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Before you begin read these instructions carefully.
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SECTION I

1B Vectors and Matrices
(a) Describe geometrically the curve

|αz + βz̄| =
√

αβ (z + z̄) + (α− β)2,

where z ∈ C and α, β are positive, distinct, real constants.

(b) Let θ be a real number not equal to an integer multiple of 2π. Show that

N∑

m=1

sin(mθ) =
sin θ + sin(Nθ)− sin(Nθ + θ)

2(1 − cos θ)
,

and derive a similar expression for

N∑

m=1

cos(mθ).

2C Vectors and Matrices
Precisely one of the four matrices specified below is not orthogonal. Which is it?

Give a brief justification.

1√
6




1 −
√
3

√
2

1
√
3

√
2

−2 0
√
2


 1

3



1 2 −2
2 −2 −1
2 1 2


 1√

6




1 −2 1

−
√
6 0

√
6

1 1 1


 1

9




7 −4 −4
−4 1 −8
−4 −8 1




Given that the four matrices represent transformations of R3 corresponding (in no
particular order) to a rotation, a reflection, a combination of a rotation and a reflection,
and none of these, identify each matrix. Explain your reasoning.

[Hint: For two of the matrices, A and B say, you may find it helpful to calculate
det(A− I) and det(B − I), where I is the identity matrix.]

3F Analysis I
Find the following limits:

(a) lim
x→0

sinx

x

(b) lim
x→0

(1 + x)1/x

(c) lim
x→∞

(1 + x)
x

1+x cos4 x

ex

Carefully justify your answers.

[You may use standard results provided that they are clearly stated.]
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4E Analysis I
Let

∑
n>0 anz

n be a complex power series. State carefully what it means for the
power series to have radius of convergence R, with 0 6 R 6 ∞.

Find the radius of convergence of
∑

n>0 p(n)z
n, where p(n) is a fixed polynomial in n

with coefficients in C.
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SECTION II

5B Vectors and Matrices
(i) State and prove the Cauchy–Schwarz inequality for vectors in Rn. Deduce the

inequalities

|a+ b| 6 |a|+ |b| and |a+ b+ c| 6 |a|+ |b|+ |c|

for a,b, c ∈ Rn.

(ii) Show that every point on the intersection of the planes

x · a = A, x · b = B,

where a 6= b, satisfies

|x|2 > (A−B)2

|a− b|2 .

What happens if a = b?

(iii) Using your results from part (i), or otherwise, show that for any x1,x2,y1,y2 ∈ Rn,

|x1 − y1| − |x1 − y2| 6 |x2 − y1|+ |x2 − y2|.

6C Vectors and Matrices
(i) Consider the map from R4 to R3 represented by the matrix




α 1 1 −1
2 −α 0 −2

−α 2 1 1




where α ∈ R. Find the image and kernel of the map for each value of α.

(ii) Show that any linear map f : Rn → R may be written in the form f(x) = a · x for
some fixed vector a ∈ Rn. Show further that a is uniquely determined by f.

It is given that n = 4 and that the vectors

( 1
1
1

−1

)
,

( 2
−1
0

−2

)
,

(−1
2
1
1

)

lie in the kernel of f. Determine the set of possible values of a.
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7A Vectors and Matrices
(i) Find the eigenvalues and eigenvectors of the following matrices and show that both

are diagonalisable:

A =




1 1 −1
−1 3 −1
−1 1 1


 , B =




1 4 −3
−4 10 −4
−3 4 1


 .

(ii) Show that, if two real n×n matrices can both be diagonalised using the same basis
transformation, then they commute.

(iii) Suppose now that two real n × n matrices C and D commute and that D has
n distinct eigenvalues. Show that for any eigenvector x of D the vector Cx is a
scalar multiple of x. Deduce that there exists a common basis transformation that
diagonalises both matrices.

(iv) Show that A and B satisfy the conditions in (iii) and find a matrix S such that both
of the matrices S−1AS and S−1BS are diagonal.

8A Vectors and Matrices
(a) A matrix is called normal if A†A = AA†. Let A be a normal n×n complex matrix.

(i) Show that for any vector x ∈ Cn,

|Ax| = |A†x|.

(ii) Show that A− λI is also normal for any λ ∈ C, where I denotes the identity
matrix.

(iii) Show that if x is an eigenvector of A with respect to the eigenvalue λ ∈ C, then
x is also an eigenvector of A†, and determine the corresponding eigenvalue.

(iv) Show that if xλ and xµ are eigenvectors of A with respect to distinct
eigenvalues λ and µ respectively, then xλ and xµ are orthogonal.

(v) Show that if A has a basis of eigenvectors, then A can be diagonalised using
an orthonormal basis. Justify your answer.

[You may use standard results provided that they are clearly stated.]

(b) Show that any matrix A satisfying A† = A is normal, and deduce using results from
(a) that its eigenvalues are real.

(c) Show that any matrix A satisfying A† = −A is normal, and deduce using results
from (a) that its eigenvalues are purely imaginary.

(d) Show that any matrix A satisfying A† = A−1 is normal, and deduce using results
from (a) that its eigenvalues have unit modulus.
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9F Analysis I
Let (an), (bn) be sequences of real numbers. Let Sn =

∑n
j=1 aj and set S0 = 0.

Show that for any 1 6 m 6 n we have

n∑

j=m

ajbj = Snbn − Sm−1bm +

n−1∑

j=m

Sj(bj − bj+1).

Suppose that the series
∑

n>1 an converges and that (bn) is bounded and monotonic.
Does

∑
n>1 anbn converge?

Assume again that
∑

n>1 an converges. Does
∑

n>1 n
1/nan converge?

Justify your answers.

[You may use the fact that a sequence of real numbers converges if and only if it is
a Cauchy sequence.]

10D Analysis I
(a) For real numbers a, b such that a < b, let f : [a, b] → R be a continuous function.

Prove that f is bounded on [a, b], and that f attains its supremum and infimum
on [a, b].

(b) For x ∈ R, define

g(x) =

{
|x| 12 sin(1/ sin x), x 6= nπ

0, x = nπ
(n ∈ Z).

Find the set of points x ∈ R at which g(x) is continuous.

Does g attain its supremum on [0, π]?

Does g attain its supremum on [π, 3π/2]?

Justify your answers.
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11D Analysis I
(i) State and prove the intermediate value theorem.

(ii) Let f : [0, 1] → R be a continuous function. The chord joining the points
(
α, f(α)

)

and
(
β, f(β)

)
of the curve y = f(x) is said to be horizontal if f(α) = f(β). Suppose

that the chord joining the points
(
0, f(0)

)
and

(
1, f(1)

)
is horizontal. By considering

the function g defined on [0, 12 ] by

g(x) = f(x+ 1
2)− f(x),

or otherwise, show that the curve y = f(x) has a horizontal chord of length 1
2 in

[0, 1]. Show, more generally, that it has a horizontal chord of length 1
n for each

positive integer n.

12E Analysis I
Let f : [0, 1] → R be a bounded function, and let Dn denote the dissection

0 < 1
n < 2

n < · · · < n−1
n < 1 of [0, 1]. Prove that f is Riemann integrable if and

only if the difference between the upper and lower sums of f with respect to the dissection
Dn tends to zero as n tends to infinity.

Suppose that f is Riemann integrable and g : R → R is continuously differentiable.
Prove that g ◦ f is Riemann integrable.

[You may use the mean value theorem provided that it is clearly stated.]

END OF PAPER
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