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Paper 3, Section I

2G Analysis II
What does it mean to say that a metric space is complete? Which of the following

metric spaces are complete? Briefly justify your answers.

(i) [0, 1] with the Euclidean metric.

(ii) Q with the Euclidean metric.

(iii) The subset
{ (0, 0) } ∪ { (x, sin(1/x)) | x > 0 } ⊂ R2

with the metric induced from the Euclidean metric on R2.

Write down a metric on R with respect to which R is not complete, justifying your answer.

[You may assume throughout that R is complete with respect to the Euclidean

metric.]

Paper 2, Section I

3G Analysis II
Let X ⊂ R. What does it mean to say that a sequence of real-valued functions on

X is uniformly convergent?

Let f, fn (n > 1): R → R be functions.

(a) Show that if each fn is continuous, and (fn) converges uniformly on R to f , then
f is also continuous.

(b) Suppose that, for every M > 0, (fn) converges uniformly on [−M,M ]. Need
(fn) converge uniformly on R? Justify your answer.

Paper 4, Section I

3G Analysis II
State the chain rule for the composition of two differentiable functions f : Rm → Rn

and g : Rn → Rp.

Let f : R2 → R be differentiable. For c ∈ R, let g(x) = f(x, c − x). Compute the
derivative of g. Show that if ∂f/∂x = ∂f/∂y throughout R2, then f(x, y) = h(x+ y) for
some function h : R → R.
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Paper 1, Section II

11G Analysis II
What does it mean to say that a real-valued function on a metric space is uniformly

continuous? Show that a continuous function on a closed interval in R is uniformly
continuous.

What does it mean to say that a real-valued function on a metric space is Lipschitz?
Show that if a function is Lipschitz then it is uniformly continuous.

Which of the following statements concerning continuous functions f : R → R are
true and which are false? Justify your answers.

(i) If f is bounded then f is uniformly continuous.

(ii) If f is differentiable and f ′ is bounded, then f is uniformly continuous.

(iii) There exists a sequence of uniformly continuous functions converging
pointwise to f .
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Paper 2, Section II

12G Analysis II
Let V be a real vector space. What is a norm on V ? Show that if ‖−‖ is a norm on

V , then the maps Tv : x 7→ x+ v (for v ∈ V ) and ma : x 7→ ax (for a ∈ R) are continuous
with respect to the norm.

Let B ⊂ V be a subset containing 0. Show that there exists at most one norm on
V for which B is the open unit ball.

Suppose that B satisfies the following two properties:

• if v ∈ V is a nonzero vector, then the line Rv ⊂ V meets B in a set of the form
{tv : −λ < t < λ} for some λ > 0;

• if x, y ∈ B and s, t > 0 then (s + t)−1(sx+ ty) ∈ B.

Show that there exists a norm ‖−‖B for which B is the open unit ball.

Identify ‖−‖B in the following two cases:

(i) V = Rn, B = { (x1, . . . , xn) ∈ Rn : −1 < xi < 1 for all i }.

(ii) V = R2, B the interior of the square with vertices (±1, 0), (0,±1).

Let C ⊂ R2 be the set

C = { (x1, x2) ∈ R2 : |x1| < 1, |x2| < 1, and (|x1| − 1)2 + (|x2| − 1)2 > 1 } .

Is there a norm on R2 for which C is the open unit ball? Justify your answer.

Paper 4, Section II

12G Analysis II
Let U ⊂ Rm be a nonempty open set. What does it mean to say that a function

f : U → Rn is differentiable?

Let f : U → R be a function, where U ⊂ R2 is open. Show that if the first partial
derivatives of f exist and are continuous on U , then f is differentiable on U .

Let f : R2 → R be the function

f(x, y) =





0 (x, y) = (0, 0)

x3 + 2y4

x2 + y2
(x, y) 6= (0, 0).

Determine, with proof, where f is differentiable.
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Paper 3, Section II

12G Analysis II
What is a contraction map on a metric space X? State and prove the contraction

mapping theorem.

Let (X, d) be a complete non-empty metric space. Show that if f : X → X is a map
for which some iterate fk (k > 1) is a contraction map, then f has a unique fixed point.
Show that f itself need not be a contraction map.

Let f : [0,∞) → [0,∞) be the function

f(x) =
1

3

(
x+ sinx+

1

x+ 1

)
.

Show that f has a unique fixed point.
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Paper 4, Section I

4F Complex Analysis
Let D be a star-domain, and let f be a continuous complex-valued function on D.

Suppose that for every triangle T contained in D we have

∫

∂T
f(z) dz = 0 .

Show that f has an antiderivative on D.

If we assume instead that D is a domain (not necessarily a star-domain), does this
conclusion still hold? Briefly justify your answer.

Paper 3, Section II

13F Complex Analysis
Let f be an entire function. Prove Taylor’s theorem, that there exist complex

numbers c0, c1, . . . such that f(z) =
∑∞

n=0 cnz
n for all z. [You may assume Cauchy’s

Integral Formula.]

For a positive real r, let Mr = sup{|f(z)| : |z| = r}. Explain why we have

|cn| 6
Mr

rn

for all n.

Now let n and r be fixed. For which entire functions f do we have |cn| =
Mr

rn
?

Part IB, 2017 List of Questions



7

Paper 1, Section I

2A Complex Analysis or Complex Methods
Let F (z) = u(x, y)+i v(x, y) where z = x+i y. Suppose F (z) is an analytic function

of z in a domain D of the complex plane.

Derive the Cauchy-Riemann equations satisfied by u and v.

For u =
x

x2 + y2
find a suitable function v and domain D such that F = u + i v is

analytic in D.

Paper 2, Section II

13A Complex Analysis or Complex Methods
State the residue theorem.

By considering ∮

C

z1/2 log z

1 + z2
dz

with C a suitably chosen contour in the upper half plane or otherwise, evaluate the real
integrals

∫ ∞

0

x1/2 log x

1 + x2
dx

and

∫ ∞

0

x1/2

1 + x2
dx

where x1/2 is taken to be the positive square root.
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Paper 1, Section II

13A Complex Analysis or Complex Methods
(a) Let f(z) be defined on the complex plane such that zf(z) → 0 as |z| → ∞ and

f(z) is analytic on an open set containing Im(z) > −c, where c is a positive real constant.

Let C1 be the horizontal contour running from −∞− ic to +∞− ic and let

F (λ) =
1

2πi

∫

C1

f(z)

z − λ
dz.

By evaluating the integral, show that F (λ) is analytic for Im(λ) > −c.
(b) Let g(z) be defined on the complex plane such that z g(z) → 0 as |z| → ∞ with

Im(z) > −c. Suppose g(z) is analytic at all points except z = α+ and z = α− which are
simple poles with Im(α+) > c and Im(α−) < −c.

Let C2 be the horizontal contour running from −∞+ ic to +∞+ ic, and let

H(λ) =
1

2πi

∫

C1

g(z)

z − λ
dz,

J(λ) = − 1

2πi

∫

C2

g(z)

z − λ
dz.

(i) Show that H(λ) is analytic for Im(λ) > −c.

(ii) Show that J(λ) is analytic for Im(λ) < c.

(iii) Show that if −c < Im(λ) < c then H(λ) + J(λ) = g(λ).

[You should be careful to make sure you consider all points in the required regions.]
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Paper 3, Section I

4A Complex Methods
By using the Laplace transform, show that the solution to

y′′ − 4y′ + 3y = t e−3t,

subject to the conditions y(0) = 0 and y′(0) = 1, is given by

y(t) =
37

72
e3t − 17

32
et +

(
5

288
+

1

24
t

)
e−3t

when t > 0.

Paper 4, Section II

14A Complex Methods
By using Fourier transforms and a conformal mapping

w = sin
(πz
a

)

with z = x+ iy and w = ξ + iη, and a suitable real constant a, show that the solution to

∇2φ = 0 − 2π 6 x 6 2π, y > 0,

φ(x, 0) = f(x) − 2π 6 x 6 2π,

φ(±2π, y) = 0 y > 0,

φ(x, y) → 0 y → ∞, −2π 6 x 6 2π,

is given by

φ(ξ, η) =
η

π

∫ 1

−1

F (ξ′)

η2 + (ξ − ξ′)2
dξ′,

where F (ξ′) is to be determined.

In the case of f(x) = sin
(x
4

)
, give F (ξ′) explicitly as a function of ξ′. [You need

not evaluate the integral.]
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Paper 2, Section I

6C Electromagnetism
State Gauss’s Law in the context of electrostatics.

A spherically symmetric capacitor consists of two conductors in the form of
concentric spherical shells of radii a and b, with b > a. The inner sphere carries a charge
Q and the outer sphere carries a charge −Q. Determine the electric field E and the
electrostatic potential φ in the regions r < a, a < r < b and r > b. Show that the
capacitance is

C =
4πǫ0ab

b− a

and calculate the electrostatic energy of the system in terms of Q and C.

Paper 4, Section I

7C Electromagnetism
A thin wire, in the form of a closed curve C, carries a constant current I. Using

either the Biot–Savart law or the magnetic vector potential, show that the magnetic field
far from the loop is of the approximate form

B(r) ≈ µ0
4π

[
3(m · r)r−m|r|2

|r|5
]
,

where m is the magnetic dipole moment of the loop. Derive an expression for m in terms
of I and the vector area spanned by the curve C.
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Paper 1, Section II

16C Electromagnetism
Write down Maxwell’s equations for the electric field E(x, t) and the magnetic field

B(x, t) in a vacuum. Deduce that both E and B satisfy a wave equation, and relate the
wave speed c to the physical constants ǫ0 and µ0.

Verify that there exist plane-wave solutions of the form

E(x, t) = Re
[
e ei(k·x−ωt)

]
,

B(x, t) = Re
[
b ei(k·x−ωt)

]
,

where e and b are constant complex vectors, k is a constant real vector and ω is a real
constant. Derive the dispersion relation that relates the angular frequency ω of the wave to
the wavevector k, and give the algebraic relations between the vectors e, b and k implied
by Maxwell’s equations.

Let n be a constant real unit vector. Suppose that a perfect conductor occupies the
region n · x < 0 with a plane boundary n · x = 0. In the vacuum region n · x > 0, a plane
electromagnetic wave of the above form, with k ·n < 0, is incident on the plane boundary.
Write down the boundary conditions on E and B at the surface of the conductor. Show
that Maxwell’s equations and the boundary conditions are satisfied if the solution in the
vacuum region is the sum of the incident wave given above and a reflected wave of the
form

E′(x, t) = Re
[
e′ ei(k

′
·x−ωt)

]
,

B′(x, t) = Re
[
b′ ei(k

′
·x−ωt)

]
,

where

e′ = −e+ 2(n · e)n ,

b′ = b− 2(n · b)n ,

k′ = k− 2(n · k)n .
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Paper 3, Section II

17C Electromagnetism

(i) Two point charges, of opposite sign and unequal magnitude, are placed at two
different locations. Show that the combined electrostatic potential vanishes on a
sphere that encloses only the charge of smaller magnitude.

(ii) A grounded, conducting sphere of radius a is centred at the origin. A point charge q
is located outside the sphere at position vector p. Formulate the differential equation
and boundary conditions for the electrostatic potential outside the sphere. Using
the result of part (i) or otherwise, show that the electric field outside the sphere is
identical to that generated (in the absence of any conductors) by the point charge
q and an image charge q′ located inside the sphere at position vector p′, provided
that p′ and q′ are chosen correctly.

Calculate the magnitude and direction of the force experienced by the charge q.
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Paper 2, Section II

18C Electromagnetism
In special relativity, the electromagnetic fields can be derived from a 4-vector

potential Aµ = (φ/c,A). Using the Minkowski metric tensor ηµν and its inverse ηµν , state
how the electromagnetic tensor Fµν is related to the 4-potential, and write out explicitly
the components of both Fµν and Fµν in terms of those of E and B.

If x′µ = Λµνx
ν is a Lorentz transformation of the spacetime coordinates from one

inertial frame S to another inertial frame S ′, state how F ′µν is related to Fµν .

Write down the Lorentz transformation matrix for a boost in standard configuration,
such that frame S ′ moves relative to frame S with speed v in the +x direction. Deduce
the transformation laws

E′
x = Ex ,

E′
y = γ(Ey − vBz) ,

E′
z = γ(Ez + vBy) ,

B′
x = Bx ,

B′
y = γ

(
By +

v

c2
Ez

)
,

B′
z = γ

(
Bz −

v

c2
Ey

)
,

where γ =

(
1− v2

c2

)−1/2

.

In frame S, an infinitely long wire of negligible thickness lies along the x axis. The
wire carries n positive charges +q per unit length, which travel at speed u in the +x
direction, and n negative charges −q per unit length, which travel at speed u in the −x
direction. There are no other sources of the electromagnetic field. Write down the electric
and magnetic fields in S in terms of Cartesian coordinates. Calculate the electric field
in frame S ′, which is related to S by a boost by speed v as described above. Give an
explanation of the physical origin of your expression.
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Paper 1, Section I

5D Fluid Dynamics
For each of the flows

(i) u = (2xy, x2 + y2)

(ii) u = (−2y,−2x)

determine whether or not the flow is incompressible and/or irrotational. Find the
associated velocity potential and/or stream function when appropriate. For either one of
the flows, sketch the streamlines of the flow, indicating the direction of the flow.

Paper 2, Section I

7D Fluid Dynamics
From Euler’s equations describing steady inviscid fluid flow under the action of a

conservative force, derive Bernoulli’s equation for the pressure along a streamline of the
flow, defining all variables that you introduce.

Water fills an inverted, open, circular cone (radius increasing upwards) of half angle
π/4 to a height h0 above its apex. At time t = 0, the tip of the cone is removed to leave
a small hole of radius ǫ ≪ h0. Assuming that the flow is approximately steady while the
depth of water h(t) is much larger than ǫ, show that the time taken for the water to drain
is approximately (

2

25

h50
ǫ4g

)1/2

.
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Paper 1, Section II

17D Fluid Dynamics
A layer of thickness h of fluid of density ρ and dynamic viscosity µ flows steadily

down and parallel to a rigid plane inclined at angle α to the horizontal. Wind blows over
the surface of the fluid and exerts a stress S on the surface of the fluid in the upslope
direction.

(a) Draw a diagram of this situation, including indications of the applied stresses
and body forces, a suitable coordinate system and a representation of the expected velocity
profile.

(b) Write down the equations and boundary conditions governing the flow, with
a brief description of each, paying careful attention to signs. Solve these equations to
determine the pressure and velocity fields.

(c) Determine the volume flux and show that there is no net flux if

S =
2

3
ρgh sinα.

Draw a sketch of the corresponding velocity profile.

(d) Determine the value of S for which the shear stress on the rigid plane is zero
and draw a sketch of the corresponding velocity profile.
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Paper 4, Section II

18D Fluid Dynamics
The linearised equations governing the horizontal components of flow u(x, y, t) in a

rapidly rotating shallow layer of depth h = h0 + η(x, y, t), where η ≪ h0, are

∂u

∂t
+ f × u = −g∇η,

∂η

∂t
+ h0∇ · u = 0,

where f = fez is the constant Coriolis parameter, and ez is the unit vector in the vertical
direction.

Use these equations, either in vector form or using Cartesian components, to show
that the potential vorticity

Q = ζζζ − η

h0
f

is independent of time, where ζζζ = ∇× u is the relative vorticity.

Derive the equation

∂2η

∂t2
− gh0∇2η + f2η = −h0f ·Q.

In the case that Q ≡ 0, determine and sketch the dispersion relation ω(k) for plane waves
with η = Aei(kx+ωt), where A is constant. Discuss the nature of the waves qualitatively:
do long waves propagate faster or slower than short waves; how does the phase speed
depend on wavelength; does rotation have more effect on long waves or short waves; how
dispersive are the waves?

Paper 3, Section II

18D Fluid Dynamics
Use Euler’s equations to derive the vorticity equation

Dωωω

Dt
= ωωω · ∇u,

where u is the fluid velocity and ωωω is the vorticity.

Consider axisymmetric, incompressible, inviscid flow between two rigid plates at
z = h(t) and z = −h(t) in cylindrical polar coordinates (r, θ, z), where t is time. Using
mass conservation, or otherwise, find the complete flow field whose radial component is
independent of z.

Now suppose that the flow has angular velocity Ω = Ω(t)ez and that Ω = Ω0 when
h = h0. Use the vorticity equation to determine the angular velocity for subsequent times
as a function of h. What physical principle does your result illustrate?

Part IB, 2017 List of Questions



17

Paper 1, Section I

3G Geometry
Give the definition for the area of a hyperbolic triangle with interior angles α, β, γ.

Let n > 3. Show that the area of a convex hyperbolic n-gon with interior angles
α1, . . . , αn is (n − 2)π −∑

αi.

Show that for every n > 3 and for every A with 0 < A < (n−2)π there exists a regu-
lar hyperbolic n-gon with area A.

Paper 3, Section I

5G Geometry
Let

π(x, y, z) =
x+ iy

1− z

be stereographic projection from the unit sphere S2 in R3 to the Riemann sphere C∞.
Show that if r is a rotation of S2, then πrπ−1 is a Möbius transformation of C∞ which
can be represented by an element of SU(2). (You may assume without proof any result
about generation of SO(3) by a particular set of rotations, but should state it carefully.)

Paper 2, Section II

14G Geometry
Let H = {x ∈ Rn | u · x = c } be a hyperplane in Rn, where u is a unit vector and

c is a constant. Show that the reflection map

x 7→ x− 2(u · x− c)u

is an isometry of Rn which fixes H pointwise.

Let p, q be distinct points in Rn. Show that there is a unique reflection R mapping
p to q, and that R ∈ O(n) if and only if p and q are equidistant from the origin.

Show that every isometry of Rn can be written as a product of at most n+1 reflec-
tions. Give an example of an isometry of R2 which cannot be written as a product of fewer
than 3 reflections.
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Paper 3, Section II

14G Geometry
Let σ : U → R3 be a parametrised surface, where U ⊂ R2 is an open set.

(a) Explain what are the first and second fundamental forms of the surface, and
what is its Gaussian curvature. Compute the Gaussian curvature of the hyperboloid
σ(x, y) = (x, y, xy).

(b) Let a(x) and b(x) be parametrised curves in R3, and assume that

σ(x, y) = a(x) + yb(x).

Find a formula for the first fundamental form, and show that the Gaussian curvature
vanishes if and only if

a′ · (b× b′) = 0 .

Paper 4, Section II

15G Geometry
What is a hyperbolic line in (a) the disc model (b) the upper half-plane model of the

hyperbolic plane? What is the hyperbolic distance d(P,Q) between two points P , Q in the
hyperbolic plane? Show that if γ is any continuously differentiable curve with endpoints
P and Q then its length is at least d(P,Q), with equality if and only if γ is a monotonic
reparametrisation of the hyperbolic line segment joining P and Q.

What does it mean to say that two hyperbolic lines L, L′ are (a) parallel (b)
ultraparallel? Show that L and L′ are ultraparallel if and only if they have a common
perpendicular, and if so, then it is unique.

A horocycle is a curve in the hyperbolic plane which in the disc model is a Euclidean
circle with exactly one point on the boundary of the disc. Describe the horocycles in the
upper half-plane model. Show that for any pair of horocycles there exists a hyperbolic
line which meets both orthogonally. For which pairs of horocycles is this line unique?
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Paper 3, Section I

1E Groups, Rings and Modules
Let R be a commutative ring and let M be an R-module. Show that M is a finitely

generated R-module if and only if there exists a surjective R-module homomorphism
Rn →M for some n.

Find an example of a Z-module M such that there is no surjective Z-module
homomorphism Z → M but there is a surjective Z-module homomorphism Z2 → M
which is not an isomorphism. Justify your answer.

Paper 2, Section I

2E Groups, Rings and Modules
(a) Define what is meant by a unique factorisation domain and by a principal ideal

domain. State Gauss’s lemma and Eisenstein’s criterion, without proof.

(b) Find an example, with justification, of a ring R and a subring S such that

(i) R is a principal ideal domain, and

(ii) S is a unique factorisation domain but not a principal ideal domain.

Paper 4, Section I

2E Groups, Rings and Modules
Let G be a non-trivial finite p-group and let Z(G) be its centre. Show that

|Z(G)| > 1. Show that if |G| = p3 and if G is not abelian, then |Z(G)| = p.

Paper 1, Section II

10E Groups, Rings and Modules
(a) State Sylow’s theorem.

(b) Let G be a finite simple non-abelian group. Let p be a prime number. Show
that if p divides |G|, then |G| divides np!/2 where np is the number of Sylow p-subgroups
of G.

(c) Let G be a group of order 48. Show that G is not simple. Find an example of
G which has no normal Sylow 2-subgroup.
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Paper 2, Section II

11E Groups, Rings and Modules
Let R be a commutative ring.

(a) Let N be the set of nilpotent elements of R, that is,

N = {r ∈ R | rn = 0 for some n ∈ N}.

Show that N is an ideal of R.

(b) Assume R is Noetherian and assume S ⊂ R is a non-empty subset such that if
s, t ∈ S, then st ∈ S. Let I be an ideal of R disjoint from S. Show that there is a prime
ideal P of R containing I and disjoint from S.

(c) Again assume R is Noetherian and let N be as in part (a). Let P be the set of
all prime ideals of R. Show that

N =
⋂

P∈P

P.

Paper 4, Section II

11E Groups, Rings and Modules
(a) State (without proof) the classification theorem for finitely generated modules

over a Euclidean domain. Give the statement and the proof of the rational canonical form
theorem.

(b) Let R be a principal ideal domain and let M be an R-submodule of Rn. Show
that M is a free R-module.

Paper 3, Section II

11E Groups, Rings and Modules
(a) Define what is meant by a Euclidean domain. Show that every Euclidean domain

is a principal ideal domain.

(b) Let p ∈ Z be a prime number and let f ∈ Z[x] be a monic polynomial of positive
degree. Show that the quotient ring Z[x]/(p, f) is finite.

(c) Let α ∈ Z[
√
−1] and let P be a non-zero prime ideal of Z[α]. Show that the

quotient Z[α]/P is a finite ring.
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Paper 2, Section I

1F Linear Algebra
State and prove the Rank–Nullity theorem.

Let α be a linear map from R3 to R3 of rank 2. Give an example to show that R3

may be the direct sum of the kernel of α and the image of α, and also an example where
this is not the case.

Paper 1, Section I

1F Linear Algebra
State and prove the Steinitz Exchange Lemma.

Deduce that, for a subset S of Rn, any two of the following imply the third:

(i) S is linearly independent

(ii) S is spanning

(iii) S has exactly n elements

Let e1, e2 be a basis of R2. For which values of λ do λe1+ e2, e1+λe2 form a basis of R2?

Paper 4, Section I

1F Linear Algebra
Briefly explain the Gram–Schmidt orthogonalisation process in a real finite-dimensional

inner product space V .

For a subspace U of V , define U⊥, and show that V = U ⊕ U⊥.

For which positive integers n does

(f, g) = f(1)g(1) + f(2)g(2) + f(3)g(3)

define an inner product on the space of all real polynomials of degree at most n?
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Paper 1, Section II

9F Linear Algebra
Let U and V be finite-dimensional real vector spaces, and let α : U → V be a

surjective linear map. Which of the following are always true and which can be false?
Give proofs or counterexamples as appropriate.

(i) There is a linear map β : V → U such that βα is the identity map on U .

(ii) There is a linear map β : V → U such that αβ is the identity map on V .

(iii) There is a subspace W of U such that the restriction of α to W is an
isomorphism from W to V .

(iv) If X and Y are subspaces of U with U = X ⊕ Y then V = α(X) ⊕ α(Y ).

(v) If X and Y are subspaces of U with V = α(X) ⊕ α(Y ) then U = X ⊕ Y .

Paper 2, Section II

10F Linear Algebra
Let α : U → V and β : V → W be linear maps between finite-dimensional real

vector spaces.

Show that the rank r(βα) satisfies r(βα) 6 min(r(β), r(α)). Show also that
r(βα) > r(α) + r(β) − dimV . For each of these two inequalities, give examples to show
that we may or may not have equality.

Now let V have dimension 2n and let α : V → V be a linear map of rank 2n − 2
such that αn = 0. Find the rank of αk for each 1 6 k 6 n− 1.
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Paper 4, Section II

10F Linear Algebra
What is the dual X∗ of a finite-dimensional real vector space X? If X has a basis

e1, . . . , en, define the dual basis, and prove that it is indeed a basis of X∗.

[No results on the dimension of duals may be assumed without proof.]

Write down (without making a choice of basis) an isomorphism from X to X∗∗.
Prove that your map is indeed an isomorphism.

Does every basis of X∗ arise as the dual basis of some basis of X? Justify your
answer.

A subspace W of X∗ is called separating if for every non-zero x ∈ X there is a
T ∈W with T (x) 6= 0. Show that the only separating subspace of X∗ is X∗ itself.

Now let X be the (infinite-dimensional) space of all real polynomials. Explain briefly
how we may identify X∗ with the space of all real sequences. Give an example of a proper
subspace of X∗ that is separating.

Paper 3, Section II

10F Linear Algebra
Let f be a quadratic form on a finite-dimensional real vector space V . Prove that

there exists a diagonal basis for f , meaning a basis with respect to which the matrix of f
is diagonal.

Define the rank r and signature s of f in terms of this matrix. Prove that r and s
are independent of the choice of diagonal basis.

In terms of r, s, and the dimension n of V , what is the greatest dimension of a
subspace on which f is zero?

Now let f be the quadratic form on R3 given by f(x, y, z) = x2 − y2. For which
points v in R3 is it the case that there is some diagonal basis for f containing v?
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Paper 3, Section I

9H Markov Chains
(a) What does it mean to say that a Markov chain is reversible?

(b) Let G be a finite connected graph on n vertices. What does it mean to say
that X is a simple random walk on G?

Find the unique invariant distribution π of X.

Show that X is reversible when X0 ∼ π.

[You may use, without proof, results about detailed balance equations, but you should

state them clearly.]

Paper 4, Section I

9H Markov Chains
Prove that the simple symmetric random walk on Z3 is transient.

[Any combinatorial inequality can be used without proof.]

Paper 1, Section II

20H Markov Chains
A rich and generous man possesses n pounds. Some poor cousins arrive at his

mansion. Being generous he decides to give them money. On day 1, he chooses uniformly
at random an integer between n− 1 and 1 inclusive and gives it to the first cousin. Then
he is left with x pounds. On day 2, he chooses uniformly at random an integer between
x − 1 and 1 inclusive and gives it to the second cousin and so on. If x = 1 then he does
not give the next cousin any money. His choices of the uniform numbers are independent.
Let Xi be his fortune at the end of day i.

Show that X is a Markov chain and find its transition probabilities.

Let τ be the first time he has 1 pound left, i.e. τ = min{i > 1 : Xi = 1}. Show
that

E[τ ] =
n−1∑

i=1

1

i
.
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Paper 2, Section II

20H Markov Chains
Let Y1, Y2, . . . be i.i.d. random variables with values in {1, 2, . . .} and E[Y1] = µ <∞.

Moreover, suppose that the greatest common divisor of {n : P(Y1 = n) > 0} is 1. Consider
the following process

Xn = inf{m > n : Y1 + . . . + Yk = m, for some k > 0} − n.

(a) Show that X is a Markov chain and find its transition probabilities.

(b) Let T0 = inf{n > 1 : Xn = 0}. Find E0[T0].

(c) Find the limit as n → ∞ of P(Xn = 0). State carefully any theorems from the
course that you are using.
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Paper 2, Section I

5B Methods
Expand f(x) = x as a Fourier series on −π < x < π.

By integrating the series show that x2 on −π < x < π can be written as

x2 =
a0
2

+

∞∑

n=1

an cosnx ,

where an, n = 1, 2, . . ., should be determined and

a0 = 8

∞∑

n=1

(−1)n−1

n2
.

By evaluating a0 another way show that

∞∑

n=1

(−1)n−1

n2
=
π2

12
.

Paper 4, Section I

5A Methods
The Legendre polynomials, Pn(x) for integers n > 0, satisfy the Sturm–Liouville

equation
d

dx

[(
1− x2

) d

dx
Pn(x)

]
+ n(n+ 1)Pn(x) = 0

and the recursion formula

(n + 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), P0(x) = 1, P1(x) = x.

(i) For all n > 0, show that Pn(x) is a polynomial of degree n with Pn(1) = 1.

(ii) For all m,n > 0, show that Pn(x) and Pm(x) are orthogonal over the range
x ∈ [−1, 1] when m 6= n.

(iii) For each n > 0 let

Rn(x) =
dn

dxn
[(
x2 − 1

)n]
.

Assume that for each n there is a constant αn such that Pn(x) = αnRn(x) for
all x. Determine αn for each n.
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Paper 3, Section I

7A Methods
Using the substitution u(x, y) = v(x, y)e−x

2

, find u(x, y) that satisfies

ux + xuy + 2xu = e−x
2

with boundary data u(0, y) = y e−y
2

.

Paper 1, Section II

14B Methods
(a)

(i) Compute the Fourier transform h̃(k) of h(x) = e−a|x|, where a is a real positive
constant.

(ii) Consider the boundary value problem

−d
2u

dx2
+ ω2u = e−|x| on −∞ < x <∞

with real constant ω 6= ±1 and boundary condition u(x) → 0 as |x| → ∞.
Find the Fourier transform ũ(k) of u(x) and hence solve the boundary value
problem. You should clearly state any properties of the Fourier transform that
you use.

(b) Consider the wave equation

vtt = vxx on −∞ < x <∞ and t > 0

with initial conditions
v(x, 0) = f(x) vt(x, 0) = g(x).

Show that the Fourier transform ṽ(k, t) of the solution v(x, t) with respect to the variable
x is given by

ṽ(k, t) = f̃(k) cos kt+
g̃(k)

k
sin kt

where f̃(k) and g̃(k) are the Fourier transforms of the initial conditions.
Starting from ṽ(k, t) derive d’Alembert’s solution for the wave equation:

v(x, t) =
1

2

(
f(x− t) + f(x+ t)

)
+

1

2

∫ x+t

x−t
g(ξ)dξ .

You should state clearly any properties of the Fourier transform that you use.
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Paper 3, Section II

15A Methods
Let L be the linear differential operator

L y = y′′′ − y′′ − 2y′

where ′ denotes differentiation with respect to x.

Find the Green’s function, G(x; ξ), for L satisfying the homogeneous boundary
conditions G(0; ξ) = 0, G′(0; ξ) = 0, G′′(0; ξ) = 0.

Using the Green’s function, solve

Ly = exΘ(x− 1)

with boundary conditions y(0) = 1, y′(0) = −1, y′′(0) = 0. Here Θ(x) is the Heaviside
step function having value 0 for x < 0 and 1 for x > 0.

Paper 2, Section II

16A Methods
Laplace’s equation for φ in cylindrical coordinates (r, θ, z), is

1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2
∂2φ

∂θ2
+
∂2φ

∂z2
= 0.

Use separation of variables to find an expression for the general solution to Laplace’s
equation in cylindrical coordinates that is 2π-periodic in θ.

Find the bounded solution φ(r, θ, z) that satisfies

∇2φ = 0 z > 0, 0 6 r 6 1,

φ(1, θ, z) = e−4z(cos θ + sin 2θ) + 2 e−z sin 2θ.
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Paper 4, Section II

17B Methods
(a)

(i) For the diffusion equation

∂φ

∂t
−K

∂2φ

∂x2
= 0 on −∞ < x <∞ and t > 0,

with diffusion constant K, state the properties (in terms of the Dirac delta
function) that define the fundamental solution F (x, t) and the Green’s function

G(x, t; y, τ).
You are not required to give expressions for these functions.

(ii) Consider the initial value problem for the homogeneous equation:

∂φ

∂t
−K

∂2φ

∂x2
= 0, φ(x, t0) = α(x) on −∞ < x <∞ and t > t0, (A)

and the forced equation with homogeneous initial condition (and given forcing
term h(x, t)):

∂φ

∂t
−K

∂2φ

∂x2
= h(x, t), φ(x, 0) = 0 on −∞ < x <∞ and t > 0. (B)

Given that F and G in part (i) are related by

G(x, t; y, τ) = Θ(t− τ)F (x− y, t− τ)

(where Θ(t) is the Heaviside step function having value 0 for t < 0 and 1 for
t > 0), show how the solution of (B) can be expressed in terms of solutions of
(A) with suitable initial conditions. Briefly interpret your expression.

(b) A semi-infinite conducting plate lies in the (x1, x2) plane in the region x1 > 0. The
boundary along the x2 axis is perfectly insulated. Let (r, θ) denote standard polar co-
ordinates on the plane. At time t = 0 the entire plate is at temperature zero except
for the region defined by −π/4 < θ < π/4 and 1 < r < 2 which has constant initial
temperature T0 > 0. Subsequently the temperature of the plate obeys the two-dimensional
heat equation with diffusion constant K. Given that the fundamental solution of the two-
dimensional heat equation on R2 is

F (x1, x2, t) =
1

4πKt
e−(x2

1
+x2

2
)/(4Kt),

show that the origin (0, 0) on the plate reaches its maximum temperature at time
t = 3/(8K log 2).
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Paper 3, Section I

3E Metric and Topological Spaces
Let X and Y be topological spaces.

(a) Define what is meant by the product topology on X × Y . Define the projection

maps p : X × Y → X and q : X × Y → Y and show they are continuous.

(b) Consider ∆ = {(x, x) | x ∈ X} in X ×X. Show that X is Hausdorff if and only
if ∆ is a closed subset of X ×X in the product topology.

Paper 2, Section I

4E Metric and Topological Spaces
Let f : (X, d) → (Y, e) be a function between metric spaces.

(a) Give the ǫ-δ definition for f to be continuous. Show that f is continuous if and
only if f−1(U) is an open subset of X for each open subset U of Y .

(b) Give an example of f such that f is not continuous but f(V ) is an open subset
of Y for every open subset V of X.

Paper 1, Section II

12E Metric and Topological Spaces
Consider R and R2 with their usual Euclidean topologies.

(a) Show that a non-empty subset of R is connected if and only if it is an interval.
Find a compact subset K ⊂ R for which R\K has infinitely many connected components.

(b) Let T be a countable subset of R2. Show that R2 \T is path-connected. Deduce
that R2 is not homeomorphic to R.
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Paper 4, Section II

13E Metric and Topological Spaces
Let f : X → Y be a continuous map between topological spaces.

(a) Assume X is compact and that Z ⊆ X is a closed subset. Prove that Z and
f(Z) are both compact.

(b) Suppose that

(i) f−1({y}) is compact for each y ∈ Y , and

(ii) if A is any closed subset of X, then f(A) is a closed subset of Y .

Show that if K ⊆ Y is compact, then f−1(K) is compact.

[Hint: Given an open cover f−1(K) ⊆ ⋃
i∈I Ui, find a finite subcover, say f−1({y}) ⊆⋃

i∈Iy
Ui, for each y ∈ K; use closedness of X \⋃i∈Iy

Ui and property (ii) to produce an

open cover of K.]
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Paper 1, Section I

6C Numerical Analysis
Given n+1 real points x0 < x1 < · · · < xn, define the Lagrange cardinal polynomials

ℓi(x), i = 0, 1, . . . , n. Let p(x) be the polynomial of degree n that interpolates the
function f ∈ Cn[x0, xn] at these points. Express p(x) in terms of the values fi = f(xi),
i = 0, 1, . . . , n and the Lagrange cardinal polynomials.

Define the divided difference f [x0, x1, . . . , xn] and give an expression for it in terms
of f0, f1, . . . , fn and x0, x1, . . . , xn. Prove that

f [x0, x1, . . . , xn] =
1

n!
f (n)(ξ)

for some number ξ ∈ [x0, xn].

Paper 4, Section I

8C Numerical Analysis
For the matrix

A =




1 1 1 1
1 5 5 5
1 5 14 14
1 5 14 λ




find a factorization of the form
A = LDL⊤ ,

where D is diagonal and L is lower triangular with ones on its diagonal.

For what values of λ is A positive definite?

In the case λ = 30 find the Cholesky factorization of A.
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Paper 1, Section II

18C Numerical Analysis
A three-stage explicit Runge–Kutta method for solving the autonomous ordinary

differential equation
dy

dt
= f(y)

is given by
yn+1 = yn + h(b1k1 + b2k2 + b3k3) ,

where

k1 = f(yn) ,

k2 = f(yn + ha1k1) ,

k3 = f(yn + h(a2k1 + a3k2))

and h > 0 is the time-step. Derive sufficient conditions on the coefficients b1, b2, b3, a1,
a2 and a3 for the method to be of third order.

Assuming that these conditions hold, verify that −5
2 belongs to the linear stability

domain of the method.

Paper 2, Section II

19C Numerical Analysis
Define the linear least-squares problem for the equation Ax = b, where A is an

m× n matrix with m > n, b ∈ Rm is a given vector and x ∈ Rn is an unknown vector.

If A = QR, where Q is an orthogonal matrix and R is an upper triangular matrix
in standard form, explain why the least-squares problem is solved by minimizing the
Euclidean norm ‖Rx−Q⊤b‖.

Using the method of Householder reflections, find a QR factorization of the matrix

A =




1 3 3
1 3 1
1 1 1
1 1 −1


 .

Hence find the solution of the least-squares problem in the case

b =




1
1
3

−1


 .
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Paper 3, Section II

19C Numerical Analysis
Let pn ∈ Pn be the nth monic orthogonal polynomial with respect to the inner

product

〈f, g〉 =
∫ b

a
w(x)f(x)g(x) dx

on C[a, b], where w is a positive weight function.

Prove that, for n > 1, pn has n distinct zeros in the interval (a, b).

Let c1, c2, . . . , cn ∈ [a, b] be n distinct points. Show that the quadrature formula

∫ b

a
w(x)f(x) dx ≈

n∑

i=1

bif(ci)

is exact for all f ∈ Pn−1 if the weights bi are chosen to be

bi =

∫ b

a
w(x)

n∏

j=1
j 6=i

x− cj
ci − cj

dx .

Show further that the quadrature formula is exact for all f ∈ P2n−1 if the nodes ci are
chosen to be the zeros of pn (Gaussian quadrature). [Hint: Write f as qpn + r, where
q, r ∈ Pn−1.]

Use the Peano kernel theorem to write an integral expression for the approximation
error of Gaussian quadrature for sufficiently differentiable functions. (You should give a
formal expression for the Peano kernel but are not required to evaluate it.)
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Paper 1, Section I

8H Optimisation
Solve the following linear programming problem using the simplex method:

max(x1 + 2x2 + x3)

subject to x1, x2, x3 > 0

x1 + x2 + 2x3 6 10

2x1 + x2 + 3x3 6 15.

Suppose we now subtract ∆ ∈ [0, 10] from the right hand side of the last two con-
straints. Find the new optimal value.

Paper 2, Section I

9H Optimisation
Consider the following optimisation problem

P : min f(x) subject to g(x) = b, x ∈ X.

(a) Write down the Lagrangian for this problem. State the Lagrange sufficiency
theorem.

(b) Formulate the dual problem. State and prove the weak duality property.
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Paper 4, Section II

20H Optimisation
(a) Let G be a flow network with capacities cij on the edges. Explain the maximum

flow problem on this network defining all the notation you need.

(b) Describe the Ford–Fulkerson algorithm for finding a maximum flow and state
the max-flow min-cut theorem.

(c) Apply the Ford–Fulkerson algorithm to find a maximum flow and a minimum
cut of the following network:

s

a

b

d

e

t

8

9

6

5

4

11

13

c
5

7

4

2

6

(d) Suppose that we add ε > 0 to each capacity of a flow network. Is it true that
the maximum flow will always increase by ε? Justify your answer.

Paper 3, Section II

21H Optimisation
(a) Explain what is meant by a two-person zero-sum game with payoff matrix

A = (aij : 1 6 i 6 m, 1 6 j 6 n) and define what is an optimal strategy (also known as a
maximin strategy) for each player.

(b) Suppose the payoff matrix A is antisymmetric, i.e. m = n and aij = −aji for all
i, j. What is the value of the game? Justify your answer.

(c) Consider the following two-person zero-sum game. Let n > 3. Both players
simultaneously call out one of the numbers {1, . . . , n}. If the numbers differ by one, the
player with the higher number wins £1 from the other player. If the players’ choices
differ by 2 or more, the player with the higher number pays £2 to the other player. In
the event of a tie, no money changes hands.

Write down the payoff matrix.

For the case when n = 3 find the value of the game and an optimal strategy for
each player.

Find the value of the game and an optimal strategy for each player for all n.

[You may use results from the course provided you state them clearly.]
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Paper 4, Section I

6B Quantum Mechanics
(a) Give a physical interpretation of the wavefunction φ(x, t) = Aeikxe−iEt/~ (where

A, k and E are real constants).

(b) A particle of mass m and energy E > 0 is incident from the left on the potential
step

V (x) =

{
0 for −∞ < x < a
V0 for a < x <∞.

with V0 > 0.

State the conditions satisfied by a stationary state at the point x = a.

Compute the probability that the particle is reflected as a function of E, and
compare your result with the classical case.

Paper 3, Section I

8B Quantum Mechanics
A particle of mass m is confined to a one-dimensional box 0 6 x 6 a. The potential

V (x) is zero inside the box and infinite outside.

(a) Find the allowed energies of the particle and the normalised energy eigenstates.

(b) At time t = 0 the particle has wavefunction ψ0 that is uniform in the left half

of the box i.e. ψ0(x) =
√

2
a for 0 < x < a/2 and ψ0(x) = 0 for a/2 < x < a. Find

the probability that a measurement of energy at time t = 0 will yield a value less than
5~2π2/(2ma2).
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Paper 1, Section II

15B Quantum Mechanics
Consider the time-independent Schrödinger equation in one dimension for a particle

of mass m with potential V (x).

(a) Show that if the potential is an even function then any non-degenerate stationary state
has definite parity.

(b) A particle of mass m is subject to the potential V (x) given by

V (x) = −λ
(
δ(x− a) + δ(x+ a)

)

where λ and a are real positive constants and δ(x) is the Dirac delta function.

Derive the conditions satisfied by the wavefunction ψ(x) around the points x = ±a.

Show (using a graphical method or otherwise) that there is a bound state of even
parity for any λ > 0, and that there is an odd parity bound state only if λ > ~2/(2ma).
[Hint: You may assume without proof that the functions x tanhx and x coth x are

monotonically increasing for x > 0.]

Paper 3, Section II

16B Quantum Mechanics
(a) Given the position and momentum operators x̂i = xi and p̂i = −i~ ∂/∂xi (for

i = 1, 2, 3) in three dimensions, define the angular momentum operators L̂i and the total
angular momentum L̂2.
Show that L̂3 is Hermitian.

(b) Derive the generalised uncertainty relation for the observables L̂3 and x̂1 in the
form

∆ψL̂3 ∆ψx̂1 >M

for any state ψ and a suitable expression M that you should determine. [Hint: It may be

useful to consider the operator L̂3 + iλx̂1.]

(c) Consider a particle with wavefunction

ψ = K(x1 + x2 + 2x3)e
−αr

where r =
√
x21 + x22 + x23 and K and α are real positive constants.

Show that ψ is an eigenstate of total angular momentum L̂2 and find the corresponding
angular momentum quantum number l. Find also the expectation value of a measurement
of L̂3 on the state ψ.
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Paper 2, Section II

17B Quantum Mechanics
(a) The potential for the one-dimensional harmonic oscillator is V (x) = 1

2mω
2x2. By

considering the associated time-independent Schrödinger equation for the wavefunction
ψ(x) with substitutions

ξ =
(mω

~

)1/2
x and ψ(x) = f(ξ)e−ξ

2/2,

show that the allowed energy levels are given by En = (n+ 1
2 )~ω for n = 0, 1, 2, . . .. [You

may assume without proof that f must be a polynomial for ψ to be normalisable.]

(b) Consider a particle with charge q and mass m = 1 subject to the one-dimensional
harmonic oscillator potential U0(x) = x2/2. You may assume that the normalised ground
state of this potential is

ψ0(x) =

(
1

π~

)1/4

e−x
2/(2~).

The particle is in the stationary state corresponding to ψ0(x) when at time t = t0, an
electric field of constant strength E is turned on, adding an extra term U1(x) = −qEx to
the harmonic potential.

(i) Using the result of part (a) or otherwise, find the energy levels of the new
potential.

(ii) Show that the probability of finding the particle in the ground state immedi-
ately after t0 is given by e−q

2E2/(2~). [You may assume that
∫∞
−∞ e−x

2+2Ax dx =√
πeA

2

.]
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Paper 1, Section I

7H Statistics
(a) State and prove the Rao–Blackwell theorem.

(b) Let X1, . . . ,Xn be an independent sample from Poisson(λ) with θ = e−λ to be
estimated. Show that Y = 1{0}(X1) is an unbiased estimator of θ and that T =

∑
iXi is

a sufficient statistic.

What is E[Y | T ]?

Paper 2, Section I

8H Statistics
(a) Define a 100γ% confidence interval for an unknown parameter θ.

(b) Let X1, . . . ,Xn be i.i.d. random variables with distribution N(µ, 1) with µ
unknown. Find a 95% confidence interval for µ.

[You may use the fact that Φ(1.96) ≃ 0.975.]

(c) Let U1, U2 be independent U [θ − 1, θ + 1] with θ to be estimated. Find a 50%
confidence interval for θ.

Suppose that we have two observations u1 = 10 and u2 = 11.5. What might be a
better interval to report in this case?

Paper 4, Section II

19H Statistics
(a) State and prove the Neyman–Pearson lemma.

(b) Let X be a real random variable with density f(x) = (2θx+1− θ)1[0,1](x) with
−1 6 θ 6 1.

Find a most powerful test of size α of H0 : θ = 0 versus H1 : θ = 1.

Find a uniformly most powerful test of size α of H0 : θ = 0 versus H1 : θ > 0.
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Paper 1, Section II

19H Statistics
(a) Give the definitions of a sufficient and a minimal sufficient statistic T for an

unknown parameter θ.

Let X1,X2, . . . ,Xn be an independent sample from the geometric distribution with
success probability 1/θ and mean θ > 1, i.e. with probability mass function

p(m) =
1

θ

(
1− 1

θ

)m−1

for m = 1, 2, . . . .

Find a minimal sufficient statistic for θ. Is your statistic a biased estimator of θ?

[You may use results from the course provided you state them clearly.]

(b) Define the bias of an estimator. What does it mean for an estimator to be
unbiased?

Suppose that Y has the truncated Poisson distribution with probability mass
function

p(y) = (eθ − 1)−1 · θ
y

y!
for y = 1, 2, . . . .

Show that the only unbiased estimator T of 1 − e−θ based on Y is obtained by taking
T = 0 if Y is odd and T = 2 if Y is even.

Is this a useful estimator? Justify your answer.
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Paper 3, Section II

20H Statistics
Consider the general linear model

Y = Xβ + ε,

where X is a known n × p matrix of full rank p < n, ε ∼ Nn(0, σ
2I) with σ2 known and

β ∈ Rp is an unknown vector.

(a) State without proof the Gauss–Markov theorem.

Find the maximum likelihood estimator β̂ for β. Is it unbiased?

Let β∗ be any unbiased estimator for β which is linear in (Yi). Show that

var(tT β̂) 6 var(tTβ∗)

for all t ∈ Rp.

(b) Suppose now that p = 1 and that β and σ2 are both unknown. Find the
maximum likelihood estimator for σ2. What is the joint distribution of β̂ and σ̂2 in this
case? Justify your answer.
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Paper 1, Section I

4D Variational Principles
Derive the Euler-Lagrange equation for the function u(x, y) that gives a stationary

value of

I[u] =

∫

D
L

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
dx dy,

where D is a bounded domain in the (x, y)-plane and u is fixed on the boundary ∂D.

Find the equation satisfied by the function u that gives a stationary value of

I =

∫

D

[(
∂u

∂x

)2

+

(
∂u

∂y

)2

+ k2u2

]
dx dy,

where k is a constant and u is prescribed on ∂D.

Paper 3, Section I

6D Variational Principles
(a) A Pringle crisp can be defined as the surface

z = xy with x2 + y2 6 1.

Use the method of Lagrange multipliers to find the minimum and maximum values of z
on the boundary of the Pringle crisp and the (x, y) positions where these occur.

(b) A farmer wishes to construct a grain silo in the form of a hollow vertical cylinder
of radius r and height h with a hollow hemispherical cap of radius r on top of the cylinder.
The walls of the cylinder cost £x per unit area to construct and the surface of the cap
costs £2x per unit area to construct. Given that a total volume V is desired for the silo,
what values of r and h should be chosen to minimise the cost?

Part IB, 2017 List of Questions [TURN OVER



44

Paper 2, Section II

15D Variational Principles
A proto-planet of mass m in a uniform galactic dust cloud has kinetic and potential

energies

T =
1

2
mṙ2 +

1

2
mr2φ̇2, V = kmr2

where k is constant. State Hamilton’s principle and use it to determine the equations of
motion for the proto-planet.

Write down two conserved quantities of the motion and state why their existence
illustrates Noether’s theorem.

Determine the Hamiltonian H(p,x) of this system, where p = (pr, pφ), x = (r, φ)
and (pr, pφ) are the conjugate momenta corresponding to (r, φ).

Write down Hamilton’s equations for this system and use them to show that

mr̈ = −V ′
eff(r), where Veff(r) = m

(
h2

2m2r2
+ kr2

)

and h is a constant. With the aid of a diagram, explain why there is a stable circular
orbit.
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Paper 4, Section II

16D Variational Principles
Consider the functional

F [y] =

∫ β

α
f(y, y′, x) dx

of a function y(x) defined for x ∈ [α, β], with y having fixed values at x = α and x = β.

By considering F [y + ǫξ], where ξ(x) is an arbitrary function with ξ(α) = ξ(β) = 0
and ǫ≪ 1, determine that the second variation of F is

δ2F [y, ξ] =

∫ β

α

{
ξ2

[
∂2f

∂y2
− d

dx

(
∂2f

∂y∂y′

)]
+ ξ′2

∂2f

∂y′2

}
dx.

The surface area of an axisymmetric soap film joining two parallel, co-axial, circular
rings of radius a distance 2L apart can be expressed by the functional

F [y] =

∫ L

−L
2πy

√
1 + y′2 dx,

where x is distance in the axial direction and y is radial distance from the axis. Show that
the surface area is stationary when

y = E cosh
x

E
,

where E is a constant that need not be determined, and that the stationary area is a local
minimum if ∫ L/E

−L/E

(
ξ′2 − ξ2

)
sech2z dz > 0

for all functions ξ(z) that vanish at z = ±L/E, where z = x/E.
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