
MATHEMATICAL TRIPOS Part IA 2016

List of Courses

Analysis I

Differential Equations

Dynamics and Relativity

Groups

Numbers and Sets

Probability

Vector Calculus

Vectors and Matrices

Part IA, 2016 List of Questions [TURN OVER



2

Paper 1, Section I

3D Analysis I
What does it mean to say that a sequence of real numbers (xn) converges to x?

Suppose that (xn) converges to x. Show that the sequence (yn) given by

yn =
1

n

n
∑

i=1

xi

also converges to x.

Paper 1, Section I

4F Analysis I
Let an be the number of pairs of integers (x, y) ∈ Z

2 such that x2 + y2 6 n2. What

is the radius of convergence of the series
∞
∑

n=0

anz
n? [You may use the comparison test,

provided you state it clearly.]

Paper 1, Section II

9E Analysis I
State the Bolzano–Weierstrass theorem. Use it to show that a continuous function

f : [a, b] → R attains a global maximum; that is, there is a real number c ∈ [a, b] such that
f(c) > f(x) for all x ∈ [a, b].

A function f is said to attain a local maximum at c ∈ R if there is some ε > 0 such
that f(c) > f(x) whenever |x − c| < ε. Suppose that f : R → R is twice differentiable,
and that f ′′(x) < 0 for all x ∈ R. Show that there is at most one c ∈ R at which f attains
a local maximum.

If there is a constant K < 0 such that f ′′(x) < K for all x ∈ R, show that f attains
a global maximum. [Hint: if g′(x) < 0 for all x ∈ R, then g is decreasing.]

Must f : R → R attain a global maximum if we merely require f ′′(x) < 0 for all
x ∈ R? Justify your answer.
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Paper 1, Section II

10E Analysis I
Let f : R → R. We say that x ∈ R is a real root of f if f(x) = 0. Show that if f is

differentiable and has k distinct real roots, then f ′ has at least k − 1 real roots. [Rolle’s
theorem may be used, provided you state it clearly.]

Let p(x) =
∑n

i=1 aix
di be a polynomial in x, where all ai 6= 0 and di+1 > di. (In

other words, the ai are the nonzero coefficients of the polynomial, arranged in order of
increasing power of x.) The number of sign changes in the coefficients of p is the number
of i for which aiai+1 < 0. For example, the polynomial x5−x3−x2+1 has 2 sign changes.
Show by induction on n that the number of positive real roots of p is less than or equal
to the number of sign changes in its coefficients.

Paper 1, Section II

11D Analysis I
If (xn) and (yn) are sequences converging to x and y respectively, show that the

sequence (xn + yn) converges to x+ y.

If xn 6= 0 for all n and x 6= 0, show that the sequence

(

1

xn

)

converges to
1

x
.

(a) Find lim
n→∞

(√
n2 + n− n

)

.

(b) Determine whether

∞
∑

n=1

√
n+ 1−√

n√
n

converges.

Justify your answers.

Paper 1, Section II

12F Analysis I
Let f : [0, 1] → R satisfy |f(x)− f(y)| 6 |x− y| for all x, y ∈ [0, 1].

Show that f is continuous and that for all ε > 0, there exists a piecewise constant
function g such that

sup
x∈[0,1]

|f(x)− g(x)| 6 ε.

For all integers n > 1, let un =
∫ 1
0 f(t) cos(nt)dt. Show that the sequence (un) con-

verges to 0.
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Paper 2, Section I

1A Differential Equations

(a) Find the solution of the differential equation

y′′ − y′ − 6y = 0

that is bounded as x→ ∞ and satisfies y = 1 when x = 0.

(b) Solve the difference equation

(yn+1 − 2yn + yn−1)−
h

2
(yn+1 − yn−1)− 6h2yn = 0.

Show that if 0 < h ≪ 1, the solution that is bounded as n → ∞ and satisfies y0 = 1
is approximately (1− 2h)n.

(c) By setting x = nh, explain the relation between parts (a) and (b).

Paper 2, Section I

2A Differential Equations

(a) For each non-negative integer n and positive constant λ, let

In(λ) =

∫ ∞

0
xne−λxdx.

By differentiating In with respect to λ, find its value in terms of n and λ.

(b) By making the change of variables x = u + v, y = u − v, transform the differential
equation

∂2f

∂x∂y
= 1

into a differential equation for g, where g(u, v) = f(x, y).
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Paper 2, Section II

5A Differential Equations

(a) Find and sketch the solution of

y′′ + y = δ(x − π/2),

where δ is the Dirac delta function, subject to y(0) = 1 and y′(0) = 0.

(b) A bowl of soup, which Sam has just warmed up, cools down at a rate equal to the
product of a constant k and the difference between its temperature T (t) and the
temperature T0 of its surroundings. Initially the soup is at temperature T (0) = αT0,
where α > 2.

(i) Write down and solve the differential equation satisfied by T (t).

(ii) At time t1, when the temperature reaches half of its initial value, Sam quickly
adds some hot water to the soup, so the temperature increases instantaneously
by β, where β > αT0/2. Find t1 and T (t) for t > t1.

(iii) Sketch T (t) for t > 0.

(iv) Sam wants the soup to be at temperature αT0 at time t2, where t2 > t1. What
value of β should Sam choose to achieve this? Give your answer in terms of α,
k, t2 and T0.
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Paper 2, Section II

6A Differential Equations

(a) The function y(x) satisfies

y′′ + p(x)y′ + q(x)y = 0.

(i) Define the Wronskian W (x) of two linearly independent solutions y1(x) and
y2(x). Derive a linear first-order differential equation satisfied by W (x).

(ii) Suppose that y1(x) is known. Use the Wronskian to write down a first-order
differential equation for y2(x). Hence express y2(x) in terms of y1(x) and W (x).

(b) Verify that y1(x) = cos(xγ) is a solution of

axαy′′ + bxα−1y′ + y = 0,

where a, b, α and γ are constants, provided that these constants satisfy certain
conditions which you should determine.

Use the method that you described in part (a) to find a solution which is linearly
independent of y1(x).
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Paper 2, Section II

7A Differential Equations
The function y(x) satisfies

y′′ + p(x)y′ + q(x)y = 0.

What does it mean to say that the point x = 0 is (i) an ordinary point and (ii) a
regular singular point of this differential equation? Explain what is meant by the indicial

equation at a regular singular point. What can be said about the nature of the solutions
in the neighbourhood of a regular singular point in the different cases that arise according
to the values of the roots of the indicial equation?

State the nature of the point x = 0 of the equation

xy′′ + (x−m+ 1)y′ − (m− 1)y = 0. (∗)

Set y(x) = xσ
∑∞

n=0 anx
n, where a0 6= 0, and find the roots of the indicial equation.

(a) Show that one solution of (∗) with m 6= 0,−1,−2, · · · is

y(x) = xm

(

1 +

∞
∑

n=1

(−1)n xn

(m+ n)(m+ n− 1) · · · (m+ 1)

)

,

and find a linearly independent solution in the case when m is not an integer.

(b) If m is a positive integer, show that (∗) has a polynomial solution.

(c) What is the form of the general solution of (∗) in the case m = 0? [You do not need
to find the general solution explicitly.]
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Paper 2, Section II

8A Differential Equations

(a) By considering eigenvectors, find the general solution of the equations

dx

dt
= 2x+ 5y,

dy

dt
= −x− 2y,

(†)

and show that it can be written in the form

(

x
y

)

= α

(

5 cos t
−2 cos t− sin t

)

+ β

(

5 sin t
cos t− 2 sin t

)

,

where α and β are constants.

(b) For any square matrix M , exp(M) is defined by

exp(M) =

∞
∑

n=0

Mn

n!
.

Show that if M has constant elements, the vector equation
dx

dt
= Mx has a solution

x = exp(Mt)x0, where x0 is a constant vector. Hence solve (†) and show that your
solution is consistent with the result of part (a).
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Paper 4, Section I

3B Dynamics and Relativity
With the help of definitions or equations of your choice, determine the dimensions,

in terms of mass (M), length (L), time (T ) and charge (Q), of the following quantities:

(i) force;

(ii) moment of a force (i.e. torque);

(iii) energy;

(iv) Newton’s gravitational constant G;

(v) electric field E;

(vi) magnetic field B;

(vii) the vacuum permittivity ǫ0.

Paper 4, Section I

4B Dynamics and Relativity
The radial equation of motion of a particle moving under the influence of a central

force is

r̈ − h2

r3
= −krn,

where h is the angular momentum per unit mass of the particle, n is a constant, and k is
a positive constant.

Show that circular orbits with r = a are possible for any positive value of a, and
that they are stable to small perturbations that leave h unchanged if n > −3.
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Paper 4, Section II

9B Dynamics and Relativity

(a) A rocket, moving non-relativistically, has speed v(t) and mass m(t) at a time t after
it was fired. It ejects mass with constant speed u relative to the rocket. Let the total
momentum, at time t, of the system (rocket and ejected mass) in the direction of the
motion of the rocket be P (t). Explain carefully why P (t) can be written in the form

P (t) = m(t) v(t) −
∫ t

0

(

v(τ)− u
)dm(τ)

dτ
dτ . (∗)

If the rocket experiences no external force, show that

m
dv

dt
+ u

dm

dt
= 0 . (†)

Derive the expression corresponding to (∗) for the total kinetic energy of the system
at time t. Show that kinetic energy is not necessarily conserved.

(b) Explain carefully how (∗) should be modified for a rocket moving relativistically, given
that there are no external forces. Deduce that

d(mγv)

dt
=

(

v − u

1− uv/c2

)

d(mγ)

dt
,

where γ = (1− v2/c2)−
1

2 and hence that

mγ2
dv

dt
+ u

dm

dt
= 0 . (‡)

(c) Show that (†) and (‡) agree in the limit c → ∞. Briefly explain the fact that
kinetic energy is not conserved for the non-relativistic rocket, but relativistic energy
is conserved for the relativistic rocket.
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Paper 4, Section II

10B Dynamics and Relativity
A particle of unit mass moves with angular momentum h in an attractive central

force field of magnitude
k

r2
, where r is the distance from the particle to the centre and k is

a constant. You may assume that the equation of its orbit can be written in plane polar
coordinates in the form

r =
ℓ

1 + e cos θ
,

where ℓ =
h2

k
and e is the eccentricity. Show that the energy of the particle is

h2(e2 − 1)

2ℓ2
.

A comet moves in a parabolic orbit about the Sun. When it is at its perihelion, a
distance d from the Sun, and moving with speed V , it receives an impulse which imparts
an additional velocity of magnitude αV directly away from the Sun. Show that the
eccentricity of its new orbit is

√
1 + 4α2 , and sketch the two orbits on the same axes.

Paper 4, Section II

11B Dynamics and Relativity

(a) Alice travels at constant speed v to Alpha Centauri, which is at distance d from Earth.
She then turns around (taking very little time to do so), and returns at speed v. Bob
stays at home. By how much has Bob aged during the journey? By how much has
Alice aged? [No justification is required.]

Briefly explain what is meant by the twin paradox in this context. Why is it not a
paradox?

(b) Suppose instead that Alice’s world line is given by

−c2t2 + x2 = c2t20 ,

where t0 is a positive constant. Bob stays at home, at x = αct0, where α > 1. Alice
and Bob compare their ages on both occasions when they meet. By how much does
Bob age? Show that Alice ages by 2t0 cosh

−1 α.
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Paper 4, Section II

12B Dynamics and Relativity
State what the vectors a, r, v and ω represent in the following equation:

a = g − 2ω × v− ω × (ω × r) , (∗)

where g is the acceleration due to gravity.

Assume that the radius of the Earth is 6×106 m, that |g| = 10ms−2, and that there
are 9× 104 seconds in a day. Use these data to determine roughly the order of magnitude
of each term on the right hand side of (∗) in the case of a particle dropped from a point
at height 20m above the surface of the Earth.

Taking again |g| = 10ms−2, find the time T of the particle’s fall in the absence of
rotation.

Use a suitable approximation scheme to show that

R ≈ R0 −
1

3
ω × g T 3 − 1

2
ω × (ω ×R0)T

2 ,

where R is the position vector of the point at which the particle lands, and R0 is the
position vector of the point at which the particle would have landed in the absence of
rotation.

The particle is dropped at latitude 45◦. Find expressions for the approximate
northerly and easterly displacements of R from R0 in terms of ω, g, R0 (the magnitudes
of ω, g and R0, respectively), and T . You should ignore the curvature of the Earth’s
surface.

Part IA, 2016 List of Questions



13

Paper 3, Section I

1D Groups
Let G be a group, and let H be a subgroup of G. Show that the following are

equivalent.

(i) a−1b−1ab ∈ H for all a, b ∈ G.

(ii) H is a normal subgroup of G and G/H is abelian.

Hence find all abelian quotient groups of the dihedral group D10 of order 10.

Paper 3, Section I

2D Groups
State and prove Lagrange’s theorem.

Let p be an odd prime number, and let G be a finite group of order 2p which has a
normal subgroup of order 2. Show that G is a cyclic group.

Paper 3, Section II

5D Groups
For each of the following, either give an example or show that none exists.

(i) A non-abelian group in which every non-trivial element has order 2.

(ii) A non-abelian group in which every non-trivial element has order 3.

(iii) An element of S9 of order 18.

(iv) An element of S9 of order 20.

(v) A finite group which is not isomorphic to a subgroup of an alternating group.
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Paper 3, Section II

6D Groups
Define the sign, sgn(σ), of a permutation σ ∈ Sn and prove that it is well defined.

Show that the function sgn : Sn → {1,−1} is a homomorphism.

Show that there is an injective homomorphism ψ : GL2(Z/2Z) → S4 such that
sgn ◦ ψ is non-trivial.

Show that there is an injective homomorphism φ : Sn → GLn(R) such that
det(φ(σ)) = sgn(σ).

Paper 3, Section II

7D Groups
State and prove the orbit-stabiliser theorem.

Let p be a prime number, and G be a finite group of order pn with n > 1. If N is a
non-trivial normal subgroup of G, show that N ∩ Z(G) contains a non-trivial element.

If H is a proper subgroup of G, show that there is a g ∈ G\H such that g−1Hg = H.

[You may use Lagrange’s theorem, provided you state it clearly.]

Paper 3, Section II

8D Groups
Define the Möbius group M and its action on the Riemann sphere C∞. [You are not

required to verify the group axioms.] Show that there is a surjective group homomorphism
φ : SL2(C) → M, and find the kernel of φ.

Show that if a non-trivial element of M has finite order, then it fixes precisely
two points in C∞. Hence show that any finite abelian subgroup of M is either cyclic or
isomorphic to C2 × C2.

[You may use standard properties of the Möbius group, provided that you state
them clearly.]
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Paper 4, Section I

1E Numbers and Sets
Find a pair of integers x and y satisfying 17x + 29y = 1. What is the smallest

positive integer congruent to 17138 modulo 29?

Paper 4, Section I

2E Numbers and Sets
Explain the meaning of the phrase least upper bound; state the least upper bound

property of the real numbers. Use the least upper bound property to show that a bounded,
increasing sequence of real numbers converges.

Suppose that an, bn ∈ R and that an > bn > 0 for all n. If

∞
∑

n=1

an converges, show

that
∞
∑

n=1

bn converges.

Paper 4, Section II

5E Numbers and Sets

(a) Let S be a set. Show that there is no bijective map from S to the power set of S. Let
T = {(xn) |xi ∈ {0, 1} for all i ∈ N} be the set of sequences with entries in {0, 1}.
Show that T is uncountable.

(b) Let A be a finite set with more than one element, and let B be a countably infinite
set. Determine whether each of the following sets is countable. Justify your answers.

(i) S1 = {f : A→ B | f is injective}.
(ii) S2 = {g : B → A | g is surjective}.
(iii) S3 = {h : B → B |h is bijective}.
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Paper 4, Section II

6E Numbers and Sets
Suppose that a, b ∈ Z and that b = b1b2, where b1 and b2 are relatively prime and

greater than 1. Show that there exist unique integers a1, a2, n ∈ Z such that 0 6 ai < bi
and

a

b
=
a1
b1

+
a2
b2

+ n.

Now let b = pn1

1 . . . pnk

k be the prime factorization of b. Deduce that
a

b
can be written

uniquely in the form
a

b
=

q1
pn1

1

+ · · · + qk
pnk

k

+ n ,

where 0 6 qi < pni

i and n ∈ Z. Express
a

b
=

1

315
in this form.

Paper 4, Section II

7E Numbers and Sets
State the inclusion-exclusion principle.

Let A = (a1, a2, . . . , an) be a string of n digits, where ai ∈ {0, 1, . . . , 9}. We say
that the string A has a run of length k if there is some j 6 n− k + 1 such that either
aj+i ≡ aj + i (mod 10) for all 0 6 i < k or aj+i ≡ aj − i (mod 10) for all 0 6 i < k. For
example, the strings

(0, 1, 2, 8, 4, 9), (3, 9, 8, 7, 4, 8) and (3, 1, 0, 9, 4, 5)

all have runs of length 3 (underlined), but no run in (3, 1, 2, 1, 1, 2) has length > 2. How
many strings of length 6 have a run of length > 3?
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Paper 4, Section II

8E Numbers and Sets

Define the binomial coefficient

(

n

m

)

. Prove directly from your definition that

(1 + z)n =
n
∑

m=0

(

n

m

)

zm

for any complex number z.

(a) Using this formula, or otherwise, show that

3n
∑

k=0

(−3)k
(

6n

2k

)

= 26n.

(b) By differentiating, or otherwise, evaluate

n
∑

m=0

m

(

n

m

)

.

Let Sr(n) =

n
∑

m=0

(−1)mmr

(

n

m

)

, where r is a non-negative integer. Show that

Sr(n) = 0 for r < n. Evaluate Sn(n).
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Paper 2, Section I

3F Probability
Let X1, . . . ,Xn be independent random variables, all with uniform distribution

on [0, 1]. What is the probability of the event {X1 > X2 > · · · > Xn−1 > Xn}?

Paper 2, Section I

4F Probability
Define the moment-generating function mZ of a random variable Z. Let X1, . . . ,Xn

be independent and identically distributed random variables with distribution N (0, 1),
and let Z = X2

1 + · · ·+X2
n. For θ < 1/2, show that

mZ(θ) = (1− 2θ)−n/2 .

Paper 2, Section II

9F Probability
For any positive integer n and positive real number θ, the Gamma distribution

Γ(n, θ) has density fΓ defined on (0,∞) by

fΓ(x) =
θn

(n− 1)!
xn−1e−θx .

For any positive integers a and b, the Beta distributionB(a, b) has density fB defined
on (0, 1) by

fB(x) =
(a+ b− 1)!

(a− 1)!(b− 1)!
xa−1(1− x)b−1 .

Let X and Y be independent random variables with respective distributions Γ(n, θ)
and Γ(m, θ). Show that the random variables X/(X+Y ) and X+Y are independent and
give their distributions.
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Paper 2, Section II

10F Probability
We randomly place n balls in m bins independently and uniformly. For each i with

1 6 i 6 m, let Bi be the number of balls in bin i.

(a) What is the distribution of Bi? For i 6= j, are Bi and Bj independent?

(b) Let E be the number of empty bins, C the number of bins with two or more balls,
and S the number of bins with exactly one ball. What are the expectations of E, C
and S?

(c) Let m = an, for an integer a > 2. What is P(E = 0)? What is the limit of E[E]/m
when n→ ∞?

(d) Instead, let n = dm, for an integer d > 2. What is P(C = 0)? What is the limit of
E[C]/m when n→ ∞?

Paper 2, Section II

11F Probability
Let X be a non-negative random variable such that E[X2] > 0 is finite, and let

θ ∈ [0, 1].

(a) Show that
E[X I[{X > θE[X]}]] > (1− θ)E[X] .

(b) Let Y1 and Y2 be random variables such that E[Y 2
1 ] and E[Y 2

2 ] are finite. State and
prove the Cauchy–Schwarz inequality for these two variables.

(c) Show that

P(X > θE[X]) > (1− θ)2
E[X]2

E[X2]
.
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Paper 2, Section II

12F Probability
A random graph with n nodes v1, . . . , vn is drawn by placing an edge with probability

p between vi and vj for all distinct i and j, independently. A triangle is a set of three
distinct nodes vi, vj , vk that are all connected: there are edges between vi and vj, between
vj and vk and between vi and vk.

(a) Let T be the number of triangles in this random graph. Compute the maximum value
and the expectation of T .

(b) State the Markov inequality. Show that if p = 1/nα, for some α > 1, then
P(T = 0) → 1 when n→ ∞.

(c) State the Chebyshev inequality. Show that if p is such that Var[T ]/E[T ]2 → 0 when
n→ ∞, then P(T = 0) → 0 when n→ ∞.
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Paper 3, Section I

3C Vector Calculus
State the chain rule for the derivative of a composition t 7→ f(X(t)) , where

f : Rn → R and X : R → R
n are smooth.

Consider parametrized curves given by

x(t) = (x(t), y(t)) = (a cos t, a sin t) .

Calculate the tangent vector
dx

dt
in terms of x(t) and y(t) . Given that u(x, y) is a smooth

function in the upper half-plane {(x, y) ∈ R
2 | y > 0} satisfying

x
∂u

∂y
− y

∂u

∂x
= u ,

deduce that
d

dt
u
(

x(t), y(t)
)

= u
(

x(t), y(t)
)

.

If u(1, 1) = 10, find u(−1, 1).

Paper 3, Section I

4C Vector Calculus
If v = (v1, v2, v3) and w = (w1, w2, w3) are vectors in R

3, show that Tij = viwj

defines a rank 2 tensor. For which choices of the vectors v and w is Tij isotropic?

Write down the most general isotropic tensor of rank 2.

Prove that ǫijk defines an isotropic rank 3 tensor.
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Paper 3, Section II

9C Vector Calculus
What is a conservative vector field on R

n?

State Green’s theorem in the plane R
2 .

(a) Consider a smooth vector field V =
(

P (x, y), Q(x, y)
)

defined on all of R2 which
satisfies

∂Q

∂x
− ∂P

∂y
= 0 .

By considering

F (x, y) =

∫ x

0
P (x′, 0) dx′ +

∫ y

0
Q(x, y′) dy′

or otherwise, show that V is conservative.

(b) Now let V =
(

1 + cos(2πx+ 2πy), 2 + cos(2πx+ 2πy)
)

. Show that there exists
a smooth function F (x, y) such that V = ∇F .
Calculate

∫

C V·dx , where C is a smooth curve running from (0, 0) to (m,n) ∈ Z
2.

Deduce that there does not exist a smooth function F (x, y) which satisfies
V = ∇F and which is, in addition, periodic with period 1 in each coordinate
direction, i.e. F (x, y) = F (x+ 1, y) = F (x, y + 1) .

Paper 3, Section II

10C Vector Calculus
Define the Jacobian J [u] of a smooth mapping u : R3 → R

3. Show that if V is the
vector field with components

Vi =
1

3!
ǫijkǫabc

∂ua
∂xj

∂ub
∂xk

uc ,

then J [u] = ∇ · V . If v is another such mapping, state the chain rule formula for the
derivative of the composition w(x) = u(v(x)), and hence give J [w] in terms of J [u] and
J [v].

Let F : R3 → R
3 be a smooth vector field. Let there be given, for each t ∈ R, a

smooth mapping ut : R
3 → R

3 such that ut(x) = x+ tF(x) + o(t) as t→ 0. Show that

J [ut] = 1 + tQ(x) + o(t)

for some Q(x), and express Q in terms of F. Assuming now that ut+s(x) = ut(us(x)),
deduce that if ∇ · F = 0 then J [ut] = 1 for all t ∈ R . What geometric property of the
mapping x 7→ ut(x) does this correspond to?
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Paper 3, Section II

11C Vector Calculus

(a) For smooth scalar fields u and v, derive the identity

∇ · (u∇v − v∇u) = u∇2v − v∇2u

and deduce that
∫

ρ6|x|6r

(

v∇2u− u∇2v
)

dV =

∫

|x|=r

(

v
∂u

∂n
− u

∂v

∂n

)

dS

−
∫

|x|=ρ

(

v
∂u

∂n
− u

∂v

∂n

)

dS .

Here ∇2 is the Laplacian,
∂

∂n
= n · ∇ where n is the unit outward normal, and dS is

the scalar area element.

(b) Give the expression for
(

∇×V
)

i
in terms of ǫijk . Hence show that

∇×
(

∇×V
)

= ∇(∇ ·V) − ∇2V .

(c) Assume that if ∇2ϕ = − ρ , where ϕ(x) = O(|x|−1) and ∇ϕ(x) = O(|x|−2) as
|x| → ∞ , then

ϕ(x) =

∫

R3

ρ(y)

4π|x− y| dV .

The vector fields B and J satisfy

∇×B = J .

Show that ∇ · J = 0 . In the case that B = ∇×A, with ∇ · A = 0, show that

A(x) =

∫

R3

J(y)

4π|x− y| dV , (∗)

and hence that

B(x) =

∫

R3

J(y)× (x− y)

4π|x− y|3 dV .

Verify that A given by (∗) does indeed satisfy ∇ · A = 0 . [It may be useful to make
a change of variables in the right hand side of (∗).]
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Paper 3, Section II

12C Vector Calculus

(a) Let
F = (z, x, y)

and let C be a circle of radius R lying in a plane with unit normal vector (a, b, c).
Calculate∇×F and use this to compute

∮

C F·dx . Explain any orientation conventions
which you use.

(b) Let F : R3 → R
3 be a smooth vector field such that the matrix with entries

∂Fj

∂xi
is

symmetric. Prove that
∮

C F · dx = 0 for every circle C ⊂ R
3 .

(c) Let F =
1

r
(x, y, z), where r =

√

x2 + y2 + z2 and let C be the circle which is the

intersection of the sphere (x−5)2+(y−3)2+(z−2)2 = 1 with the plane 3x−5y−z = 2.
Calculate

∮

C F · dx.

(d) Let F be the vector field defined, for x2 + y2 > 0, by

F =

( −y
x2 + y2

,
x

x2 + y2
, z

)

.

Show that ∇ × F = 0. Let C be the curve which is the intersection of the cylinder
x2 + y2 = 1 with the plane z = x+ 200. Calculate

∮

C F · dx.
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Paper 1, Section I

1A Vectors and Matrices
Let z ∈ C be a solution of

z2 + bz + 1 = 0,

where b ∈ R and |b| 6 2. For which values of b do the following hold?

(i) |ez| < 1.

(ii) |eiz| = 1.

(iii) Im(cosh z) = 0.

Paper 1, Section I

2C Vectors and Matrices
Write down the general form of a 2×2 rotation matrix. Let R be a real 2×2 matrix

with positive determinant such that |Rx| = |x| for all x ∈ R
2. Show that R is a rotation

matrix.

Let

J =

(

0 −1
1 0

)

.

Show that any real 2 × 2 matrix A which satisfies AJ = JA can be written as A = λR,
where λ is a real number and R is a rotation matrix.
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Paper 1, Section II

5A Vectors and Matrices

(a) Use suffix notation to prove that

a · (b× c) = c · (a× b).

(b) Show that the equation of the plane through three non-colinear points with position
vectors a, b and c is

r · (a× b+ b× c+ c× a) = a · (b× c),

where r is the position vector of a point in this plane.

Find a unit vector normal to the plane in the case a = (2, 0, 1), b = (0, 4, 0) and
c = (1,−1, 2).

(c) Let r be the position vector of a point in a given plane. The plane is a distance d from
the origin and has unit normal vector n, where n · r > 0. Write down the equation of
this plane.

This plane intersects the sphere with centre at p and radius q in a circle with centre
at m and radius ρ. Show that

m− p = γ n.

Find γ in terms of q and ρ. Hence find ρ in terms of n, d, p and q.
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Paper 1, Section II

6B Vectors and Matrices
The n× n real symmetric matrix M has eigenvectors of unit length e1, e2, . . . , en,

with corresponding eigenvalues λ1, λ2, . . . , λn, where λ1 > λ2 > · · · > λn. Prove that the
eigenvalues are real and that ea · eb = δab.

Let x be any (real) unit vector. Show that

xTMx 6 λ1 .

What can be said about x if xTMx = λ1?

Let S be the set of all (real) unit vectors of the form

x = (0, x2, . . . , xn) .

Show that α1e1 + α2e2 ∈ S for some α1, α2 ∈ R. Deduce that

Max
x∈S

xTMx > λ2 .

The (n− 1)× (n− 1) matrix A is obtained by removing the first row and the first
column of M . Let µ be the greatest eigenvalue of A. Show that

λ1 > µ > λ2 .

Paper 1, Section II

7B Vectors and Matrices
What does it mean to say that a matrix can be diagonalised? Given that the n× n

real matrixM has n eigenvectors satisfying ea ·eb = δab, explain how to obtain the diagonal
form Λ of M . Prove that Λ is indeed diagonal. Obtain, with proof, an expression for the
trace of M in terms of its eigenvalues.

The elements of M are given by

Mij =

{

0 for i = j ,

1 for i 6= j .

Determine the elements of M2 and hence show that, if λ is an eigenvalue of M , then

λ2 = (n − 1) + (n− 2)λ .

Assuming that M can be diagonalised, give its diagonal form.
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Paper 1, Section II

8C Vectors and Matrices

(a) Show that the equations

1 + s + t = a

1 − s + t = b

1 − 2t = c

determine s and t uniquely if and only if a+ b+ c = 3.

Write the following system of equations

5x + 2y − z = 1 + s+ t

2x + 5y − z = 1− s+ t

−x − y + 8z = 1− 2t

in matrix form Ax = b. Use Gaussian elimination to solve the system for x, y, and z.
State a relationship between the rank and the kernel of a matrix. What is the rank
and what is the kernel of A?

For which values of x, y, and z is it possible to solve the above system for s and t?

(b) Define a unitary n × n matrix. Let A be a real symmetric n × n matrix, and let
I be the n × n identity matrix. Show that |(A + iI)x|2 = |Ax|2 + |x|2 for arbitrary
x ∈ C

n, where |x|2 =
∑n

j=1 |xj |2. Find a similar expression for |(A − iI)x|2. Prove

that (A− iI)(A + iI)−1 is well-defined and is a unitary matrix.
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