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SECTION I

1C Differential Equations

(a) The numbers z1, z2, . . . satisfy

zn+1 = zn + cn (n > 1),

where c1, c2, . . . are given constants. Find zn+1 in terms of c1, c2, . . . , cn and z1.

(b) The numbers x1, x2, . . . satisfy

xn+1 = anxn + bn (n > 1),

where a1, a2, . . . are given non-zero constants and b1, b2, . . . are given constants. Let
z1 = x1 and zn+1 = xn+1/Un, where Un = a1a2 · · · an . Calculate zn+1−zn , and hence
find xn+1 in terms of x1, b1, . . . , bn and U1, . . . , Un.

2C Differential Equations
Consider the function

f(x, y) =
x

y
+

y

x
− (x− y)2

a2

defined for x > 0 and y > 0, where a is a non-zero real constant. Show that (λ, λ ) is a
stationary point of f for each λ > 0. Compute the Hessian and its eigenvalues at (λ, λ ).

3F Probability
Let X be a non-negative integer-valued random variable such that 0 < E(X2) < ∞.

Prove that
E(X)2

E(X2)
6 P(X > 0) 6 E(X).

[You may use any standard inequality.]
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4F Probability
Let X and Y be real-valued random variables with joint density function

f(x, y) =

{

xe−x(y+1) if x > 0 and y > 0

0 otherwise.

(i) Find the conditional probability density function of Y given X.

(ii) Find the expectation of Y given X.

Part IA, Paper 2 [TURN OVER



4

SECTION II

5C Differential Equations
The current I(t) at time t in an electrical circuit subject to an applied voltage V (t)

obeys the equation

L
d2I

dt2
+R

dI

dt
+

1

C
I =

dV

dt
,

where R,L and C are the constant resistance, inductance and capacitance of the circuit
with R > 0, L > 0 and C > 0.

(a) In the case R = 0 and V (t) = 0, show that there exist time-periodic solutions of
frequency ω0, which you should find.

(b) In the case V (t) = H(t), the Heaviside function, calculate, subject to the condition

R2 >
4L

C
,

the current for t > 0, assuming it is zero for t < 0.

(c) If R > 0 and V (t) = sinω0t, where ω0 is as in part (a), show that there is a time-
periodic solution I0(t) of period T = 2π/ω0 and calculate its maximum value IM .

(i) Calculate the energy dissipated in each period, i.e., the quantity

D =

∫ T

0
RI0(t)

2 dt .

Show that the quantity defined by

Q =
2π

D
× LI2M

2

satisfies Qω0RC = 1.

(ii) Write down explicitly the general solution I(t) for all R > 0, and discuss the
relevance of I0(t) to the large time behaviour of I(t).
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6C Differential Equations

(a) Consider the system

dx

dt
= x(1− x)− xy

dy

dt
=

1

8
y(4x− 1)

for x(t) > 0, y(t) > 0. Find the critical points, determine their type and explain, with
the help of a diagram, the behaviour of solutions for large positive times t.

(b) Consider the system

dx

dt
= y + (1− x2 − y2)x

dy

dt
= −x+ (1− x2 − y2)y

for (x(t), y(t)) ∈ R
2. Rewrite the system in polar coordinates by setting x(t) =

r(t) cos θ(t) and y(t) = r(t) sin θ(t), and hence describe the behaviour of solutions for
large positive and large negative times.

7C Differential Equations
Let y1 and y2 be two solutions of the differential equation

y′′(x) + p(x)y′(x) + q(x)y(x) = 0 , −∞ < x < ∞,

where p and q are given. Show, using the Wronskian, that

• either there exist α and β, not both zero, such that αy1(x)+βy2(x) vanishes
for all x,

• or given x0, A and B, there exist a and b such that y(x) = ay1(x) + by2(x)
satisfies the conditions y(x0) = A and y′(x0) = B.

Find power series y1 and y2 such that an arbitrary solution of the equation

y′′(x) = xy(x)

can be written as a linear combination of y1 and y2.
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8C Differential Equations

(a) Solve
dz

dt
= z2 subject to z(0) = z0. For which z0 is the solution finite for all t ∈ R ?

Let a be a positive constant. By considering the lines y = a(x− x0) for constant x0,
or otherwise, show that any solution of the equation

∂f

∂x
+ a

∂f

∂y
= 0

is of the form f(x, y) = F (y − ax) for some function F .

Solve the equation
∂f

∂x
+ a

∂f

∂y
= f2

subject to f(0, y) = g(y) for a given function g . For which g is the solution bounded
on R

2 ?

(b) By means of the change of variables X = αx + βy and T = γx + δy for appropriate
real numbers α, β, γ, δ , show that the equation

∂2f

∂x2
+

∂2f

∂x∂y
= 0 (∗)

can be transformed into the wave equation

1

c2
∂2F

∂T 2
− ∂2F

∂X2
= 0 ,

where F is defined by f(x, y) = F (αx + βy, γx + δy). Hence write down the general
solution of (∗).
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9F Probability
For a positive integer N , p ∈ [0, 1], and k ∈ {0, 1, . . . , N}, let

pk(N, p) =

(

N

k

)

pk(1− p)N−k.

(a) For fixed N and p, show that pk(N, p) is a probability mass function on {0, 1, . . . , N}
and that the corresponding probability distribution has mean Np and variance
Np(1− p).

(b) Let λ > 0. Show that, for any k ∈ {0, 1, 2, . . . },

lim
N→∞

pk(N,λ/N) =
e−λλk

k!
. (∗)

Show that the right-hand side of (∗) is a probability mass function on {0, 1, 2, . . . }.

(c) Let p ∈ (0, 1) and let a, b ∈ R with a < b. For all N , find integers ka(N) and kb(N)
such that

kb(N)
∑

k=ka(N)

pk(N, p) → 1√
2π

∫ b

a

e−
1
2x

2

dx as N → ∞.

[You may use the Central Limit Theorem.]

10F Probability

(a) For any random variable X and λ > 0 and t > 0, show that

P(X > t) 6 E(eλX)e−λt.

For a standard normal random variable X, compute E(eλX) and deduce that

P(X > t) 6 e−
1

2
t2 .

(b) Let µ, λ > 0, µ 6= λ. For independent random variables X and Y with distributions
Exp(λ) and Exp(µ), respectively, compute the probability density functions of X +Y
and min{X,Y }.
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11F Probability
Let β > 0. The Curie–Weiss Model of ferromagnetism is the probability distribution

defined as follows. For n ∈ N, define random variables S1, . . . , Sn with values in {±1} such
that the probabilities are given by

P(S1 = s1, . . . , Sn = sn) =
1

Zn,β

exp





β

2n

n
∑

i=1

n
∑

j=1

sisj





where Zn,β is the normalisation constant

Zn,β =
∑

s1∈{±1}

· · ·
∑

sn∈{±1}

exp





β

2n

n
∑

i=1

n
∑

j=1

sisj



 .

(a) Show that E(Si) = 0 for any i.

(b) Show that P(S2 = +1|S1 = +1) > P(S2 = +1). [You may use E(SiSj) > 0 for all i, j
without proof. ]

(c) Let M = 1
n

∑n
i=1 Si. Show that M takes values in En = {−1+ 2k

n
: k = 0, . . . , n}, and

that for each m ∈ En the number of possible values of (S1, . . . , Sn) such that M = m
is

n!
(

1+m
2 n

)

!
(

1−m
2 n

)

!
.

Find P(M = m) for any m ∈ En.
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12F Probability

(a) Let k ∈ {1, 2, . . . }. For j ∈ {0, . . . , k + 1}, let Dj be the first time at which a simple
symmetric random walk on Z with initial position j at time 0 hits 0 or k + 1. Show
E(Dj) = j(k + 1− j). [If you use a recursion relation, you do not need to prove that
its solution is unique.]

(b) Let (Sn) be a simple symmetric random walk on Z starting at 0 at time n = 0. For
k ∈ {1, 2, . . . }, let Tk be the first time at which (Sn) has visited k distinct vertices.
In particular, T1 = 0. Show E(Tk+1 − Tk) = k for k > 1. [You may use without proof
that, conditional on STk

= i, the random variables (STk+n)n>0 have the distribution
of a simple symmetric random walk starting at i.]

(c) For n > 3, let Zn be the circle graph consisting of vertices 0, . . . , n − 1 and edges
between k and k+1 where n is identified with 0. Let (Yi) be a simple random walk on
Zn starting at time 0 from 0. Thus Y0 = 0 and conditional on Yi the random variable
Yi+1 is Yi ± 1 with equal probability (identifying k + n with k).

The cover time T of the simple random walk on Zn is the first time at which the
random walk has visited all vertices. Show that E(T ) = n(n− 1)/2.

END OF PAPER
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