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SECTION I

1I Number Theory
Compute the continued fraction expansion of

√
14, and use it to find two solutions

to x2 − 14y2 = 2 where x and y are positive integers.

2H Topics in Analysis
Let a0, a1, a2, . . . be integers such that there exists an M with M > |an| for all n.

Show that, if infinitely many of the an are non-zero, then
∞∑

n=0

an
n!

is an irrational number.

3G Coding and Cryptography
Describe the Rabin–Williams scheme for coding a message x as x2 modulo a certain

N . Show that, if N is chosen appropriately, breaking this code is equivalent to factorising
the product of two primes.

4F Automata and Formal Languages
(a) Construct a register machine to compute the function f(m,n) := m+ n. State

the relationship between partial recursive functions and partial computable functions.
Show that the function g(m,n) := mn is partial recursive.

(b) State Rice’s theorem. Show that the set A := {n ∈ N | |Wn| > 7} is recursively
enumerable but not recursive.

5K Statistical Modelling
(a) Let Yi = x⊺i β + εi where εi for i = 1, . . . , n are independent and identically

distributed. Let Zi = I(Yi < 0) for i = 1, . . . , n, and suppose that these variables
follow a binary regression model with the complementary log-log link function g(µ) =
log(− log(1− µ)). What is the probability density function of ε1?

(b) The Newton–Raphson algorithm can be applied to compute the MLE, β̂, in
certain GLMs. Starting from β(0) = 0, we let β(t+1) be the maximizer of the quadratic
approximation of the log-likelihood ℓ(β;Y ) around β(t):

ℓ(β;Y ) ≈ ℓ(β(t);Y ) + (β − β(t))⊺Dℓ(β(t);Y ) + (β − β(t))⊺D2ℓ(β(t);Y )(β − β(t)),

whereDℓ andD2ℓ are the gradient and Hessian of the log-likelihood. What is the difference
between this algorithm and Iterative Weighted Least Squares? Why might the latter be
preferable?
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6B Mathematical Biology
A stochastic birth–death process is given by the master equation

dpn
dt

= λ(pn−1 − pn) + µ [ (n− 1)pn−1 − npn ] + β [ (n+ 1)pn+1 − npn ] ,

where pn(t) is the probability that there are n individuals in the population at time t for
n = 0, 1, 2, . . . and pn = 0 for n < 0. Give a brief interpretation of λ, µ and β.

Derive an equation for
∂φ

∂t
, where φ is the generating function

φ(s, t) =

∞∑

n=0

snpn(t) .

Now assume that β > µ. Show that at steady state

φ =

(
β − µ

β − µs

)λ/µ

and find the corresponding mean and variance.

7A Further Complex Methods
Consider the equation for w(z):

w′′ + p(z)w′ + q(z)w = 0 . (∗)

State necessary and sufficient conditions on p(z) and q(z) for z = 0 to be (i) an ordinary
point or (ii) a regular singular point . Derive the corresponding conditions for the point
z = ∞.

Determine the most general equation of the form (∗) that has regular singular points
at z = 0 and z = ∞, with all other points being ordinary.

8E Classical Dynamics
Using conservation of angular momentum L = Laea in the body frame, derive the

Euler equations for a rigid body:

I1 ω̇1 + (I3−I2)ω2 ω3 = 0, I2 ω̇2 + (I1−I3)ω3 ω1 = 0, I3 ω̇3 + (I2−I1)ω1 ω2 = 0.

[You may use the formula ėa = ω ∧ ea without proof.]

Assume that the principal moments of inertia satisfy I1 < I2 < I3. Determine
whether a rotation about the principal 3-axis leads to stable or unstable perturbations.
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9C Cosmology
The external gravitational potential Φ(r) due to a thin spherical shell of radius a

and mass per unit area σ, centred at r = 0, will equal the gravitational potential due to
a point mass M at r = 0, at any distance r > a, provided

MrΦ(r)

2πσa
+K(a)r =

∫ r+a

r−a
RΦ(R) dR , (∗)

where K(a) depends on the radius of the shell. For which values of q does this equation
have solutions of the form Φ(r) = Crq, where C is constant? Evaluate K(a) in each case
and find the relation between the mass of the shell and M .

Hence show that the general gravitational force

F (r) =
A

r2
+Br

has a potential satisfying (∗). What is the cosmological significance of the constant B?
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SECTION II

10I Number Theory
(a) Define Euler’s totient function φ(n) and show that

∑
d|n φ(d) = n.

(b) State Lagrange’s theorem concerning roots of polynomials mod p.

(c) Let p be a prime. Proving any results you need about primitive roots, show that
xm ≡ 1 (mod p) has exactly (m, p − 1) roots.

(d) Show that if p and 3p − 2 are both primes then N = p(3p − 2) is a Fermat
pseudoprime for precisely a third of all bases.

11H Topics in Analysis
Explain briefly how a positive irrational number x gives rise to a continued fraction

a0 +
1

a1 +
1

a2 +
1

a3 + . . .

with the aj non-negative integers and aj > 1 for j > 1.

Show that, if we write

(
pn pn−1

qn qn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an−1 1
1 0

)(
an 1
1 0

)
,

then
pn
qn

= a0 +
1

a1 +
1

a2 +
1

. . .

an−1 +
1

an

for n > 0.

Use the observation [which need not be proved] that x lies between pn/qn and
pn+1/qn+1 to show that

|pn/qn − x| 6 1/qnqn+1 .

Show that qn > Fn where Fn is the nth Fibonacci number (thus F0 = F1 = 1,
Fn+2 = Fn+1 + Fn), and conclude that

∣∣∣∣
pn
qn

− x

∣∣∣∣ 6
1

FnFn+1
.
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12K Statistical Modelling
For 31 days after the outbreak of the 2014 Ebola epidemic, the World Health

Organization recorded the number of new cases per day in 60 hospitals in West Africa.
Researchers are interested in modelling Yij, the number of new Ebola cases in hospital i
on day j > 2, as a function of several covariates:

• lab: a Boolean factor for whether the hospital has laboratory facilities,

• casesBefore: number of cases at the hospital on the previous day,

• urban: a Boolean factor indicating an urban area,

• country: a factor with three categories, Guinea, Liberia, and Sierra Leone,

• numDoctors: number of doctors at the hospital,

• tradBurials: a Boolean factor indicating whether traditional burials are common
in the region.

Consider the output of the following R code (with some lines omitted):

> fit.1 <- glm(newCases∼lab+casesBefore+urban+country+numDoctors+tradBurials,
+ data=ebola,family=poisson)

> summary(fit.1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.094731 0.050322 1.882 0.0598 .

labTRUE 0.011298 0.049498 0.228 0.8195

casesBefore 0.324744 0.007752 41.891 < 2e-16 ***

urbanTRUE -0.091554 0.088212 -1.038 0.2993

countryLiberia 0.088490 0.034119 2.594 0.0095 **

countrySierra Leone -0.197474 0.036969 -5.342 9.21e-08 ***

numDoctors -0.020819 0.004658 -4.470 7.83e-06 ***

tradBurialsTRUE 0.054296 0.031676 1.714 0.0865 .

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(a) Would you conclude based on the z-tests that an urban setting does not affect
the rate of infection?

(b) Explain how you would predict the total number of new cases that the researchers
will record in Sierra Leone on day 32.

We fit a new model which includes an interaction term, and compute a test statistic
using the code:

> fit.2 <- glm(newCases∼casesBefore+country+country:casesBefore+numDoctors,
+ data=ebola,family=poisson)

> fit.2$deviance - fit.1$deviance

[1] 3.016138

(c) What is the distribution of the statistic computed in the last line?

(d) Under what conditions is the deviance of each model approximately chi-squared?
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13B Mathematical Biology
The population densities of two types of cell are given by U(x, t) and V (x, t). The

system is described by the equations

∂U

∂t
= αU(1− U) + χ

∂

∂x

(
U

∂V

∂x

)
+D

∂2U

∂x2
,

∂V

∂t
= V (1− V )− β UV +

∂2V

∂x2
,

where α, β, χ and D are positive constants.

(a) Identify the terms which involve interaction between the cell types, and briefly
describe what each of these terms might represent.

(b) Consider the system without spatial dynamics. Find the condition on β for
there to be a non-trivial spatially homogeneous solution that is stable to spatially invariant
disturbances.

(c) Consider now the full spatial system, and consider small spatial perturbations
proportional to cos(kx) of the solution found in part (b). Show that for sufficiently large
χ (the precise threshold should be found) the spatially homogeneous solution is stable to
perturbations with either small or large wavenumber, but is unstable to perturbations at
some intermediate wavenumber.

14E Classical Dynamics
A particle of unit mass is attached to one end of a light, stiff rod of length ℓ. The

other end of the rod is held at a fixed position, such that the rod is free to swing in
any direction. Write down the Lagrangian for the system giving a clear definition of any
angular variables you introduce. [You should assume the acceleration g is constant.]

Find two independent constants of the motion.

The particle is projected horizontally with speed v from a point where the rod lies
at an angle α to the downward vertical, with 0 < α < π/2. In terms of ℓ, g and α, find
the critical speed vc such that the particle always remains at its initial height.

The particle is now projected horizontally with speed vc but from a point at angle
α + δα to the vertical, where δα/α ≪ 1. Show that the height of the particle oscillates,
and find the period of oscillation in terms of ℓ, g and α.
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15F Logic and Set Theory
(a) State Zorn’s Lemma, and use it to prove that every nontrivial distributive lattice

L admits a lattice homomorphism L → {0, 1}.
(b) Let S be a propositional theory in a given language L. Sketch the way in which

the equivalence classes of formulae of L, modulo S-provable equivalence, may be made into
a Boolean algebra. [Detailed proofs are not required, but you should define the equivalence
relation explicitly.]

(c) Hence show how the Completeness Theorem for propositional logic may be
deduced from the result of part (a).

16G Graph Theory

State Menger’s theorem in both the vertex form and the edge form. Explain briefly

how the edge form of Menger’s theorem may be deduced from the vertex form.

(a) Show that if G is 3-connected then G contains a cycle of even length.

(b) Let G be a connected graph with all degrees even. Prove that λ(G) is even.

[Hint: if S is a minimal set of edges whose removal disconnects G, let H be a component

of G−S and consider the degrees of the vertices of H in the graph G−S.] Give an example

to show that κ(G) can be odd.

17H Galois Theory
(a) Let f = t5 − 9t + 3 ∈ Q[t] and let L be the splitting field of f over Q. Show

that Gal(L/Q) is isomorphic to S5. Let α be a root of f . Show that Q ⊆ Q(α) is neither
a radical extension nor a solvable extension.

(b) Let f = t26 + 2 and let L be the splitting field of f over Q. Is it true that
Gal(L/Q) has an element of order 29? Justify your answer. Using reduction mod p
techniques, or otherwise, show that Gal(L/Q) has an element of order 3.

[Standard results from the course may be used provided they are clearly stated.]
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18I Representation Theory
Let N be a proper normal subgroup of a finite group G and let U be an irreducible

complex representation of G. Show that either U restricted to N is a sum of copies
of a single irreducible representation of N , or else U is induced from an irreducible
representation of some proper subgroup of G.

Recall that a p-group is a group whose order is a power of the prime number p.
Deduce, by induction on the order of the group, or otherwise, that every irreducible
complex representation of a p-group is induced from a 1-dimensional representation of
some subgroup.

[You may assume that a non-abelian p-group G has an abelian normal subgroup
which is not contained in the centre of G.]

19F Number Fields
Let K be a number field, and p a prime in Z. Explain what it means for p to be

inert, to split completely, and to be ramified in K.

(a) Show that if [K : Q] > 2 and OK = Z[α] for some α ∈ K, then 2 does not split
completely in K.

(b) Let K = Q(
√
d), with d 6= 0, 1 and d square-free. Determine, in terms of d,

whether p = 2 splits completely, is inert, or ramifies in K. Hence show that the primes
which ramify in K are exactly those which divide DK .

20G Algebraic Topology
Let T = S1 × S1 be the 2-dimensional torus, and let X be constructed from T by

removing a small open disc.

(a) Show that X is homotopy equivalent to S1 ∨ S1.

(b) Show that the universal cover of X is homotopy equivalent to a tree.

(c) Exhibit (finite) cell complexes X,Y , such that X and Y are not homotopy
equivalent but their universal covers X̃, Ỹ are.

[State carefully any results from the course that you use.]
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21I Linear Analysis
Let H be a complex Hilbert space.

(a) Let T : H → H be a bounded linear map. Show that the spectrum of T is a
subset of {λ ∈ C : |λ| 6 ‖T‖B(H)}.

(b) Let T : H → H be a bounded self-adjoint linear map. For λ, µ ∈ C, let
Eλ := {x ∈ H : Tx = λx} and Eµ := {x ∈ H : Tx = µx}. If λ 6= µ, show that Eλ ⊥ Eµ.

(c) Let T : H → H be a compact self-adjoint linear map. For λ 6= 0, show that
Eλ := {x ∈ H : Tx = λx} is finite-dimensional.

(d) Let H1 ⊂ H be a closed, proper, non-trivial subspace. Let P be the orthogonal
projection to H1.

(i) Prove that P is self-adjoint.

(ii) Determine the spectrum σ(P ) and the point spectrum σp(P ) of P .

(iii) Find a necessary and sufficient condition on H1 for P to be compact.

22H Algebraic Geometry
(a) Let C be a smooth projective curve, and let D be an effective divisor on C.

Explain how D defines a morphism φD from C to some projective space.

State a necessary and sufficient condition on D so that the pull-back of a hyperplane
via φD is an element of the linear system |D|.

State necessary and sufficient conditions for φD to be an isomorphism onto its image.

(b) Let C now have genus 2, and let K be an effective canonical divisor. Show that
the morphism φK is a morphism of degree 2 from C to P1.

Consider the divisor K + P1 + P2 for points Pi with P1 + P2 6∼ K. Show that the
linear system associated to this divisor induces a morphism φ from C to a quartic curve
in P2. Show furthermore that φ(P ) = φ(Q), with P 6= Q, if and only if {P,Q} = {P1, P2}.

[You may assume the Riemann–Roch theorem.]
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23G Differential Geometry
For S ⊂ R3 a smooth embedded surface, define what is meant by a geodesic curve

on S. Show that any geodesic curve γ(t) has constant speed |γ̇(t)|.
For any point P ∈ S, show that there is a parametrization φ : U → V of some open

neighbourhood V of P in S, with U ⊂ R2 having coordinates (u, v), for which the first
fundamental form is

du2 +G(u, v)dv2,

for some strictly positive smooth function G on U . State a formula for the Gaussian
curvature K of S in V in terms of G. If K ≡ 0 on V , show that G is a function of v only,
and that we may reparametrize so that the metric is locally of the form du2 + dw2, for
appropriate local coordinates (u,w).

[You may assume that for any P ∈ S and nonzero ξ ∈ TPS, there exists (for some
ǫ > 0) a unique geodesic γ : (−ǫ, ǫ) → S with γ(0) = P and γ̇(0) = ξ, and that such
geodesics depend smoothly on the initial conditions P and ξ.]

24J Probability and Measure
Give the definitions of the convolution f ∗g and of the Fourier transform f̂ of f , and

show that f̂ ∗ g = f̂ ĝ. State what it means for Fourier inversion to hold for a function f .

State the Plancherel identity and compute the L2 norm of the Fourier transform of
the function f(x) = e−x1[0,1].

Suppose that (fn), f are functions in L1 such that fn → f in L1 as n → ∞. Show
that f̂n → f̂ uniformly.

Give the definition of weak convergence, and state and prove the Central Limit
Theorem.
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25J Applied Probability
(a) Give the definition of a renewal process. Let (Nt)t>0 be a renewal process

associated with (ξi) with E ξ1 = 1/λ < ∞. Show that almost surely

Nt

t
→ λ as t → ∞.

(b) Give the definition of Kingman’s n-coalescent. Let τ be the first time that
all blocks have coalesced. Find an expression for E e−qτ . Let Ln be the total length
of the branches of the tree, i.e., if τi is the first time there are i lineages, then Ln =∑n

i=2 i(τi−1 − τi). Show that ELn ∼ 2 log n as n → ∞. Show also that Var(Ln) 6 C for
all n, where C is a positive constant, and that in probability

Ln

ELn
→ 1 as n → ∞.

26J Principles of Statistics
Consider a decision problem with parameter space Θ. Define the concepts of a

Bayes decision rule δπ and of a least favourable prior.

Suppose π is a prior distribution on Θ such that the Bayes risk of the Bayes
rule equals supθ∈Θ R(δπ, θ), where R(δ, θ) is the risk function associated to the decision
problem. Prove that δπ is least favourable.

Now consider a random variable X arising from the binomial distribution
Bin(n, θ), where θ ∈ Θ = [0, 1]. Construct a least favourable prior for the squared risk
R(δ, θ) = Eθ(δ(X) − θ)2. [You may use without proof the fact that the Bayes rule for
quadratic risk is given by the posterior mean.]
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27K Stochastic Financial Models
Let U be concave and strictly increasing, and let A be a vector space of random

variables. For every random variable Z let

F (Z) = sup
X∈A

E[U(X + Z)]

and suppose there exists a random variable XZ ∈ A such that

F (Z) = E[U(XZ + Z)].

For a random variable Y , let π(Y ) be such that F (Y − π(Y )) = F (0).

(a) Show that for every constant a we have π(Y + a) = π(Y ) + a, and that if
P(Y1 6 Y2) = 1, then π(Y1) 6 π(Y2). Hence show that if P(a 6 Y 6 b) = 1 for constants
a 6 b, then a 6 π(Y ) 6 b.

(b) Show that Y 7→ π(Y ) is concave, and hence show t 7→ π(tY )/t is decreasing for
t > 0.

(c) Assuming U is continuously differentiable, show that π(tY )/t converges as t → 0,
and that there exists a random variable X0 such that

lim
t→0

π(tY )

t
=

E[U ′(X0)Y ]

E[U ′(X0)]
.

28K Optimization and Control
State transversality conditions that can be used with Pontryagin’s maximum

principle and say when they are helpful.

Given T , it is desired to maximize c1x1(T ) + c2x2(T ), where

ẋ1 = u1(a1x1 + a2x2),

ẋ2 = u2(a1x1 + a2x2),

and u = (u1, u2) is a time-varying control such that u1 > 0, u2 > 0 and u1 + u2 = 1.
Suppose that x1(0) and x2(0) are positive, and that 0 < a2 < a1 and 0 < c1 < c2. Find
the optimal control at times close to T . Show that over [0, T ] the optimal control is
constant, or makes exactly one switch, the latter happening if and only if

c2e
a2T < c1 +

a1c2
a2

(
ea2T − 1

)
.
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29C Asymptotic Methods
Consider the equation

ǫ2
d2y

dx2
= Q(x)y , (1)

where ǫ > 0 is a small parameter and Q(x) is smooth. Search for solutions of the form

y(x) = exp

[
1

ǫ

(
S0(x) + ǫS1(x) + ǫ2S2(x) + · · ·

)]
,

and, by equating powers of ǫ, obtain a collection of equations for the {Sj(x)}∞j=0 which is
formally equivalent to (1). By solving explicitly for S0 and S1 derive the Liouville–Green
approximate solutions yLG(x) to (1).

For the case Q(x) = −V (x), where V (x) > V0 and V0 is a positive constant, consider
the eigenvalue problem

d2y

dx2
+ E V (x)y = 0 , y(0) = y(π) = 0 . (2)

Show that any eigenvalue E is necessarily positive. Solve the eigenvalue problem exactly
when V (x) = V0.

Obtain Liouville–Green approximate eigenfunctions yLGn (x) for (2) with E ≫ 1, and
give the corresponding Liouville–Green approximation to the eigenvalues ELG

n . Compare
your results to the exact eigenvalues and eigenfunctions in the case V (x) = V0, and
comment on this.
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30E Dynamical Systems
Consider the map defined on R by

F (x) =

{
3x x 6 1

2

3(1− x) x > 1
2

and let I be the open interval (0, 1). Explain what it means for F to have a horseshoe on
I by identifying the relevant intervals in the definition.

Let Λ = {x : Fn(x) ∈ I,∀n > 0}. Show that F (Λ) = Λ.

Find the sets Λ1 = {x : F (x) ∈ I} and Λ2 = {x : F 2(x) ∈ I}.
Consider the ternary (base-3) representation x = 0 · x1x2x3 . . . of numbers in I.

Show that

F (0 · x1x2x3 . . . ) =
{
x1 · x2x3x4 . . . x 6 1

2

σ(x1) · σ(x2)σ(x3)σ(x4) . . . x > 1
2

,

where the function σ(xi) of the ternary digits should be identified. What is the ternary
representation of the non-zero fixed point? What do the ternary representations of
elements of Λ have in common?

Show that F has sensitive dependence on initial conditions on Λ, that F is
topologically transitive on Λ, and that periodic points are dense in Λ. [Hint: You may
assume that Fn(0 · x1 . . . xn−10xn+1xn+2 . . . ) = 0 · xn+1xn+2 . . . for x ∈ Λ.]

Briefly state the relevance of this example to the relationship between Glendinning’s
and Devaney’s definitions of chaos.
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31A Principles of Quantum Mechanics
(a) Consider a quantum system with Hamiltonian H = H0 + V , where H0 is

independent of time. Define the interaction picture corresponding to this Hamiltonian
and derive an expression for the time derivative of an operator in the interaction picture,
assuming it is independent of time in the Schrödinger picture.

(b) The Pauli matrices σ = (σ1, σ2, σ3) satisfy

σi σj = δij + i ǫijk σk .

Explain briefly how these properties allow σ to be used to describe a quantum system
with spin 1

2 .

(c) A particle with spin 1
2 has position and momentum operators x̂ = (x̂1, x̂2, x̂3)

and p̂ = (p̂1, p̂2, p̂3). The unitary operator corresponding to a rotation through an angle θ
about an axis n is U = exp(−i θ n · J/~) where J is the total angular momentum. Check
this statement by considering the effect of an infinitesimal rotation on x̂, p̂ and σ.

(d) Suppose that the particle in part (c) has Hamiltonian H = H0 + V with

H0 =
1

2m
p̂2 + αL · σ and V = B σ3 ,

where L is the orbital angular momentum and α, B are constants. Show that all
components of J are independent of time in the interaction picture. Is this true in the
Heisenberg picture?

[ You may quote commutation relations of L with x̂ and p̂. ]
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32A Applications of Quantum Mechanics
Let Λ ⊂ R2 be a Bravais lattice. Define the dual lattice Λ∗ and show that

V (x) =
∑

q∈Λ∗

Vq exp(iq · x)

obeys V (x + l) = V (x) for all l ∈ Λ, where Vq are constants. Suppose V (x) is the
potential for a particle of mass m moving in a two-dimensional crystal that contains a very
large number of lattice sites of Λ and occupies an area A. Adopting periodic boundary
conditions, plane-wave states |k 〉 can be chosen such that

〈x |k 〉 =
1

A1/2
exp (ik · x) and 〈k |k′ 〉 = δkk′ .

The allowed wavevectors k are closely spaced and include all vectors in Λ∗. Find an
expression for the matrix element 〈k |V (x) |k′ 〉 in terms of the coefficients Vq. [You need
not discuss additional details of the boundary conditions.]

Now suppose that V (x) = λU(x), where λ ≪ 1 is a dimensionless constant.
Find the energy E(k) for a particle with wavevector k to order λ2 in non-degenerate
perturbation theory. Show that this expansion in λ breaks down on the Bragg lines in
k-space defined by the condition

k · q =
1

2
|q|2 for q ∈ Λ∗ ,

and explain briefly, without additional calculations, the significance of this for energy levels
in the crystal.

Consider the particular case in which Λ has primitive vectors

a1 = 2π
(
i+

1√
3
j
)
, a2 = 2π

2√
3
j ,

where i and j are orthogonal unit vectors. Determine the polygonal region in k-space
corresponding to the lowest allowed energy band.
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33C Statistical Physics
(a) State the first law of thermodynamics. Derive the Maxwell relation

(
∂S

∂V

)

T

=

(
∂p

∂T

)

V

.

(b) Consider a thermodynamic system whose energy E at constant temperature T
is volume independent, i.e. (

∂E

∂V

)

T

= 0 .

Show that this implies that the pressure has the form p(T, V ) = Tf(V ) for some function
f .

(c) For a photon gas inside a cavity of volume V , the energy E and pressure p are
given in terms of the energy density U , which depends only on the temperature T , by

E(T, V ) = U(T )V , p(T, V ) =
1

3
U(T ) .

Show that this implies U(T ) = σT 4 where σ is a constant. Show that the entropy is

S =
4

3
σT 3V ,

and calculate the energy E(S, V ) and free energy F (T, V ) in terms of their respective
fundamental variables.
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34E Electrodynamics
(a) A uniform, isotropic dielectric medium occupies the half-space z > 0. The region

z < 0 is in vacuum. State the boundary conditions that should be imposed on E, D, B
and H at z = 0.

(b) A linearly polarized electromagnetic plane wave, with magnetic field in the
(x, y)-plane, is incident on the dielectric from z < 0. The wavevector k makes an acute
angle θI to the normal ẑ. If the dielectric has frequency-independent relative permittivity
ǫr, show that the fraction of the incident power that is reflected is

R =

(
n cos θI − cos θT
n cos θI + cos θT

)2

,

where n =
√
ǫr, and the angle θT should be specified. [You should ignore any magnetic

response of the dielectric.]

(c) Now suppose that the dielectric moves at speed βc along the x-axis, the incident
angle θI = 0, and the magnetic field of the incident radiation is along the y-direction.
Show that the reflected radiation propagates normal to the surface z = 0, has the same
frequency as the incident radiation, and has magnetic field also along the y-direction.
[Hint: You may assume that under a standard Lorentz boost with speed v = βc along the
x-direction, the electric and magnetic field components transform as




E′
x

E′
y

E′
z


 =




Ex

γ(Ey − vBz)
γ(Ez + vBy)


 and




B′
x

B′
y

B′
z


 =




Bx

γ(By + vEz/c
2)

γ(Bz − vEy/c
2)


 ,

where γ = (1− β2)−1/2.]

(d) Show that the fraction of the incident power reflected from the moving dielectric
is

Rβ =

(
n/γ −

√
1− β2/n2

n/γ +
√

1− β2/n2

)2

.
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35D General Relativity
A spherically symmetric static spacetime has metric

ds2 = −
(
1 + r2/b2

)
dt2 +

dr2

1 + r2/b2
+ r2

(
dθ2 + sin2 θ dφ2

)

where −∞ < t < ∞, r > 0, b is a positive constant, and units such that c = 1 are used.

(a) Explain why a time-like geodesic may be assumed, without loss of generality, to
lie in the equatorial plane θ = π/2. For such a geodesic, show that the quantities

E = (1 + r2/b2) ṫ and h = r2φ̇

are constants of the motion, where a dot denotes differentiation with respect to proper
time, τ . Hence find a first-order differential equation for r(τ).

(b) Consider a massive particle fired from the origin, r = 0. Show that the particle
will return to the origin and find the proper time taken.

(c) Show that circular orbits r = a are possible for any a > 0 and determine whether
such orbits are stable. Show that on any such orbit a clock measures coordinate time.
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36B Fluid Dynamics II
A thin layer of fluid of viscosity µ occupies the gap between a rigid flat plate at y = 0

and a flexible no-slip boundary at y = h(x, t). The flat plate moves with constant velocity
Uex and the flexible boundary moves with no component of velocity in the x-direction.

State the two-dimensional lubrication equations governing the dynamics of the thin
layer of fluid. Given a pressure gradient dp/dx, solve for the velocity profile u(x, y, t) in
the fluid and calculate the flux q(x, t). Deduce that the pressure gradient satisfies

∂

∂x

(
h3

12µ

dp

dx

)
=

∂h

∂t
+

U

2

∂h

∂x
.

The shape of the flexible boundary is a periodic travelling wave, i.e. h(x, t) =
h(x− ct) and h(ξ + L) = h(ξ), where c and L are constants. There is no applied average
pressure gradient, so the pressure is also periodic with p(ξ + L) = p(ξ). Show that

dp

dx
= 6µ (U − 2c)

(
1

h2
− 〈h−2〉

〈h−3〉
1

h3

)
,

where 〈...〉 =
1

L

∫ L

0
... dx denotes the average over a period. Calculate the shear stress

σxy on the plate.

The speed U is such that there is no need to apply an external tangential force to
the plate in order to maintain its motion. Show that

U = 6c
〈h−2〉〈h−2〉 − 〈h−1〉〈h−3〉

3〈h−2〉〈h−2〉 − 4〈h−1〉〈h−3〉 .
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37D Waves
A duck swims at a constant velocity (−V, 0), where V > 0, on the surface of infinitely

deep water. Surface tension can be neglected, and the dispersion relation for the linear
surface water waves (relative to fluid at rest) is ω2 = g|k|. Show that the wavevector k of
a plane harmonic wave that is steady in the duck’s frame, i.e. of the form

Re
[
Aei(k1x

′+k2y)
]
,

where x′ = x+ V t and y are horizontal coordinates relative to the duck, satisfies

(k1, k2) =
g

V 2

√
p2 + 1 (1, p) ,

where k̂ = (cosφ, sin φ) and p = tan φ. [You may assume that |φ| < π/2.]

Assume that the wave pattern behind the duck can be regarded as a Fourier
superposition of such steady waves, i.e., the surface elevation η at (x′, y) = R(cos θ, sin θ)
has the form

η = Re

∫ ∞

−∞
A(p) eiλh(p;θ) dp for |θ| < 1

2π ,

where

λ =
gR

V 2
, h(p; θ) =

√
p2 + 1 (cos θ + p sin θ) .

Show that, in the limit λ → ∞ at fixed θ with 0 < θ < cot−1 (2
√
2),

η ∼
√

2π

λ
Re

{
A(p+)√
hpp(p+; θ)

ei
(
λh(p+;θ)+

1
4π
)

+
A(p−)√

−hpp(p−; θ)
ei
(
λh(p−;θ)−

1
4π
)}

,

where
p± = −1

4 cot θ ± 1
4

√
cot2 θ − 8

and hpp denotes ∂2h/∂p2. Briefly interpret this result in terms of what is seen.

Without doing detailed calculations, briefly explain what is seen as λ → ∞ at fixed
θ with cot−1 (2

√
2) < θ < π/2. Very briefly comment on the case θ = cot−1 (2

√
2).

[Hint: You may find the following results useful.

hp =
{
p cos θ + (2p2 + 1) sin θ

}
(p2 + 1)−1/2 ,

hpp = (cos θ + 4p sin θ) (p2 + 1)−1/2 −
{
p cos θ + (2p2 + 1) sin θ

}
p(p2 + 1)−3/2 .

]

Part II, Paper 4



23

38B Numerical Analysis
(a) Describe an implementation of the power method for determining the eigenvalue

of largest modulus and its associated eigenvector for a matrix that has a unique eigenvalue
of largest modulus.

Now let A be a real n × n matrix with distinct eigenvalues satisfying |λn| = |λn−1|
and |λn| > |λi|, i = 1, . . . , n − 2. The power method is applied to A, with an initial
condition x(0) =

∑n
i=1 ciwi such that cn−1cn 6= 0, where wi is the eigenvector associated

with λi. Show that the power method does not converge. Explain why x(k), x(k+1) and
x(k+2) become linearly dependent as k → ∞.

(b) Consider the following variant of the power method, called the two-stage power
method, applied to the matrix A of part (a):

0. Pick x(0) ∈ Rn satisfying ‖x(0)‖ = 1. Let 0 < ε ≪ 1. Set k = 0 and
x(1) = Ax(0).

1. Calculate x(k+2) = Ax(k+1) and calculate α, β that minimise

f(α, β) = ‖x(k+2)+αx(k+1)+βx(k)‖.

2. If f(α, β) 6 ε, solve λ2+αλ+β = 0 and let the roots be λ1 and λ2. They are
accepted as eigenvalues of A, and the corresponding eigenvectors are estimated
as x(k+1)−λ2x

(k) and x(k+1)−λ1x
(k).

3. Otherwise, divide x(k+2) and x(k+1) by the current value of ‖x(k+1)‖, increase
k by 1 and return to Step 1.

Explain the justification behind Step 2 of the algorithm.

(c) Let n = 3, and suppose that, for a large value of k, the two-stage power method
yields the vectors

yk = x(k) =




1
1
1


 , yk+1 = Ax(k) =




2
3
4


 , yk+2 = A2x(k) =




2
4
6


 .

Find two eigenvalues of A and the corresponding eigenvectors.

END OF PAPER

Part II, Paper 4


