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SECTION I

1F Linear Algebra
For which real numbers x do the vectors

(x, 1, 1, 1), (1, x, 1, 1), (1, 1, x, 1), (1, 1, 1, x),

not form a basis of R4? For each such value of x, what is the dimension of the subspace
of R4 that they span? For each such value of x, provide a basis for the spanned subspace,
and extend this basis to a basis of R4.

2E Groups, Rings and Modules
Give the statement and the proof of Eisenstein’s criterion. Use this criterion to

show xp−1 + xp−2 + · · ·+ 1 is irreducible in Q[x] where p is a prime.

3G Analysis II
(a) What does it mean to say that a mapping f : X → X from a metric space to

itself is a contraction?

(b) State carefully the contraction mapping theorem.

(c) Let (a1, a2, a3) ∈ R3. By considering the metric space (R3, d) with

d(x, y) =

3
∑

i=1

|xi − yi| ,

or otherwise, show that there exists a unique solution (x1, x2, x3) ∈ R3 of the system of
equations

x1 = a1 +
1

6
(sinx2 + sinx3) ,

x2 = a2 +
1

6
(sinx1 + sinx3) ,

x3 = a3 +
1

6
(sinx1 + sinx2) .
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4G Complex Analysis
State carefully Rouché’s theorem. Use it to show that the function z4 + 3+ eiz has

exactly one zero z = z0 in the quadrant

{z ∈ C | 0 < arg(z) < π/2} ,

and that |z0| 6
√
2.

5A Methods
Consider the function f(x) defined by

f(x) = x2, for − π < x < π.

Calculate the Fourier series representation for the 2π-periodic extension of this function.
Hence establish that

π2

6
=

∞
∑

n=1

1

n2
,

and that

π2

12
=

∞
∑

n=1

(−1)n+1

n2
.
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6B Quantum Mechanics
(a) Define the quantum orbital angular momentum operator L̂ = (L̂1, L̂2, L̂3) in

three dimensions, in terms of the position and momentum operators.

(b) Show that [L̂1, L̂2] = i~L̂3. [You may assume that the position and momentum
operators satisfy the canonical commutation relations.]

(c) Let L̂2 = L̂2
1 + L̂2

2 + L̂2
3. Show that L̂1 commutes with L̂2.

[In this part of the question you may additionally assume without proof the permuted
relations [L̂2, L̂3] = i~L̂1 and [L̂3, L̂1] = i~L̂2.]
[Hint: It may be useful to consider the expression [Â, B̂] B̂+ B̂ [Â, B̂] for suitable operators

Â and B̂.]

(d) Suppose that ψ1(x, y, z) and ψ2(x, y, z) are normalised eigenstates of L̂1 with
eigenvalues ~ and −~ respectively. Consider the wavefunction

ψ =
1

2
ψ1 cosωt +

√
3

2
ψ2 sinωt ,

with ω being a positive constant. Find the earliest time t0 > 0 such that the expectation
value of L̂1 in ψ is zero.

7D Electromagnetism
(a) Starting from Maxwell’s equations, show that in a vacuum,

1

c2
∂2E

∂t2
−∇2E = 0 and ∇ ·E = 0 where c =

√

1

ǫ0µ0
.

(b) Suppose that E = E0√
2
(1, 1, 0) cos(kz−ωt) where E0, k and ω are real constants.

(i) What are the wavevector and the polarisation? How is ω related to k?

(ii) Find the magnetic field B.

(iii) Compute and interpret the time-averaged value of the Poynting vector,
S = 1

µ0
E×B.
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8D Numerical Analysis
(a) Define the linear stability domain for a numerical method to solve y′ = f(t,y).

What is meant by an A-stable method?

(b) A two-stage Runge–Kutta scheme is given by

k1 = f(tn,yn), k2 = f(tn + h
2
,yn + h

2
k1), yn+1 = yn + hk2 ,

where h is the step size and tn = nh. Show that the order of this scheme is at least two.
For this scheme, find the intersection of the linear stability domain with the real axis.
Hence show that this method is not A-stable.

9H Markov Chains
Consider two boxes, labelled A and B. Initially, there are no balls in box A and k

balls in box B. Each minute later, one of the k balls is chosen uniformly at random and
is moved to the opposite box. Let Xn denote the number of balls in box A at time n, so
that X0 = 0.

(a) Find the transition probabilities of the Markov chain (Xn)n>0 and show that it
is reversible in equilibrium.

(b) Find E(T ), where T = inf{n > 1 : Xn = 0} is the next time that all k balls are
again in box B.
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SECTION II

10F Linear Algebra
(a) Let α : V → W be a linear transformation between finite dimensional vector

spaces over a field F = R or C.

Define the dual map of α. Let δ be the dual map of α. Given a subspace U ⊆ V ,
define the annihilator U◦ of U . Show that (kerα)◦ and the image of δ coincide. Conclude
that the dimension of the image of α is equal to the dimension of the image of δ. Show
that dimker(α) − dimker(δ) = dimV − dimW .

(b) Now suppose in addition that V,W are inner product spaces. Define the adjoint
α∗ of α. Let β : U → V , γ : V →W be linear transformations between finite dimensional
inner product spaces. Suppose that the image of β is equal to the kernel of γ. Then show
that ββ∗ + γ∗γ is an isomorphism.

11E Groups, Rings and Modules
Let R be a Noetherian ring and let M be a finitely generated R-module.

(a) Show that every submodule of M is finitely generated.

(b) Show that each maximal element of the set

A = {Ann(m) | 0 6= m ∈M}

is a prime ideal. [Here, maximal means maximal with respect to inclusion, and
Ann(m) = {r ∈ R | rm = 0}.]

(c) Show that there is a chain of submodules

0 =M0 ⊆M1 ⊆ · · · ⊆Ml =M,

such that for each 0 < i 6 l the quotient Mi/Mi−1 is isomorphic to R/Pi for some prime
ideal Pi.
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12G Analysis II
(a) Let V be a real vector space. What does it mean to say that two norms on V are

Lipschitz equivalent? Prove that every norm on Rn is Lipschitz equivalent to the Euclidean
norm. Hence or otherwise, show that any linear map from Rn to Rm is continuous.

(b) Let f : U → V be a linear map between normed real vector spaces. We say that
f is bounded if there exists a constant C such that for all u ∈ U , ‖f(u)‖ 6 C ‖u‖. Show
that f is bounded if and only if f is continuous.

(c) Let ℓ2 denote the space of sequences (xn)n>1 of real numbers such that
∑

n>1
x2n

is convergent, with the norm ‖(xn)n‖ =
(
∑

n>1
x2n

)1/2
. Let em ∈ ℓ2 be the sequence

em = (xn)n with xm = 1 and xn = 0 if n 6= m. Let w be the sequence (2−n)n. Show that
the subset {w} ∪ {em | m > 1} is linearly independent. Let V ⊂ ℓ2 be the subspace it
spans, and consider the linear map f : V → R defined by

f(w) = 1, f(em) = 0 for all m > 1.

Is f continuous? Justify your answer.

13E Metric and Topological Spaces
(a) Let X be a topological space. Define what is meant by a quotient of X and

describe the quotient topology on the quotient space. Give an example in which X is
Hausdorff but the quotient space is not Hausdorff.

(b) Let T 2 be the 2-dimensional torus considered as the quotient R2/Z2, and let
π : R2 → T 2 be the quotient map.

(i) Let B(u, r) be the open ball in R2 with centre u and radius r < 1/2. Show
that U = π(B(u, r)) is an open subset of T 2 and show that π−1(U) has
infinitely many connected components. Show each connected component is
homeomorphic to B(u, r).

(ii) Let α ∈ R be an irrational number and let L ⊂ R2 be the line given by the
equation y = αx. Show that π(L) is dense in T 2 but π(L) 6= T 2.
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14A Complex Methods
(a) Show that the Laplace transform of the Heaviside step function H(t− a) is

∫ ∞

0

H(t− a)e−ptdt =
e−ap

p
,

for a > 0.

(b) Derive an expression for the Laplace transform of the second derivative of a
function f(t) in terms of the Laplace transform of f(t) and the properties of f(t) at t = 0.

(c) A bar of length L has its end at x = L fixed. The bar is initially at rest and
straight. The end at x = 0 is given a small fixed transverse displacement of magnitude a
at t = 0+. You may assume that the transverse displacement y(x, t) of the bar satisfies
the wave equation with some wave speed c, and so the tranverse displacement y(x, t) is
the solution to the problem:

∂2y

∂t2
= c2

∂2y

∂x2
for 0 < x < L and t > 0,

y(x, 0) =
∂y

∂t
(x, 0) = 0 for 0 < x < L,

y(0, t) = a; y(L, t) = 0 for t > 0.

(i) Show that the Laplace transform Y (x, p) of y(x, t), defined as

Y (x, p) =

∫ ∞

0

y(x, t)e−ptdt,

is given by

Y (x, p) =
a sinh

[p
c (L− x)

]

p sinh
[

pL
c

] .

(ii) By use of the binomial theorem or otherwise, express y(x, t) as an infinite
series.

(iii) Plot the transverse displacement of the midpoint of the bar y(L/2, t) against
time.
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15F Geometry
Let α(s) = (f(s), g(s)) be a simple curve in R2 parameterised by arc length

with f(s) > 0 for all s, and consider the surface of revolution S in R3 defined by the
parameterisation

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)).

(a) Calculate the first and second fundamental forms for S. Show that the Gaussian
curvature of S is given by

K = −f
′′(u)

f(u)
.

(b) Now take f(s) = cos s+ 2, g(s) = sin s, 0 6 s < 2π. What is the integral of the
Gaussian curvature over the surface of revolution S determined by f and g?
[You may use the Gauss-Bonnet theorem without proof.]

(c) Now suppose S has constant curvature K ≡ 1, and suppose there are two points
P1, P2 ∈ R3 such that S ∪ {P1, P2} is a smooth closed embedded surface. Show that S is
a unit sphere, minus two antipodal points.

[Do not attempt to integrate an expression of the form
√

1−C2 sin2 u when C 6= 1. Study
the behaviour of the surface at the largest and smallest possible values of u.]

16C Variational Principles
A fish swims in the ocean along a straight line with speed V (t). The fish starts

its journey from rest (zero velocity at t = 0) and, during a given time T , swims subject
to the constraint that the total distance travelled is L. The energy cost for swimming is
aV 2 + bV̇ 2 per unit time, where a, b > 0 are known and a2 + b2 6= 0.

(a) Derive the Euler-Lagrange condition on V (t) for the journey to have minimum
energetic cost.

(b) In the case a 6= 0, b 6= 0 solve for V (t) assuming that the fish starts at t = 0
with zero acceleration (in addition to zero velocity).

(c) In the case a = 0, the fish can decide between three different boundary conditions
for its journey. In addition to starting with zero velocity, it can:

(1) start at t = 0 with zero acceleration;

(2) end at t = T with zero velocity; or

(3) end at t = T with zero acceleration.

Which of (1), (2) or (3) is the best minimal-energy cost strategy?

Part IB, Paper 4 [TURN OVER



10

17B Methods
Let D be a 2-dimensional region in R2 with boundary ∂D.

In this question you may assume Green’s second identity:

∫

D
(f ∇2g − g∇2f) dA =

∫

∂D

(

f
∂g

∂n
− g

∂f

∂n

)

dl,

where ∂
∂n denotes the outward normal derivative on ∂D, and f and g are suitably regular

functions that include the free space Green’s function in two dimensions. You may also
assume that the free space Green’s function for the Laplace equation in two dimensions is
given by

G0(r, r0) =
1

2π
log |r − r0|.

(a) State the conditions required on a function G(r, r0) for it to be a Dirichlet
Green’s function for the Laplace operator on D. Suppose that ∇2ψ = 0 on D. Show that
if G is a Dirichlet Green’s function for D then

ψ(r0) =

∫

∂D
ψ(r)

∂

∂n
G(r, r0) dl for r0 ∈ D.

(b) Consider the Laplace equation ∇2φ = 0 in the quarter space

D = {(x, y) : x > 0 and y > 0},

with boundary conditions

φ(x, 0) = e−x2

, φ(0, y) = e−y2 and φ(x, y) → 0 as
√

x2 + y2 → ∞.

Using the method of images, show that the solution is given by

φ(x0, y0) = F (x0, y0) + F (y0, x0),

where

F (x0, y0) =
4x0y0
π

∫ ∞

0

t e−t2

[

(t− x0)2 + y2
0

] [

(t+ x0)2 + y2
0

] dt.
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18C Fluid Dynamics
(a) Show that for an incompressible fluid, ∇ × ω = −∇2u, where ω is the flow

vorticity.

(b) State the equation of motion for an inviscid flow of constant density in a rotating
frame subject to gravity. Show that, on Earth, the local vertical component of the
centrifugal force is small compared to gravity. Present a scaling argument to justify the
linearisation of the Euler equations for sufficiently large rotation rates, and hence deduce
the linearised version of the Euler equations in a rapidly rotating frame.

(c) Denoting the rotation rate of the frame as Ω = Ωez, show that the linearised
Euler equations may be manipulated to obtain an equation for the velocity field u in the
form

∂2∇2u

∂t2
+ 4Ω2 ∂

2u

∂z2
= 0.

(d) Assume that there exist solutions of the form u = U0 exp [i(k · x− ωt)]. Show
that ω = ±2Ω cos θ where the angle θ is to be determined.

19H Statistics
Consider the linear regression model

Yi = α+ βxi + εi,

for i = 1, . . . , n, where the non-zero numbers x1, . . . , xn are known and are such that
x1 + . . . + xn = 0, the independent random variables ε1, . . . , εn have the N(0, σ2)
distribution, and the parameters α, β and σ2 are unknown.

(a) Let (α̂, β̂) be the maximum likelihood estimator of (α, β). Prove that for each
i, the random variables α̂, β̂ and Yi − α̂ − β̂xi are uncorrelated. Using standard facts
about the multivariate normal distribution, prove that α̂, β̂ and

∑n
i=1

(Yi − α̂− β̂xi)
2 are

independent.

(b) Find the critical region of the generalised likelihood ratio test of size 5% for
testing H0 : α = 0 versus H1 : α 6= 0. Prove that the power function of this test is of the
form w(α, β, σ2) = g(α/σ) for some function g. [You are not required to find g explicitly.]
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20H Optimization
(a) What is the maximal flow problem in a network? Explain the Ford–Fulkerson

algorithm. Prove that this algorithm terminates if the initial flow is set to zero and all arc
capacities are rational numbers.

(b) Let A = (ai,j)i,j be an n × n matrix. We say that A is doubly stochastic if
0 6 ai,j 6 1 for i, j and

n
∑

i=1

ai,j = 1 for all j,

n
∑

j=1

ai,j = 1 for all i.

We say that A is a permutation matrix if ai,j ∈ {0, 1} for all i, j and

for all j there exists a unique i such that ai,j = 1,

for all i there exists a unique j such that ai,j = 1.

Let C be the set of all n × n doubly stochastic matrices. Show that a matrix A is an
extreme point of C if and only if A is a permutation matrix.

END OF PAPER
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