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SECTION I

1E Groups
Let w1, w2, w3 be distinct elements of C∪{∞}. Write down the Möbius map f that

sends w1, w2, w3 to ∞, 0, 1, respectively. [Hint: You need to consider four cases.]

Now let w4 be another element of C ∪ {∞} distinct from w1, w2, w3. Define the
cross-ratio [w1, w2, w3, w4] in terms of f .

Prove that there is a circle or line through w1, w2, w3 and w4 if and only if the
cross-ratio [w1, w2, w3, w4] is real.

[You may assume without proof that Möbius maps map circles and lines to circles

and lines and also that there is a unique circle or line through any three distinct points of

C ∪ {∞}.]

2E Groups
What does it mean to say that H is a normal subgroup of the group G? For a

normal subgroup H of G define the quotient group G/H. [You do not need to verify that
G/H is a group.]

State the Isomorphism Theorem.

Let

G =

{(

a b
0 d

)

∣

∣

∣
a, b, d ∈ R, ad 6= 0

}

be the group of 2× 2 invertible upper-triangular real matrices. By considering a suitable
homomorphism, show that the subset

H =

{(

1 b
0 1

)

∣

∣

∣
b ∈ R

}

of G is a normal subgroup of G and identify the quotient G/H.
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3B Vector Calculus
Use the change of variables x = r cosh θ, y = r sinh θ to evaluate

∫

A

y dx dy ,

where A is the region of the xy-plane bounded by the two line segments:

y = 0, 0 6 x 6 1 ;

5y = 3x, 0 6 x 6 5

4
;

and the curve

x2 − y2 = 1, x > 1 .

4B Vector Calculus

(a) The two sets of basis vectors ei and e′i (where i = 1, 2, 3) are related by

e′i = Rijej ,

where Rij are the entries of a rotation matrix. The components of a vector v with
respect to the two bases are given by

v = viei = v′ie
′

i .

Derive the relationship between vi and v
′

i.

(b) Let T be a 3× 3 array defined in each (right-handed orthonormal) basis. Using part
(a), state and prove the quotient theorem as applied to T.
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SECTION II

5E Groups
Let N be a normal subgroup of a finite group G of prime index p = |G : N |.
By considering a suitable homomorphism, show that if H is a subgroup of G that

is not contained in N , then H ∩N is a normal subgroup of H of index p.

Let C be a conjugacy class of G that is contained in N . Prove that C is either a
conjugacy class in N or is the disjoint union of p conjugacy classes in N .

[You may use standard theorems without proof.]

6E Groups
State Lagrange’s theorem. Show that the order of an element x in a finite group G

is finite and divides the order of G.

State Cauchy’s theorem.

List all groups of order 8 up to isomorphism. Carefully justify that the groups on
your list are pairwise non-isomorphic and that any group of order 8 is isomorphic to one
on your list. [You may use without proof the Direct Product Theorem and the description
of standard groups in terms of generators satisfying certain relations.]
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7E Groups

(a) Let G be a finite group acting on a finite set X. State the Orbit-Stabiliser theorem.
[Define the terms used.] Prove that

∑

x∈X

|Stab(x)| = n|G| ,

where n is the number of distinct orbits of X under the action of G.

Let S = {(g, x) ∈ G×X : g · x = x}, and for g ∈ G, let Fix(g) = {x ∈ X : g · x = x}.
Show that

|S| =
∑

x∈X

|Stab(x)| =
∑

g∈G

|Fix(g)| ,

and deduce that

n =
1

|G|
∑

g∈G

|Fix(g)| . (∗)

(b) Let H be the group of rotational symmetries of the cube. Show that H has 24
elements. [If your proof involves calculating stabilisers, then you must carefully verify
such calculations.]

Using (∗), find the number of distinct ways of colouring the faces of the cube red,
green and blue, where two colourings are distinct if one cannot be obtained from the
other by a rotation of the cube. [A colouring need not use all three colours.]

8E Groups
Prove that every element of the symmetric group Sn is a product of transpositions.

[You may assume without proof that every permutation is the product of disjoint cycles.]

(a) Define the sign of a permutation in Sn, and prove that it is well defined. Define the
alternating group An.

(b) Show that Sn is generated by the set {(1 2), (1 2 3 . . . n)}.
Given 1 6 k < n, prove that the set {(1 1+k), (1 2 3 . . . n)} generates Sn if and only
if k and n are coprime.

Part IA, Paper 3 [TURN OVER



6

9B Vector Calculus

(a) The time-dependent vector field F is related to the vector field B by

F(x, t) = B(z) ,

where z = tx. Show that

(x·∇)F = t
∂F

∂t
.

(b) The vector fields B and A satisfy B = ∇×A. Show that ∇·B = 0.

(c) The vector field B satisfies ∇·B = 0. Show that

B(x) = ∇×
(

D(x)× x
)

,

where

D(x) =

∫

1

0

tB(tx) dt .

10B Vector Calculus
By a suitable choice of u in the divergence theorem

∫

V

∇·u dV =

∫

S

u·dS ,

show that
∫

V

∇φdV =

∫

S

φdS (∗)

for any continuously differentiable function φ.

For the curved surface of the cone

x = (r cos θ, r sin θ,
√
3 r), 0 6

√
3 r 6 1, 0 6 θ 6 2π,

show that dS = (
√
3 cos θ,

√
3 sin θ,−1) r dr dθ.

Verify that (∗) holds for this cone and φ(x, y, z) = z2.
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11B Vector Calculus

(a) Let x = r(s) be a smooth curve parametrised by arc length s. Explain the meaning
of the terms in the equation

dt

ds
= κn ,

where κ(s) is the curvature of the curve.

Now let b = t× n. Show that there is a scalar τ(s) (the torsion) such that

db

ds
= −τn

and derive an expression involving κ and τ for
dn

ds
.

(b) Given a (nowhere zero) vector field F, the field lines, or integral curves, of F are the
curves parallel to F(x) at each point x. Show that the curvature κ of the field lines
of F satisfies

F× (F·∇)F

F 3
= ±κb , (∗)

where F = |F| .

(c) Use (∗) to find an expression for the curvature at the point (x, y, z) of the field lines
of F(x, y, z) = (x, y,−z) .
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12B Vector Calculus
Let S be a piecewise smooth closed surface in R

3 which is the boundary of a
volume V .

(a) The smooth functions φ and φ1 defined on R
3 satisfy

∇2φ = ∇2φ1 = 0

in V and φ(x) = φ1(x) = f(x) on S. By considering an integral of ∇ψ·∇ψ, where
ψ = φ− φ1, show that φ1 = φ.

(b) The smooth function u defined on R
3 satisfies u(x) = f(x) + C on S, where f is the

function in part (a) and C is constant. Show that

∫

V

∇u·∇u dV >

∫

V

∇φ·∇φdV

where φ is the function in part (a). When does equality hold?

(c) The smooth function w(x, t) satisfies

∇2w =
∂w

∂t

in V and
∂w

∂t
= 0 on S for all t. Show that

d

dt

∫

V

∇w·∇w dV 6 0

with equality only if ∇2w = 0 in V .

END OF PAPER
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