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SECTION I

1E Linear Algebra
Let q denote a quadratic form on a real vector space V . Define the rank and signature

of q.

Find the rank and signature of the following quadratic forms.

(a) q(x, y, z) = x2 + y2 + z2 − 2xz − 2yz.

(b) q(x, y, z) = xy − xz.

(c) q(x, y, z) = xy − 2z2.

2F Groups, Rings and Modules
Give four non-isomorphic groups of order 12, and explain why they are not

isomorphic.

3G Analysis II
Show that the map f : R3 → R3 given by

f(x, y, z) = (x− y − z, x2 + y2 + z2, xyz)

is differentiable everywhere and find its derivative.

Stating accurately any theorem that you require, show that f has a differentiable
local inverse at a point (x, y, z) if and only if

(x+ y)(x+ z)(y − z) 6= 0.

4E Metric and Topological Spaces
Let X and Y be topological spaces and f : X → Y a continuous map. Suppose H

is a subset of X such that f(H) is closed (where H denotes the closure of H). Prove that
f(H) = f(H).

Give an example where f,X, Y and H are as above but f(H) is not closed.

Part IB, Paper 2



3

5C Methods
(i) Write down the trigonometric form for the Fourier series and its coefficients for

a function f : [−L,L) → R extended to a 2L-periodic function on R.

(ii) Calculate the Fourier series on [−π, π) of the function f(x) = sin(λx) where λ
is a real constant. Take the limit λ → k with k ∈ Z in the coefficients of this series and
briefly interpret the resulting expression.

6A Electromagnetism
In a constant electric field E = (E, 0, 0) a particle of rest mass m and charge q > 0

has position x and velocity ẋ. At time t = 0, the particle is at rest at the origin. Including
relativistic effects, calculate ẋ(t).

Sketch a graph of |ẋ(t)| versus t, commenting on the t → ∞ limit.

Calculate |x(t)| as an explicit function of t and find the non-relativistic limit at
small times t.

7B Fluid Dynamics
Consider the two-dimensional velocity field u = (u, v) with

u(x, y) = x2 − y2, v(x, y) = −2xy.

(i) Show that the flow is incompressible and irrotational.

(ii) Derive the velocity potential, φ, and the streamfunction, ψ.

(iii) Plot all streamlines passing through the origin.

(iv) Show that the complex function w = φ + iψ (where i2 = −1) can be written
solely as a function of the complex coordinate z = x+ iy and determine that function.
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8H Statistics
Suppose that, given θ, the random variable X has P(X = k) = e−θθk/k!,

k = 0, 1, 2, . . .. Suppose that the prior density of θ is π(θ) = λe−λθ, θ > 0, for some
known λ (> 0). Derive the posterior density π(θ | x) of θ based on the observation X = x.

For a given loss function L(θ, a), a statistician wants to calculate the value of a that
minimises the expected posterior loss

∫
L(θ, a)π(θ | x)dθ.

Suppose that x = 0. Find a in terms of λ in the following cases:

(a) L(θ, a) = (θ − a)2;

(b) L(θ, a) = |θ − a|.

9H Optimization
Define what it means to say that a set S ⊆ Rn is convex. What is meant by an

extreme point of a convex set S?

Consider the set S ⊆ R2 given by

S = {(x1, x2) : x1 + 4x2 6 30, 3x1 + 7x2 6 60, x1 > 0, x2 > 0}.

Show that S is convex, and give the coordinates of all extreme points of S.

For all possible choices of c1 > 0 and c2 > 0, find the maximum value of c1x1+ c2x2
subject to (x1, x2) ∈ S.
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SECTION II

10E Linear Algebra
(i) Suppose A is a matrix that does not have −1 as an eigenvalue. Show that A+ I

is non-singular. Further, show that A commutes with (A+ I)−1.

(ii) A matrix A is called skew-symmetric if AT = −A. Show that a real skew-
symmetric matrix does not have −1 as an eigenvalue.

(iii) Suppose A is a real skew-symmetric matrix. Show that U = (I −A)(I +A)−1

is orthogonal with determinant 1.

(iv) Verify that every orthogonal matrix U with determinant 1 which does not have
−1 as an eigenvalue can be expressed as (I−A)(I+A)−1 where A is a real skew-symmetric
matrix.

11F Groups, Rings and Modules
(a) Consider the homomorphism f : Z3 → Z4 given by

f(a, b, c) = (a+ 2b+ 8c, 2a − 2b+ 4c,−2b + 12c, 2a − 4b+ 4c).

Describe the image of this homomorphism as an abstract abelian group. Describe the
quotient of Z4 by the image of this homomorphism as an abstract abelian group.

(b) Give the definition of a Euclidean domain.

Fix a prime p and consider the subring R of the rational numbers Q defined by

R = {q/r | gcd(p, r) = 1},

where ‘gcd’ stands for the greatest common divisor. Show that R is a Euclidean domain.
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12G Analysis II
Let E,F be normed spaces with norms ‖·‖E , ‖·‖F . Show that for a map f : E → F

and a ∈ E, the following two statements are equivalent:

(i) For every given ε > 0 there exists δ > 0 such that ‖f(x)− f(a)‖F < ε whenever
‖x− a‖E < δ.

(ii) f(xn) → f(a) for each sequence xn → a.

We say that f is continuous at a if (i), or equivalently (ii), holds.

Let now (E, ‖ · ‖E) be a normed space. Let A ⊂ E be a non-empty closed subset
and define d(x,A) = inf{‖x− a‖E : a ∈ A}. Show that

|d(x,A) − d(y,A)| 6 ‖x− y‖E for all x, y ∈ E.

In the case when E = Rn with the standard Euclidean norm, show that there exists a ∈ A
such that d(x,A) = ‖x− a‖.

Let A,B be two disjoint closed sets in Rn. Must there exist disjoint open sets U, V
such that A ⊂ U and B ⊂ V ? Must there exist a ∈ A and b ∈ B such that d(a, b) 6 d(x, y)
for all x ∈ A and y ∈ B? For each answer, give a proof or counterexample as appropriate.

13B Complex Analysis or Complex Methods
(i) A function f(z) has a pole of order m at z = z0. Derive a general expression for

the residue of f(z) at z = z0 involving f and its derivatives.

(ii) Using contour integration along a contour in the upper half-plane, determine
the value of the integral

I =

∫ ∞

0

(lnx)2

(1 + x2)2
dx.
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14F Geometry
(a) For each of the following subsets of R3, explain briefly why it is a smooth

embedded surface or why it is not.

S1 = {(x, y, z) |x = y, z = 3} ∪ {(2, 3, 0)}
S2 = {(x, y, z) |x2 + y2 − z2 = 1}
S3 = {(x, y, z) |x2 + y2 − z2 = 0}

(b) Let f : U = {(u, v)|v > 0} → R3 be given by

f(u, v) = (u2, uv, v),

and let S = f(U) ⊆ R3. You may assume that S is a smooth embedded surface.

Find the first fundamental form of this surface.

Find the second fundamental form of this surface.

Compute the Gaussian curvature of this surface.

15A Variational Principles
A right circular cylinder of radius a and length l has volume V and total surface

area A. Use Lagrange multipliers to do the following:

(a) Show that, for a given total surface area, the maximum volume is

V =
1

3

√
A3

Cπ
,

determining the integer C in the process.

(b) For a cylinder inscribed in the unit sphere, show that the value of l/a which
maximises the area of the cylinder is

D +
√
E,

determining the integers D and E as you do so.

(c) Consider the rectangular parallelepiped of largest volume which fits inside a
hemisphere of fixed radius. Find the ratio of the parallelepiped’s volume to the volume of
the hemisphere.

[You need not show that suitable extrema you find are actually maxima.]

Part IB, Paper 2 [TURN OVER



8

16C Methods
(i) The Laplace operator in spherical coordinates is

~∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
.

Show that general, regular axisymmetric solutions ψ(r, θ) to the equation ~∇2ψ = 0 are
given by

ψ(r, θ) =

∞∑

n=0

(
Anr

n +Bnr
−(n+1)

)
Pn(cos θ) ,

where An, Bn are constants and Pn are the Legendre polynomials. [You may use without
proof that regular solutions to Legendre’s equation − d

dx [(1− x2) d
dxy(x)] = λ y(x) are given

by Pn(x) with λ = n(n+ 1) and non-negative integer n.]

(ii) Consider a uniformly charged wire in the
form of a ring of infinitesimal width with radius
r0 = 1 and a constant charge per unit length σ.
By Coulomb’s law, the electric potential due to
a point charge q at a point a distance d from the
charge is

U =
q

4πǫ0d
,

where ǫ0 is a constant. Let the z-axis be perpen-
dicular to the circle and pass through the circle’s
centre (see figure). Show that the potential due
to the charged ring at a point on the z-axis at
location z is given by

V =
σ

2ǫ0
√
1 + z2

.

z x

y

φ

(iii) The potential V generated by the charged ring of (ii) at arbitrary points (excluding
points directly on the ring which can be ignored for this question) is determined by
Laplace’s equation ~∇2V = 0. Calculate this potential with the boundary condition
lim
r→∞

V = 0, where r =
√
x2 + y2 + z2. [You may use without proof that

1√
1 + x2

=

∞∑

m=0

x2m (−1)m
(2m)!

22m (m!)2
,

for |x| < 1. Furthermore, the Legendre polynomials are normalized such that Pn(1) = 1.]

Part IB, Paper 2



9

17D Quantum Mechanics
A quantum-mechanical harmonic oscillator has Hamiltonian

Ĥ =
p̂2

2
+

1

2
k2x̂2 . (∗) ,

where k is a positive real constant. Show that x̂ = x and p̂ = −i~ ∂
∂x are Hermitian

operators.

The eigenfunctions of (∗) can be written as

ψn(x) = hn

(
x
√
k/~

)
exp

(
−kx

2

2~

)
,

where hn is a polynomial of degree n with even (odd) parity for even (odd) n and
n = 0, 1, 2, . . .. Show that 〈x̂〉 = 〈p̂〉 = 0 for all of the states ψn.

State the Heisenberg uncertainty principle and verify it for the state ψ0 by comput-
ing (∆x) and (∆p). [Hint: You should properly normalise the state.]

The oscillator is in its ground state ψ0 when the potential is suddenly changed so
that k → 4k. If the wavefunction is expanded in terms of the energy eigenfunctions of the
new Hamiltonian, φn, what can be said about the coefficient of φn for odd n? What is
the probability that the particle is in the new ground state just after the change?

[Hint: You may assume that if In =
∫∞
−∞ e−ax2

xn dx then I0 =
√

π
a and I2 =

1
2a

√
π
a .]

18A Electromagnetism
Consider the magnetic field

B = b[r+ (kẑ + lŷ)ẑ · r+ px̂(ŷ · r) + nẑ(x̂ · r)],

where b 6= 0, r = (x, y, z) and x̂, ŷ, ẑ are unit vectors in the x, y and z directions,
respectively. Imposing that this satisfies the expected equations for a static magnetic
field in a vacuum, find k, l, n and p.

A circular wire loop of radius a, mass m and resistance R lies in the (x, y) plane with
its centre on the z-axis at z and a magnetic field as given above. Calculate the magnetic
flux through the loop arising from this magnetic field and also the force acting on the loop
when a current I is flowing around the loop in a clockwise direction about the z-axis.

At t = 0, the centre of the loop is at the origin, travelling with velocity
(0, 0, v(t = 0)), where v(0) > 0. Ignoring gravity and relativistic effects, and assum-
ing that I is only the induced current, find the time taken for the speed to halve in terms
of a, b,R and m. By what factor does the rate of heat generation change in this time?

Where is the loop as t → ∞ as a function of a, b,R, v(0)?
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19D Numerical Analysis
Define the linear stability domain for a numerical method to solve y′ = f(t, y).

What is meant by an A-stable method? Briefly explain the relevance of these concepts in
the numerical solution of ordinary differential equations.

Consider
yn+1 = yn + h [θf(tn, yn) + (1− θ)f(tn+1, yn+1)] ,

where θ ∈ [0, 1]. What is the order of this method?

Find the linear stability domain of this method. For what values of θ is the method
A-stable?

20H Markov Chains
(a) What does it mean for a transition matrix P and a distribution λ to be in

detailed balance? Show that if P and λ are in detailed balance then λ = λP .

(b) A mathematician owns r bicycles, which she sometimes uses for her journey
from the station to College in the morning and for the return journey in the evening. If it
is fine weather when she starts a journey, and if there is a bicycle available at the current
location, then she cycles; otherwise she takes the bus. Assume that with probability p,
0 < p < 1, it is fine when she starts a journey, independently of all other journeys. Let
Xn denote the number of bicycles at the current location, just before the mathematician
starts the nth journey.

(i) Show that (Xn;n > 0) is a Markov chain and write down its transition matrix.

(ii) Find the invariant distribution of the Markov chain.

(iii) Show that the Markov chain satisfies the necessary conditions for the convergence
theorem for Markov chains and find the limiting probability that the mathemati-
cian’s nth journey is by bicycle.

[Results from the course may be used without proof provided that they are clearly stated.]

END OF PAPER
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