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SECTION I

1I Number Theory
Define the Riemann zeta function ζ(s) for Re(s) > 1. State and prove the alternative

formula for ζ(s) as an Euler product. Hence or otherwise show that ζ(s) 6= 0 for Re(s) > 1.

2H Topics in Analysis
By considering the function Rn+1 → R defined by

R(a0, . . . , an) = sup
t∈[−1,1]

∣∣∣
n∑

j=0

ajt
j
∣∣∣,

or otherwise, show that there exist Kn > 0 and δn > 0 such that

Kn

n∑

j=0

|aj | > sup
t∈[−1,1]

∣∣∣
n∑

j=0

ajt
j
∣∣∣ > δn

n∑

j=0

|aj |

for all aj ∈ R, 0 6 j 6 n.

Show, quoting carefully any theorems you use, that we must have δn → 0 as n→ ∞.

3G Coding and Cryptography
Find the average length of an optimum decipherable binary code for a source that

emits five words with probabilities

0.25, 0.15, 0.15, 0.2, 0.25.

Show that, if a source emits N words (with N > 2), and if l1, . . . , lN are the lengths of
the codewords in an optimum encoding over the binary alphabet, then

l1 + · · ·+ lN 6
1

2
(N2 +N − 2).

[You may assume that an optimum encoding can be given by a Huffman encoding.]
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4F Automata and Formal Languages
State the pumping lemma for context-free languages (CFLs). Which of the following

are CFLs? Justify your answers.

(i) {a2nb3n | n > 3}.

(ii) {a2nb3nc5n | n > 0}.

(iii) {ap | p is a prime}.

Let L,M be CFLs. Show that L ∪M is also a CFL.

5K Statistical Modelling
The body mass index (BMI) of your closest friend is a good predictor of your own

BMI. A scientist applies polynomial regression to understand the relationship between
these two variables among 200 students in a sixth form college. The R commands

> fit.1 <- lm(BMI ∼ poly(friendBMI,2,raw=T))

> fit.2 <- lm(BMI ∼ poly(friendBMI,3,raw=T))

fit the models Y = β0+β1X+β2X
2+ε and Y = β0+β1X+β2X

2+β3X
3+ε, respectively,

with ε ∼ N(0, σ2) in each case.

Setting the parameters raw to FALSE:

> fit.3 <- lm(BMI ∼ poly(friendBMI,2,raw=F))

> fit.4 <- lm(BMI ∼ poly(friendBMI,3,raw=F))

fits the models Y = β0 + β1P1(X) + β2P2(X) + ε and Y = β0 + β1P1(X) + β2P2(X) +
β3P3(X)+ε, with ε ∼ N(0, σ2). The function Pi is a polynomial of degree i. Furthermore,
the design matrix output by the function poly with raw=F satisfies:

> t(poly(friendBMI,3,raw=F))%*%poly(a,3,raw=F)

1 2 3

1 1.000000e+00 1.288032e-16 3.187554e-17

2 1.288032e-16 1.000000e+00 -6.201636e-17

3 3.187554e-17 -6.201636e-17 1.000000e+00

How does the variance of β̂ differ in the models fit.2 and fit.4? What about the
variance of the fitted values Ŷ = Xβ̂? Finally, consider the output of the commands

> anova(fit.1,fit.2)

> anova(fit.3,fit.4)

Define the test statistic computed by this function and specify its distribution. Which
command yields a higher statistic?
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6B Mathematical Biology
Consider an epidemic model where susceptibles are vaccinated at per capita rate v,

but immunity (from infection or vaccination) is lost at per capita rate b. The system is
given by

dS

dt
= −rIS + b(N − I − S) − vS ,

dI

dt
= rIS − aI ,

where S(t) are the susceptibles, I(t) are the infecteds, N is the total population size and
all parameters are positive. The basic reproduction ratio R0 = rN/a satisfies R0 > 1.

Find the critical vaccination rate vc, in terms of b and R0, such that the system has
an equilibrium with the disease present if v < vc. Show that this equilibrium is stable
when it exists.

Find the long-term outcome for S and I if v > vc.

7A Further Complex Methods
Evaluate the integral

f(p) = P
∫ ∞

−∞
dx

eipx

x4 − 1
,

where p is a real number, for (i) p > 0 and (ii) p < 0.

8E Classical Dynamics
Consider a one-parameter family of transformations qi(t) 7→ Qi(s, t) such that

Qi(0, t) = qi(t) for all time t, and

∂

∂s
L(Qi, Q̇i, t) = 0 ,

where L is a Lagrangian and a dot denotes differentiation with respect to t. State and
prove Noether’s theorem.

Consider the Lagrangian

L =
1

2
( ẋ2 + ẏ2 + ż2 ) − V (x+y, y+z ) ,

where the potential V is a function of two variables. Find a continuous symmetry of this
Lagrangian and construct the corresponding conserved quantity. Use the Euler–Lagrange
equations to explicitly verify that the function you have constructed is independent of t.

Part II, Paper 1
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9C Cosmology
The expansion scale factor, a(t), for an isotropic and spatially homogeneous universe

containing material with pressure p and mass density ρ obeys the equations

ρ̇ + 3(ρ+ p)
ȧ

a
= 0 ,

( ȧ
a

)2
=

8πGρ

3
− k

a2
+

Λ

3
,

where the speed of light is set equal to unity, G is Newton’s constant, k is a constant equal
to 0 or ±1, and Λ is the cosmological constant. Explain briefly the interpretation of these
equations.

Show that these equations imply

ä

a
= −4πG(ρ+ 3p)

3
+

Λ

3
.

Hence show that a static solution with constant a = as exists when p = 0 if

Λ = 4πGρ =
k

a2s
.

What must the value of k be, if the density ρ is non-zero?
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SECTION II

10G Coding and Cryptography
What does it mean to say a binary code C has length n, size m and minimum

distance d?

Let A(n, d) be the largest value of m for which there exists an [n,m, d]-code. Prove
that

2n

V (n, d− 1)
6 A(n, d) 6

2n

V (n, ⌊(d− 1)/2⌋) ,

where

V (n, r) =

r∑

j=0

(
n

j

)
.

Another bound for A(n, d) is the Singleton bound given by

A(n, d) 6 2n−d+1.

Prove the Singleton bound and give an example of a linear code of length n > 1 that
satisfies A(n, d) = 2n−d+1.

11F Automata and Formal Languages
(a) Define a recursive set and a recursively enumerable (r.e.) set. Prove that E ⊆ N

is recursive if and only if both E and N \ E are r.e.

(b) Define the halting set K. Prove that K is r.e. but not recursive.

(c) Let E1, E2, . . . , En be r.e. sets. Prove that
⋃n

i=1Ei and
⋂n

i=1Ei are r.e. Show
by an example that the union of infinitely many r.e. sets need not be r.e.

(d) Let E be a recursive set and f : N → N a (total) recursive function. Prove that
the set {f(n) | n ∈ E} is r.e. Is it necessarily recursive? Justify your answer.

[Any use of Church’s thesis in your answer should be explicitly stated.]
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12K Statistical Modelling
(a) Let Y be an n-vector of responses from the linear model Y = Xβ + ε, with

β ∈ Rp. The internally studentized residual is defined by

si =
Yi − x⊺i β̂

σ̃
√
1− pi

,

where β̂ is the least squares estimate, pi is the leverage of sample i, and

σ̃2 =
‖Y −Xβ̂‖22
(n− p)

.

Prove that the joint distribution of s = (s1, . . . , sn)
⊺ is the same in the following two

models: (i) ε ∼ N(0, σI), and (ii) ε | σ ∼ N(0, σI), with 1/σ ∼ χ2
ν (in this model, ε1, . . . , εn

are identically tν-distributed). [Hint: A random vector Z is spherically symmetric if for

any orthogonal matrix H, HZ
d
= Z. If Z is spherically symmetric and a.s. nonzero, then

Z/‖Z‖2 is a uniform point on the sphere; in addition, any orthogonal projection of Z is
also spherically symmetric. A standard normal vector is spherically symmetric.]

(b) A social scientist regresses the income of 120 Cambridge graduates onto 20
answers from a questionnaire given to the participants in their first year. She notices one
questionnaire with very unusual answers, which she suspects was due to miscoding. The
sample has a leverage of 0.8. To check whether this sample is an outlier, she computes its
externally studentized residual,

ti =
Yi − x⊺i β̂

σ̃(i)
√
1− pi

= 4.57,

where σ̃(i) is estimated from a fit of all samples except the one in question, (xi, Yi). Is this
a high leverage point? Can she conclude this sample is an outlier at a significance level of
5%?

(c) After examining the following plot of residuals against the response, the
investigator calculates the externally studentized residual of the participant denoted by
the black dot, which is 2.33. Can she conclude this sample is an outlier with a significance
level of 5%?
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13A Further Complex Methods
(a) Legendre’s equation for w(z) is

(z2 − 1)w′′ + 2zw′ − ℓ(ℓ+ 1)w = 0 , where ℓ = 0, 1, 2, . . . .

Let C be a closed contour. Show by direct substitution that for z within C
∫

C
dt

(t2 − 1)ℓ

(t− z)ℓ+1

is a non-trivial solution of Legendre’s equation.

(b) Now consider

Qν(z) =
1

4i sin νπ

∫

C′

dt
(t2 − 1)ν

(t− z)ν+1

for real ν > −1 and ν 6= 0, 1, 2, . . . . The closed contour C′ is defined to start at the
origin, wind around t = 1 in a counter-clockwise direction, then wind around t = −1 in
a clockwise direction, then return to the origin, without encircling the point z. Assuming
that z does not lie on the real interval −1 6 x 6 1, show by deforming C′ onto this interval
that functions Qℓ(z) may be defined as limits of Qν(z) with ν → ℓ = 0, 1, 2, . . . .

Find an explicit expression for Q0(z) and verify that it satisfies Legendre’s equation
with ℓ = 0.
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14C Cosmology
The distribution function f(x,p, t) gives the number of particles in the universe with

position in (x,x + δx) and momentum in (p,p+ δp) at time t. It satisfies the boundary
condition that f → 0 as |x| → ∞ and as |p| → ∞. Its evolution obeys the Boltzmann
equation

∂f

∂t
+
∂f

∂p
· dp
dt

+
∂f

∂x
· dx
dt

=

[
df

dt

]

col

,

where the collision term
[
df
dt

]
col

describes any particle production and annihilation that
occurs.

The universe expands isotropically and homogeneously with expansion scale factor
a(t), so the momenta evolve isotropically with magnitude p ∝ a−1. Show that the
Boltzmann equation simplifies to

∂f

∂t
− ȧ

a
p · ∂f

∂p
=

[
df

dt

]

col

. (∗)

The number densities n of particles and n̄ of antiparticles are defined in terms of
their distribution functions f and f̄ , and momenta p and p̄, by

n =

∫ ∞

0
f 4πp2 dp and n̄ =

∫ ∞

0
f̄ 4πp̄2 dp̄ ,

and the collision term may be assumed to be of the form

[
df

dt

]

col

= −〈σv〉
∫ ∞

0
f̄ f 4πp̄2 dp̄+R

where 〈σv〉 determines the annihilation cross-section of particles by antiparticles and R is
the production rate of particles.

By integrating equation (∗) with respect to the momentum p and assuming that
〈σv〉 is a constant, show that

dn

dt
+ 3

ȧ

a
n = −〈σv〉nn̄+Q ,

where Q =
∫∞
0 R 4πp2 dp. Assuming the same production rate R for antiparticles, write

down the corresponding equation satisfied by n̄ and show that

(n − n̄)a3 = constant .
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15F Logic and Set Theory
Which of the following statements are true? Justify your answers.

(a) Every ordinal is of the form α+ n, where α is a limit ordinal and n ∈ ω.
(b) Every ordinal is of the form ωα.m+ n, where α is an ordinal and m,n ∈ ω.

(c) If α = ω.α, then α = ωω.β for some β.

(d) If α = ωα, then α is uncountable.

(e) If α > 1 and α = αω, then α is uncountable.

[Standard laws of ordinal arithmetic may be assumed, but if you use the Division
Algorithm you should prove it.]

16G Graph Theory

(a) Show that if G is a planar graph then χ(G) 6 5. [You may assume Euler’s

formula, provided that you state it precisely.]

(b) (i) Prove that if G is a triangle-free planar graph then χ(G) 6 4.

(ii) Prove that if G is a planar graph of girth at least 6 then χ(G) 6 3.

(iii) Does there exist a constant g such that, if G is a planar graph of girth at least

g, then χ(G) 6 2? Justify your answer.

17H Galois Theory
(a) Prove that if K is a field and f ∈ K[t], then there exists a splitting field L of f

over K. [You do not need to show uniqueness of L.]

(b) Let K1 and K2 be algebraically closed fields of the same characteristic. Show
that either K1 is isomorphic to a subfield of K2 or K2 is isomorphic to a subfield of K1.
[For subfields Fi of K1 and field homomorphisms ψi : Fi → K2 with i = 1, 2, we say
(F1, ψ1) 6 (F2, ψ2) if F1 is a subfield of F2 and ψ2|F1

= ψ1. You may assume the existence
of a maximal pair (F,ψ) with respect to the partial order just defined.]

(c) Give an example of a finite field extension K ⊆ L such that there exist
α, β ∈ L \K where α is separable over K but β is not separable over K.

Part II, Paper 1
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18I Representation Theory
Let N be a normal subgroup of the finite group G. Explain how a (complex)

representation of G/N gives rise to an associated representation of G, and briefly describe
which representations of G arise this way.

Let G be the group of order 54 which is given by

G = 〈a, b : a9 = b6 = 1, b−1ab = a2〉.

Find the conjugacy classes of G. By observing that N1 = 〈a〉 and N2 = 〈a3, b2〉 are normal
in G, or otherwise, construct the character table of G.

19F Number Fields
(a) Let f(X) ∈ Q[X] be an irreducible polynomial of degree n, θ ∈ C a root of f ,

and K = Q(θ). Show that disc(f) = ±NK/Q(f
′(θ)).

(b) Now suppose f(X) = Xn + aX + b. Write down the matrix representing
multiplication by f ′(θ) with respect to the basis 1, θ, . . . , θn−1 for K. Hence show that

disc(f) = ±
(
(1− n)n−1an + nnbn−1

)
.

(c) Suppose f(X) = X4 + X + 1. Determine OK . [You may quote any standard
result, as long as you state it clearly.]

20G Algebraic Topology
Let T = S1×S1 be the 2-dimensional torus. Let α : S1 → T be the inclusion of the

coordinate circle S1 × {1}, and let X be the result of attaching a 2-cell along α.

(a) Write down a presentation for the fundamental group of X (with respect to
some basepoint), and identify it with a well-known group.

(b) Compute the simplicial homology of any triangulation of X.

(c) Show that X is not homotopy equivalent to any compact surface.

21I Linear Analysis
(a) State the closed graph theorem.

(b) Prove the closed graph theorem assuming the inverse mapping theorem.

(c) Let X, Y , Z be Banach spaces and T : X → Y , S : Y → Z be linear maps.
Suppose that S ◦ T is bounded and S is both bounded and injective. Show that T is
bounded.
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22H Riemann Surfaces
(a) Let f : R → S be a non-constant holomorphic map between Riemann surfaces.

Prove that f takes open sets of R to open sets of S.

(b) Let U be a simply connected domain strictly contained in C. Is there a conformal
equivalence between U and C? Justify your answer.

(c) Let R be a compact Riemann surface and A ⊂ R a discrete subset. Given a
non-constant holomorphic function f : R \ A→ C, show that f(R \ A) is dense in C.

23H Algebraic Geometry
Let k be an algebraically closed field.

(a) Let X and Y be affine varieties defined over k. Given a map f : X → Y , define
what it means for f to be a morphism of affine varieties.

(b) Let f : A1 → A3 be the map given by

f(t) = (t, t2, t3).

Show that f is a morphism. Show that the image of f is a closed subvariety of A3 and
determine its ideal.

(c) Let g : P1 × P1 × P1 → P7 be the map given by

g
(
(s1, t1), (s2, t2), (s3, t3)

)
= (s1s2s3, s1s2t3, s1t2s3, s1t2t3, t1s2s3, t1s2t3, t1t2s3, t1t2t3).

Show that the image of g is a closed subvariety of P7.

24G Differential Geometry
Define what is meant by the regular values and critical values of a smooth map

f : X → Y of manifolds. State the Preimage Theorem and Sard’s Theorem.

Suppose now that dimX = dimY . If X is compact, prove that the set of regular
values is open in Y , but show that this may not be the case if X is non-compact.

Construct an example with dimX = dimY and X compact for which the set of
critical values is not a submanifold of Y .

[Hint: You may find it helpful to consider the case X = S1 and Y = R. Properties
of bump functions and the function e−1/x2

may be assumed in this question.]
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25J Probability and Measure
Throughout this question (E, E , µ) is a measure space and (fn), f are measurable

functions.

(a) Give the definitions of pointwise convergence, pointwise a.e. convergence, and
convergence in measure.

(b) If fn → f pointwise a.e., does fn → f in measure? Give a proof or a
counterexample.

(c) If fn → f in measure, does fn → f pointwise a.e.? Give a proof or a
counterexample.

(d) Now suppose that (E, E) = ([0, 1],B([0, 1])) and that µ is Lebesgue measure on
[0, 1]. Suppose (fn) is a sequence of Borel measurable functions on [0, 1] which converges
pointwise a.e. to f .

(i) For each n, k let En,k =
⋃

m>n{x : |fm(x) − f(x)| > 1/k}. Show that
limn→∞ µ(En,k) = 0 for each k ∈ N.

(ii) Show that for every ǫ > 0 there exists a set A with µ(A) < ǫ so that fn → f
uniformly on [0, 1] \ A.

(iii) Does (ii) hold with [0, 1] replaced by R? Give a proof or a counterexample.

26J Applied Probability
(a) Define a continuous-time Markov chain X with infinitesimal generator Q and

jump chain Y .

(b) Prove that if a state x is transient for Y , then it is transient for X.

(c) Prove or provide a counterexample to the following: if x is positive recurrent for
X, then it is positive recurrent for Y .

(d) Consider the continuous-time Markov chain (Xt)t>0 on Z with non-zero transi-
tion rates given by

q(i, i + 1) = 2 · 3|i|, q(i, i) = −3|i|+1 and q(i, i− 1) = 3|i|.

Determine whether X is transient or recurrent. Let T0 = inf{t > J1 : Xt = 0}, where J1
is the first jump time. Does X have an invariant distribution? Justify your answer.
Calculate E0[T0].

(e) Let X be a continuous-time random walk on Zd with q(x) = ‖x‖α ∧ 1 and
q(x, y) = q(x)/(2d) for all y ∈ Zd with ‖y − x‖ = 1. Determine for which values of α the
walk is transient and for which it is recurrent. In the recurrent case, determine the range
of α for which it is also positive recurrent. [Here ‖x‖ denotes the Euclidean norm of x.]
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27J Principles of Statistics
Derive the maximum likelihood estimator θ̂n based on independent observations

X1, . . . ,Xn that are identically distributed as N(θ, 1), where the unknown parameter θ
lies in the parameter space Θ = R. Find the limiting distribution of

√
n(θ̂n−θ) as n→ ∞.

Now define
θ̃n = θ̂n whenever |θ̂n| > n−1/4,

= 0 otherwise,

and find the limiting distribution of
√
n(θ̃n − θ) as n→ ∞.

Calculate
lim
n→∞

sup
θ∈Θ

nEθ(Tn − θ)2

for the choices Tn = θ̂n and Tn = θ̃n. Based on the above findings, which estimator Tn of
θ would you prefer? Explain your answer.

[Throughout, you may use standard facts of stochastic convergence, such as the
central limit theorem, provided they are clearly stated.]

28K Stochastic Financial Models
(a) What is a Brownian motion?

(b) State the Brownian reflection principle. State the Cameron–Martin theorem for
Brownian motion with constant drift.

(c) Let (Wt)t>0 be a Brownian motion. Show that

P

(
max
06s6t

(Ws + as) 6 b

)
= Φ

(
b− at√

t

)
− e2abΦ

(−b− at√
t

)
,

where Φ is the standard normal distribution function.

(d) Find

P

(
max
u>t

(Wu + au) 6 b

)
.
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29E Dynamical Systems
Consider the dynamical system

ẋ = x(y − a) ,

ẏ = 1− x− y2 ,

where −1 < a < 1. Find and classify the fixed points of the system.

Use Dulac’s criterion with a weighting function of the form φ = xp and a suitable
choice of p to show that there are no periodic orbits for a 6= 0. For the case a = 0 use
the same weighting function to find a function V (x, y) which is constant on trajectories.
[Hint: φẋ is Hamiltonian.]

Calculate the stable manifold at (0,−1) correct to quadratic order in x.

Sketch the phase plane for the cases (i) a = 0 and (ii) a = 1
2 .

30D Integrable Systems
What does it mean for an evolution equation ut = K(x, u, ux, . . .) to be in

Hamiltonian form? Define the associated Poisson bracket.

An evolution equation ut = K(x, u, ux, . . .) is said to be bi-Hamiltonian if it can be
written in Hamiltonian form in two distinct ways, i.e.

K = J δH0 = E δH1

for Hamiltonian operators J , E and functionals H0,H1. By considering the sequence
{Hm}m>0 defined by the recurrence relation

E δHm+1 = J δHm , (∗)

show that bi-Hamiltonian systems possess infinitely many first integrals in involution.
[You may assume that (∗) can always be solved for Hm+1, given Hm.]

The Harry Dym equation for the function u = u(x, t) is

ut =
∂3

∂x3

(
u−1/2

)
.

This equation can be written in Hamiltonian form ut = EδH1 with

E = 2u
∂

∂x
+ ux , H1[u] =

1

8

∫
u−5/2u2x dx .

Show that the Harry Dym equation possesses infinitely many first integrals in involution.
[You need not verify the Jacobi identity if your argument involves a Hamiltonian operator.]
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31A Principles of Quantum Mechanics
A particle in one dimension has position and momentum operators x̂ and p̂ whose

eigenstates obey

〈x|x′〉 = δ(x−x′) , 〈p|p′〉 = δ(p−p′) , 〈x|p〉 = (2π~)−1/2eixp/~ .

For a state |ψ〉, define the position-space and momentum-space wavefunctions ψ(x) and
ψ̃(p) and show how each of these can be expressed in terms of the other.

Write down the translation operator U(α) and check that your expression is
consistent with the property U(α)|x〉 = |x+ α〉. For a state |ψ〉, relate the position-space
and momentum-space wavefunctions for U(α)|ψ〉 to ψ(x) and ψ̃(p) respectively.

Now consider a harmonic oscillator with mass m, frequency ω, and annihilation and
creation operators

a =
(mω
2~

)1/2(
x̂+

i

mω
p̂
)
, a† =

(mω
2~

)1/2(
x̂− i

mω
p̂
)
.

Let ψn(x) and ψ̃n(p) be the wavefunctions corresponding to the normalised energy
eigenstates |n〉, where n = 0, 1, 2, . . . .

(i) Express ψ0(x− α) explicitly in terms of the wavefunctions ψn(x).

(ii) Given that ψ̃n(p) = fn(u) ψ̃0(p), where the fn are polynomials and u = (2/~mω)1/2p,
show that

e−iγu = e−γ2/2
∞∑

n=0

γn√
n!
fn(u) for any real γ .

[ You may quote standard results for a harmonic oscillator. You may also use, without

proof, eA+B = eAeBe−
1
2 [A,B] for operators A and B which each commute with [A,B] . ]
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32A Applications of Quantum Mechanics
A particle in one dimension of mass m and energy E = ~2k2/2m (k > 0) is incident

from x = −∞ on a potential V (x) with V (x) → 0 as x → −∞ and V (x) = ∞ for x > 0.
The relevant solution of the time-independent Schrödinger equation has the asymptotic
form

ψ(x) ∼ exp(ikx) + r(k) exp(−ikx) , x→ −∞ .

Explain briefly why a pole in the reflection amplitude r(k) at k = iκ with κ > 0 corresponds
to the existence of a stable bound state in this potential. Indicate why a pole in r(k) just
below the real k-axis, at k = k0− iρ with k0 ≫ ρ > 0, corresponds to a quasi-stable bound
state. Find an approximate expression for the lifetime τ of such a quasi-stable state.

Now suppose that

V (x) =

{
(~2U/2m) δ(x + a) for x < 0

∞ for x > 0

where U > 0 and a > 0 are constants. Compute the reflection amplitude r(k) in this case
and deduce that there are quasi-stable bound states if U is large. Give expressions for the
wavefunctions and energies of these states and compute their lifetimes, working to leading
non-vanishing order in 1/U for each expression.

[ You may assume ψ = 0 for x > 0 and limǫ→0+{ψ′(−a+ǫ)− ψ′(−a−ǫ) } = U ψ(−a) . ]

33C Statistical Physics

Consider an ideal quantum gas with one-particle states |i〉 of energy ǫi. Let p
(ni)
i

denote the probability that state |i〉 is occupied by ni particles. Here, ni can take the
values 0 or 1 for fermions and any non-negative integer for bosons. The entropy of the gas
is given by

S = −kB
∑

i

∑

ni

p
(ni)
i ln p

(ni)
i .

(a) Write down the constraints that must be satisfied by the probabilities if the
average energy 〈E〉 and average particle number 〈N〉 are kept at fixed values.

Show that if S is maximised then

p
(ni)
i =

1

Zi
e−(βǫi+γ)ni ,

where β and γ are Lagrange multipliers. What is Zi?

(b) Insert these probabilities p
(ni)
i into the expression for S, and combine the result

with the first law of thermodynamics to find the meaning of β and γ.

(c) Calculate the average occupation number 〈ni〉 =
∑

ni
nip

(ni)
i for a gas of fermions.
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34E Electrodynamics
A point particle of charge q and mass m moves in an electromagnetic field with

4-vector potential Aµ(x), where x
µ is position in spacetime. Consider the action

S = −mc
∫ (

−ηµν
dxµ

dλ

dxν

dλ

)1/2
dλ + q

∫
Aµ

dxµ

dλ
dλ , (∗)

where λ is an arbitrary parameter along the particle’s worldline and ηµν = diag(−1,+1,+1,+1)
is the Minkowski metric.

(a) By varying the action with respect to xµ(λ), with fixed endpoints, obtain the
equation of motion

m
duµ

dτ
= qFµ

νu
ν ,

where τ is the proper time, uµ = dxµ/dτ is the velocity 4-vector, and Fµν = ∂µAν − ∂νAµ

is the field strength tensor.

(b) This particle moves in the field generated by a second point charge Q that is
held at rest at the origin of some inertial frame. By choosing a suitable expression for Aµ

and expressing the first particle’s spatial position in spherical polar coordinates (r, θ, φ),
show from the action (∗) that

E ≡ ṫ− Γ/r ,

ℓc ≡ r2φ̇ sin2 θ

are constants, where Γ = −qQ/(4πǫ0mc2) and overdots denote differentiation with respect
to τ .

(c) Show that when the motion is in the plane θ = π/2,

E +
Γ

r
=

√
1 +

ṙ2

c2
+
ℓ2

r2
.

Hence show that the particle’s orbit is bounded if E < 1, and that the particle can reach
the origin in finite proper time if Γ > |ℓ|.
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35D General Relativity
Consider a family of geodesics with s an affine parameter and V a the tangent vector

on each curve. The equation of geodesic deviation for a vector field W a is

D2W a

Ds2
= Ra

bcdV
bV cW d , (∗)

where
D

Ds
denotes the directional covariant derivative V b∇b.

(i) Show that if

V b ∂W
a

∂xb
= W b ∂V

a

∂xb

then W a satisfies (∗).

(ii) Show that V a and sV a satisfy (∗).

(iii) Show that if W a is a Killing vector field, meaning that ∇bWa + ∇aWb = 0, then
W a satisfies (∗).

(iv) Show that if W a = wUa satisfies (∗), where w is a scalar field and Ua is a time-like
unit vector field, then

d2w

ds2
= (Ω2 −K)w ,

where Ω2 = −DU
a

Ds

DUa

Ds
and K = Rabcd U

aV bV cUd .

[ You may use: ∇b∇cX
a −∇c∇bX

a = Ra
dbcX

d for any vector field Xa. ]

36B Fluid Dynamics II
State the vorticity equation and interpret the meaning of each term.

A planar vortex sheet is diffusing in the presence of a perpendicular straining flow.
The flow is everywhere of the form u = (U(y, t),−Ey,Ez), where U → ±U0 as y → ±∞,
and U0 and E > 0 are constants. Show that the vorticity has the form ω = ω(y, t)ez , and
obtain a scalar equation describing the evolution of ω.

Explain physically why the solution approaches a steady state in which the vorticity
is concentrated near y = 0. Use scaling to estimate the thickness δ of the steady vorticity
layer as a function of E and the kinematic viscosity ν.

Determine the steady vorticity profile, ω(y), and the steady velocity profile, U(y).
[
Hint: erf(x) =

2√
π

∫ x

0
e−u2

du.
]

State, with a brief physical justification, why you might expect this steady flow to
be unstable to long-wavelength perturbations, defining what you mean by long.
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37D Waves
Write down the linearised equations governing motion of an inviscid compressible

fluid at uniform entropy. Assuming that the velocity is irrotational, show that it may be
derived from a velocity potential φ(x, t) satisfying the wave equation

∂2φ

∂t2
= c20∇2φ ,

and identify the wave speed c0. Obtain from these linearised equations the energy-
conservation equation

∂E

∂t
+∇ · I = 0 ,

and give expressions for the acoustic-energy density E and the acoustic-energy flux I in
terms of φ.

Such a fluid occupies a semi-infinite waveguide x > 0 of square cross-section 0<y<a,
0<z<a bounded by rigid walls. An impenetrable membrane closing the end x = 0 makes
prescribed small displacements to

x = X(y, z, t) ≡ Re
[
e−iωtA(y, z)

]
,

where ω > 0 and |A| ≪ a, c0/ω. Show that the velocity potential is given by

φ = Re

[
e−iωt

∞∑

m=0

∞∑

n=0

cos
(mπy

a

)
cos

(nπz
a

)
fmn(x)

]
,

where the functions fmn(x), including their amplitudes, are to be determined, with the
sign of any square roots specified clearly.

If 0 < ω < πc0/a, what is the asymptotic behaviour of φ as x → +∞? Using this
behaviour and the energy-conservation equation averaged over both time and the cross-
section, or otherwise, determine the double-averaged energy flux along the waveguide,

〈
Ix

〉
(x) ≡ ω

2πa2

∫ 2π/ω

0

∫ a

0

∫ a

0
Ix(x, y, z, t) dy dz dt ,

explaining why this is independent of x.
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38B Numerical Analysis
(a) Consider the periodic function

f(x) = 5 + 2 cos
(
2πx− π

2

)
+ 3cos(4πx)

on the interval [0, 1]. The N -point discrete Fourier transform of f is defined by

FN (n) =
1

N

N−1∑

k=0

fk ω
−nk
N , n = 0, 1, . . . , N − 1, (∗)

where ωN = e2πi/N and fk = f(k/N). Compute F4(n), n = 0, . . . , 3, using the Fast Fourier
Transform (FFT). Compare your result with what you get by computing F4(n) directly
from (∗). Carefully explain all your computations.

(b) Now let f be any analytic function on R that is periodic with period 1. The
continuous Fourier transform of f is defined by

f̂n =

∫ 1

0
f(τ) e−2πinτ dτ , n ∈ Z .

Use integration by parts to show that the Fourier coefficients f̂n decay spectrally.

Explain what it means for the discrete Fourier transform of f to approximate the
continuous Fourier transform with spectral accuracy. Prove that it does so.

What can you say about the behaviour of FN (N − n) as N → ∞ for fixed n?

END OF PAPER
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