polynomial for ψ to be normalisable.]

(b) Consider a particle with charge q and mass m = 1 subject to the one-dimensional
harmonic oscillator potential U0(x) = x2/2. You may assume that the normalised ground
state of this potential is

ψ0(x) =

(

1

π~

)1/4

e−x2/(2~).

The particle is in the stationary state corresponding to ψ0(x) when at time t = t0, an
electric field of constant strength E is turned on, adding an extra term U1(x) = −qEx to
the harmonic potential.

(i) Using the result of part (a) or otherwise, find the energy levels of the new
potential.

(ii) Show that the probability of finding the particle in the ground state immedi-
ately after t0 is given by e−q2E2/(2~). [You may assume that

∫

∞

−∞
e−x2+2Ax dx =

√
πeA

2

.]
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18C Electromagnetism
In special relativity, the electromagnetic fields can be derived from a 4-vector

potential Aµ = (φ/c,A). Using the Minkowski metric tensor ηµν and its inverse ηµν , state
how the electromagnetic tensor Fµν is related to the 4-potential, and write out explicitly
the components of both Fµν and Fµν in terms of those of E and B.

If x′µ = Λµ
νx

ν is a Lorentz transformation of the spacetime coordinates from one
inertial frame S to another inertial frame S ′, state how F ′µν is related to Fµν .

Write down the Lorentz transformation matrix for a boost in standard configuration,
such that frame S ′ moves relative to frame S with speed v in the +x direction. Deduce
the transformation laws

E′
x = Ex ,

E′
y = γ(Ey − vBz) ,

E′
z = γ(Ez + vBy) ,

B′
x = Bx ,

B′
y = γ

(

By +
v

c2
Ez

)

,

B′
z = γ

(

Bz −
v

c2
Ey

)

,

where γ =

(

1− v2

c2

)−1/2

.

In frame S, an infinitely long wire of negligible thickness lies along the x axis. The
wire carries n positive charges +q per unit length, which travel at speed u in the +x
direction, and n negative charges −q per unit length, which travel at speed u in the −x
direction. There are no other sources of the electromagnetic field. Write down the electric
and magnetic fields in S in terms of Cartesian coordinates. Calculate the electric field
in frame S ′, which is related to S by a boost by speed v as described above. Give an
explanation of the physical origin of your expression.
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19C Numerical Analysis
Define the linear least-squares problem for the equation Ax = b, where A is an

m× n matrix with m > n, b ∈ R
m is a given vector and x ∈ R

n is an unknown vector.

If A = QR, where Q is an orthogonal matrix and R is an upper triangular matrix
in standard form, explain why the least-squares problem is solved by minimizing the
Euclidean norm ‖Rx−Q⊤b‖.

Using the method of Householder reflections, find a QR factorization of the matrix

A =









1 3 3
1 3 1
1 1 1
1 1 −1









.

Hence find the solution of the least-squares problem in the case

b =









1
1
3

−1









.

20H Markov Chains
Let Y1, Y2, . . . be i.i.d. random variables with values in {1, 2, . . .} and E[Y1] = µ <∞.

Moreover, suppose that the greatest common divisor of {n : P(Y1 = n) > 0} is 1. Consider
the following process

Xn = inf{m > n : Y1 + . . . + Yk = m, for some k > 0} − n.

(a) Show that X is a Markov chain and find its transition probabilities.

(b) Let T0 = inf{n > 1 : Xn = 0}. Find E0[T0].

(c) Find the limit as n → ∞ of P(Xn = 0). State carefully any theorems from the
course that you are using.

END OF PAPER
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