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Paper 4, Section II

20F Algebraic Geometry

(i) Explain how a linear system on a curve C may induce a morphism from C to
projective space. What condition on the linear system is necessary to yield a morphism
f : C → Pn such that the pull-back of a hyperplane section is an element of the linear
system? What condition is necessary to imply the morphism is an embedding?

(ii) State the Riemann–Roch theorem for curves.

(iii) Show that any divisor of degree 5 on a curve C of genus 2 induces an embedding.

Paper 3, Section II

20F Algebraic Geometry

(i) Let X be an affine variety. Define the tangent space of X at a point P . Say what
it means for the variety to be singular at P .

(ii) Find the singularities of the surface in P3 given by the equation

xyz + yzw + zwx+wxy = 0.

(iii) Consider C = Z(x2 − y3) ⊆ A2. Let X → A2 be the blowup of the origin.
Compute the proper transform of C in X, and show it is non-singular.
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Paper 2, Section II

21F Algebraic Geometry

(i) Define the radical of an ideal.

(ii) Assume the following statement: If k is an algebraically closed field and I ⊆
k[x1, . . . , xn] is an ideal, then either I = (1) or Z(I) 6= ∅. Prove the Hilbert
Nullstellensatz, namely that if I ⊆ k[x1, . . . , xn] with k algebraically closed, then

I(Z(I)) =
√
I.

(iii) Show that if A is a commutative ring and I, J ⊆ A are ideals, then

√
I ∩ J =

√
I ∩

√
J.

(iv) Is √
I + J =

√
I +

√
J ?

Give a proof or a counterexample.

Paper 1, Section II

21F Algebraic Geometry

Let k be an algebraically closed field.

(i) Let X and Y be affine varieties defined over k. Given a map f : X → Y, define
what it means for f to be a morphism of affine varieties.

(ii) With X, Y still affine varieties over k, show that there is a one-to-one
correspondence between Hom(X,Y ), the set of morphisms between X and Y , and
Hom(A(Y ), A(X)), the set of k-algebra homomorphisms between A(Y ) and A(X).

(iii) Let f : A2 → A4 be given by f(t, u) = (u, t, t2, tu). Show that the image of f is
an affine variety X, and find a set of generators for I(X).
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Paper 3, Section II

17H Algebraic Topology

Let K and L be simplicial complexes. Explain what is meant by a simplicial
approximation to a continuous map f : |K| → |L|. State the simplicial approximation
theorem, and define the homomorphism induced on homology by a continuous map
between triangulable spaces. [You do not need to show that the homomorphism is well-
defined.]

Let h : S1 → S1 be given by z 7→ zn for a positive integer n, where S1 is considered
as the unit complex numbers. Compute the map induced by h on homology.

Paper 4, Section II

18H Algebraic Topology

State the Mayer–Vietoris theorem for a simplicial complex K which is the union
of two subcomplexes M and N . Explain briefly how the connecting homomorphism
∂n : Hn(K) → Hn−1(M ∩N) is defined.

If K is the union of subcomplexes M1,M2, . . . ,Mn, with n > 2, such that each
intersection

Mi1 ∩Mi2 ∩ · · · ∩Mik , 1 6 k 6 n,

is either empty or has the homology of a point, then show that

Hi(K) = 0 for i > n− 1.

Construct examples for each n > 2 showing that this is sharp.

Paper 2, Section II

18H Algebraic Topology

Define what it means for p : X̃ → X to be a covering map, and what it means to
say that p is a universal cover.

Let p : X̃ → X be a universal cover, A ⊂ X be a locally path connected subspace,
and Ã ⊂ p−1(A) be a path component containing a point ã0 with p(ã0) = a0. Show that
the restriction p|

Ã
: Ã → A is a covering map, and that under the Galois correspondence

it corresponds to the subgroup

Ker
(
π1(A, a0) → π1(X, a0)

)

of π1(A, a0).
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Paper 1, Section II

18H Algebraic Topology

State carefully a version of the Seifert–van Kampen theorem for a cover of a space
by two closed sets.

Let X be the space obtained by gluing together a Möbius band M and a torus
T = S1 × S1 along a homeomorphism of the boundary of M with S1 × {1} ⊂ T . Find
a presentation for the fundamental group of X, and hence show that it is infinite and
non-abelian.
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Paper 4, Section II

31A Applications of Quantum Mechanics

Let Λ be a Bravais lattice with basis vectors a1, a2, a3. Define the reciprocal lattice
Λ∗ and write down basis vectors b1, b2, b3 for Λ∗ in terms of the basis for Λ.

A finite crystal consists of identical atoms at sites of Λ given by

ℓ = n1a1 + n2a2 + n3a3 with 0 6 ni < Ni .

A particle of mass m scatters off the crystal; its wavevector is k before scattering and
k′ after scattering, with |k| = |k′|. Show that the scattering amplitude in the Born
approximation has the form

− m

2π~2
∆(q) Ũ (q) , q = k′ − k ,

where U(x) is the potential due to a single atom at the origin and ∆(q) depends on
the crystal structure. [You may assume that in the Born approximation the amplitude
for scattering off a potential V (x) is −(m/2π~2) Ṽ (q) where tilde denotes the Fourier
transform.]

Derive an expression for |∆(q) | that is valid when e−iq·ai 6= 1. Show also that when
q is a reciprocal lattice vector |∆(q) | is equal to the total number of atoms in the crystal.
Comment briefly on the significance of these results.

Now suppose that Λ is a face-centred-cubic lattice:

a1 =
a

2
(ŷ + ẑ) , a2 =

a

2
(ẑ+ x̂) , a3 =

a

2
(x̂+ ŷ)

where a is a constant. Show that for a particle incident with |k| > 2π/a, enhanced
scattering is possible for at least two values of the scattering angle, θ1 and θ2, related by

sin(θ1/2)

sin(θ2/2)
=

√
3

2
.
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Paper 2, Section II

32A Applications of Quantum Mechanics

A beam of particles of mass m and energy ~2k2/2m is incident on a target at
the origin described by a spherically symmetric potential V (r). Assuming the potential
decays rapidly as r → ∞, write down the asymptotic form of the wavefunction, defining
the scattering amplitude f(θ).

Consider a free particle with energy ~2k2/2m. State, without proof, the general
axisymmetric solution of the Schrödinger equation for r > 0 in terms of spherical Bessel
and Neumann functions jℓ and nℓ, and Legendre polynomials Pℓ (ℓ = 0, 1, 2, . . .). Hence
define the partial wave phase shifts δℓ for scattering from a potential V (r) and derive the
partial wave expansion for f(θ) in terms of phase shifts.

Now suppose

V (r) =

{
~2γ2/2m r < a

0 r > a

with γ > k. Show that the S-wave phase shift δ0 obeys

tanh (κa)

κa
=

tan (ka+ δ0)

ka

where κ2 = γ2 − k2. Deduce that for an S-wave solution

f → tanh γa− γa

γ
as k → 0 .

[ You may assume : exp (ikr cos θ) =
∞∑

ℓ=0

(2ℓ+ 1) iℓ jℓ(kr)Pℓ (cos θ)

and jℓ(ρ) ∼
1

ρ
sin (ρ− ℓπ/2) , nℓ(ρ) ∼ −1

ρ
cos (ρ− ℓπ/2) as ρ → ∞ . ]
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Paper 1, Section II

32A Applications of Quantum Mechanics

Define the Rayleigh–Ritz quotient R[ψ] for a normalisable state |ψ〉 of a quantum
system with Hamiltonian H. Given that the spectrum of H is discrete and that there is
a unique ground state of energy E0, show that R[ψ] > E0 and that equality holds if and
only if |ψ〉 is the ground state.

A simple harmonic oscillator (SHO) is a particle of massm moving in one dimension
subject to the potential

V (x) =
1

2
mω2x2 .

Estimate the ground state energy E0 of the SHO by using the ground state wavefunction
for a particle in an infinite potential well of width a, centred on the origin (the potential is
U(x) = 0 for |x| < a/2 and U(x) = ∞ for |x| > a/2). Take a as the variational parameter.

Perform a similar estimate for the energy E1 of the first excited state of the SHO
by using the first excited state of the infinite potential well as a trial wavefunction.

Is the estimate for E1 necessarily an upper bound? Justify your answer.

[
You may use :

∫ π/2

−π/2
y2 cos2 y dy =

π

4

(π2
6
−1

)
and

∫ π

−π
y2 sin2 y dy = π

(π2
3
−1

2

)
.
]
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Paper 3, Section II

32A Applications of Quantum Mechanics

A particle of mass m and energy E = −~2κ2/2m < 0 moves in one dimension
subject to a periodic potential

V (x) = −~2λ
m

∞∑

ℓ=−∞
δ (x− ℓa) with λ > 0 .

Determine the corresponding Floquet matrix M. [You may assume without proof that
for the Schrödinger equation with potential α δ(x) the wavefunction ψ(x) is continuous at
x = 0 and satisfies ψ′(0+)− ψ′(0−) = (2mα/~2)ψ(0).]

Explain briefly, with reference to Bloch’s theorem, how restrictions on the energy
of a Bloch state can be derived from M. Deduce that for the potential V (x) above, κ is
confined to a range whose boundary values are determined by

tanh
(κa

2

)
=
κ

λ
and coth

(κa
2

)
=
κ

λ
.

Sketch the left-hand and right-hand sides of each of these equations as functions of
y = κa/2. Hence show that there is exactly one allowed band of negative energies with
either (i) E− 6 E < 0 or (ii) E− 6 E 6 E+ < 0 and determine the values of λa for which
each of these cases arise. [You should not attempt to evaluate the constants E±.]

Comment briefly on the limit a→ ∞ with λ fixed.
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Paper 4, Section II

23K Applied Probability

(i) Let X be a Markov chain on S and A ⊂ S. Let TA be the hitting time of A
and τy denote the total time spent at y ∈ S by the chain before hitting A. Show that if
h(x) = Px(TA < ∞), then Ex[τy | TA < ∞] = [h(y)/h(x)]Ex(τy).

(ii) Define the Moran model and show that ifXt is the number of individuals carrying
allele a at time t > 0 and τ is the fixation time of allele a, then

P(Xτ = N | X0 = i) =
i

N
.

Show that conditionally on fixation of an allele a being present initially in i individuals,

E[τ | fixation] = N − i+
N − i

i

i−1∑

j=1

j

N − j
.

Paper 3, Section II

23K Applied Probability

(i) Let X be a Poisson process of parameter λ. Let Y be obtained by taking each
point of X and, independently of the other points, keeping it with probability p. Show
that Y is another Poisson process and find its intensity. Show that for every fixed t the
random variables Yt and Xt − Yt are independent.

(ii) Suppose we have n bins, and balls arrive according to a Poisson process of rate 1.
Upon arrival we choose a bin uniformly at random and place the ball in it. We let Mn be
the maximum number of balls in any bin at time n. Show that

P
(
Mn > (1 + ǫ)

log n

log log n

)
→ 0 as n → ∞.

[You may use the fact that if ξ is a Poisson random variable of mean 1, then

P(ξ > x) 6 exp(x− x log x).]
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Paper 2, Section II

24K Applied Probability

(i) Defne a Poisson process on R+ with rate λ. Let N and M be two independent
Poisson processes on R+ of rates λ and µ respectively. Prove that N +M is also a Poisson
process and find its rate.

(ii) Let X be a discrete time Markov chain with transition matrix K on the finite
state space S. Find the generator of the continuous time Markov chain Yt = XNt in terms
of K and λ. Show that if π is an invariant distribution for X, then it is also invariant
for Y .

Suppose that X has an absorbing state a. If τa and Ta are the absorption times for
X and Y respectively, write an equation that relates Ex[τa] and Ex[Ta], where x ∈ S.

[Hint: You may want to prove that if ξ1, ξ2, . . . are i.i.d. non-negative random
variables with E[ξ1] < ∞ and M is an independent non-negative random variable, then

E
[∑M

i=1 ξi

]
= E[M ]E[ξ1].]

Paper 1, Section II

24K Applied Probability

(a) Give the definition of a birth and death chain in terms of its generator. Show
that a measure π is invariant for a birth and death chain if and only if it solves the detailed
balance equations.

(b) There are s servers in a post office and a single queue. Customers arrive as
a Poisson process of rate λ and the service times at each server are independent and
exponentially distributed with parameter µ. Let Xt denote the number of customers in
the post office at time t. Find conditions on λ, µ and s for X to be positive recurrent, null
recurrent and transient, justifying your answers.
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Paper 4, Section II

27C Asymptotic Methods

Consider the ordinary differential equation

d2u

dz2
+ f(z)

du

dz
+ g(z)u = 0 ,

where

f(z) ∼
∞∑

m=0

fm
zm

, g(z) ∼
∞∑

m=0

gm
zm

, z → ∞ ,

and fm, gm are constants. Look for solutions in the asymptotic form

u(z) = eλzzµ
[
1 +

a

z
+

b

z2
+O

(
1

z3

)]
, z → ∞ ,

and determine λ in terms of (f0, g0), as well as µ in terms of (λ, f0, f1, g1).

Deduce that the Bessel equation

d2u

dz2
+

1

z

du

dz
+

(
1− ν2

z2

)
u = 0 ,

where ν is a complex constant, has two solutions of the form

u(1)(z) =
eiz

z1/2

[
1 +

a(1)

z
+O

(
1

z2

)]
, z → ∞ ,

u(2)(z) =
e−iz

z1/2

[
1 +

a(2)

z
+O

(
1

z2

)]
, z → ∞ ,

and determine a(1) and a(2) in terms of ν.

Can the above asymptotic expansions be valid for all arg(z), or are they valid only
in certain domains of the complex z-plane? Justify your answer briefly.
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Paper 3, Section II

27C Asymptotic Methods

Show that ∫ 1

0
eikt

3
dt = I1 − I2 , k > 0 ,

where I1 is an integral from 0 to ∞ along the line arg(z) = π
6 and I2 is an integral from 1

to ∞ along a steepest-descent contour C which you should determine.

By employing in the integrals I1 and I2 the changes of variables u = −iz3 and
u = −i(z3 − 1), respectively, compute the first two terms of the large k asymptotic
expansion of the integral above.

Paper 1, Section II

27C Asymptotic Methods

(a) State the integral expression for the gamma function Γ(z), for Re(z) > 0, and
express the integral ∫ ∞

0
tγ−1 eit dt , 0 < γ < 1 ,

in terms of Γ(γ). Explain why the constraints on γ are necessary.

(b) Show that

∫ ∞

0

e−kt2

(t2 + t)
1
4

dt ∼
∞∑

m=0

am
kα+βm

, k → ∞ ,

for some constants am, α and β. Determine the constants α and β, and express am in
terms of the gamma function.

State without proof the basic result needed for the rigorous justification of the above
asymptotic formula.

[You may use the identity:

(1 + z)α =

∞∑

m=0

cmzm, cm =
Γ(α+ 1)

m! Γ(α + 1−m)
, |z| < 1 . ]
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Paper 4, Section I

7D Classical Dynamics

A triatomic molecule is modelled by three masses moving in a line while connected
to each other by two identical springs of force constant k as shown in the figure.
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(a) Write down the Lagrangian and derive the equations describing the motion of the
atoms.

(b) Find the normal modes and their frequencies. What motion does the lowest frequency
represent?

Paper 3, Section I

7D Classical Dynamics

(a) Consider a particle of mass m that undergoes periodic motion in a one-dimensional
potential V (q). Write down the Hamiltonian H(p, q) for the system. Explain what is
meant by the angle–action variables (θ, I) of the system and write down the integral
expression for the action variable I.

(b) For V (q) = 1
2mω2q2 and fixed total energy E, describe the shape of the trajectories

in phase-space. By using the expression for the area enclosed by the trajectory, or
otherwise, find the action variable I in terms of ω and E. Hence describe how E
changes with ω if ω varies slowly with time. Justify your answer.
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Paper 2, Section I

7D Classical Dynamics

The Lagrangian for a heavy symmetric top of mass M , pinned at a point that is a
distance l from the centre of mass, is

L =
1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3(ψ̇ + φ̇ cos θ)2 −Mgl cos θ .

(a) Find all conserved quantities. In particular, show that ω3, the spin of the top, is
constant.

(b) Show that θ obeys the equation of motion

I1θ̈ = −dVeff
dθ

,

where the explicit form of Veff should be determined.

(c) Determine the condition for uniform precession with no nutation, that is θ̇ = 0 and
φ̇ = const. For what values of ω3 does such uniform precession occur?
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Paper 1, Section I

7D Classical Dynamics

(a) The action for a one-dimensional dynamical system with a generalized coordinate q
and Lagrangian L is given by

S =

∫ t2

t1

L(q, q̇, t) dt .

State the principle of least action and derive the Euler–Lagrange equation.

(b) A planar spring-pendulum consists of a light rod of length l and a bead of mass m,
which is able to slide along the rod without friction and is attached to the ends of
the rod by two identical springs of force constant k as shown in the figure. The rod
is pivoted at one end and is free to swing in a vertical plane under the influence of
gravity.
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(i) Identify suitable generalized coordinates and write down the Lagrangian of the
system.

(ii) Derive the equations of motion.
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Paper 4, Section II

12C Classical Dynamics

Consider a rigid body with angular velocity ω, angular momentum L and position
vector r, in its body frame.

(a) Use the expression for the kinetic energy of the body,

1

2

∫
d3r ρ(r) ṙ2 ,

to derive an expression for the tensor of inertia of the body, I. Write down the
relationship between L, I and ω.

(b) Euler’s equations of torque-free motion of a rigid body are

I1 ω̇1 = (I2 − I3)ω2ω3 ,

I2 ω̇2 = (I3 − I1)ω3ω1 ,

I3 ω̇3 = (I1 − I2)ω1ω2 .

Working in the frame of the principal axes of inertia, use Euler’s equations to show
that the energy E and the squared angular momentum L2 are conserved.

(c) Consider a cuboid with sides a, b and c, and with mass M distributed uniformly.

(i) Use the expression for the tensor of inertia derived in (a) to calculate the principal
moments of inertia of the body.

(ii) Assume b = 2a and c = 4a, and suppose that the initial conditions are such that

L2 = 2I2E

with the initial angular velocity ω perpendicular to the intermediate principal
axis e2. Derive the first order differential equation for ω2 in terms of E, M and
a and hence determine the long-term behaviour of ω.
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Paper 2, Section II

12C Classical Dynamics

(a) Consider a Lagrangian dynamical system with one degree of freedom. Write down
the expression for the Hamiltonian of the system in terms of the generalized velocity
q̇, momentum p, and the Lagrangian L(q, q̇, t). By considering the differential of the
Hamiltonian, or otherwise, derive Hamilton’s equations.

Show that if q is ignorable (cyclic) with respect to the Lagrangian, i.e. ∂L/∂q = 0,
then it is also ignorable with respect to the Hamiltonian.

(b) A particle of charge q and mass m moves in the presence of electric and magnetic
fields such that the scalar and vector potentials are φ = yE and A = (0, xB, 0), where
(x, y, z) are Cartesian coordinates and E, B are constants. The Lagrangian of the
particle is

L =
1

2
mṙ2 − qφ+ qṙ ·A .

Starting with the Lagrangian, derive an explicit expression for the Hamiltonian and
use Hamilton’s equations to determine the motion of the particle.
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Paper 4, Section I

3G Coding and Cryptography

Explain how to construct binary Reed–Muller codes. State and prove a result giving

the minimum distance for each such Reed–Muller code.

Paper 3, Section I

3G Coding and Cryptography

Let A be a random variable that takes each value a in the finite alphabet A with

probability p(a). Show that, if each l(a) is an integer greater than 0 and
∑

2−l(a) 6 1,

then there is a decodable binary code c : A → {0, 1}∗ with each codeword c(a) having

length l(a).

Prove that, for any decodable code c : A → {0, 1}∗, we have

H(A) 6 E l(A)

where H(A) is the entropy of the random variable A. When is there equality in this

inequality?

Paper 2, Section I

3G Coding and Cryptography

A random variable A takes values in the alphabetA = {a, b, c, d, e} with probabilities

0.4, 0.2, 0.2, 0.1 and 0.1. Calculate the entropy of A.

Define what it means for a code for a general finite alphabet to be optimal. Find

such a code for the distribution above and show that there are optimal codes for this

distribution with differing lengths of codeword.

[You may use any results from the course without proof. Note that log2 5 ≃ 2.32.]
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Paper 1, Section I

3G Coding and Cryptography

Let A be a finite alphabet. Explain what is meant by saying that a binary code

c : A → {0, 1}∗ has minimum distance δ. If c is such a binary code with minimum distance

δ, show that c is δ − 1 error-detecting and ⌊12 (δ − 1)⌋ error-correcting.

Show that it is possible to construct a code that has minimum distance δ for any

integer δ > 0.

Paper 1, Section II

9G Coding and Cryptography

Define the Hamming code. Show that it is a perfect, linear, 1-error correcting code.

I wish to send a message through a noisy channel to a friend. The message consists

of a large number N = 1, 000 of letters from a 16-letter alphabet A. When my friend has

decoded the message, she can tell whether there have been any errors. If there have, she

asks me to send the message again and this is repeated until she has received the message

without error. For each individual binary digit that is transmitted, there is independently

a small probability p = 0.001 of an error.

(a) Suppose that I encode my message by writing each letter as a 4-bit binary string.

The whole message is then 4N bits long. What is the probability P that the entire

message is transmitted without error? How many times should I expect to transmit

the message until my friend receives it without error?

(b) As an alternative, I use the Hamming code to encode each letter of A as a 7-bit

binary string. What is the probability that my friend can decode a single 7-bit

string correctly? Deduce that the probability Q that the entire message is correctly

decoded is given approximately by

Q ≃ (1− 21p2)N ≃ exp(−21Np2) .

Which coding method is better?

Part II, 2015 List of Questions [TURN OVER



22

Paper 2, Section II
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Briefly describe the RSA public key cipher.

Just before it went into liquidation, the Internet Bank decided that it wanted to

communicate with each of its customers using an RSA cipher. So, it chose a large modulus

N , which is the product of two large prime numbers, and chose encrypting exponents ej
and decrypting exponents dj for each customer j. The bank published N and ej and sent

the decrypting exponent dj secretly to customer j. Show explicitly that the cipher can be

broken by each customer.

The bank sent out the same message to each customer. I am not a customer of the

bank but have two friends who are and I notice that their published encrypting exponents

are coprime. Explain how I can find the original message. Can I break the cipher?
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8C Cosmology

Calculate the total effective number of relativistic spin states g∗ present in the early
universe when the temperature T is 1010 K if there are three species of low-mass neutrinos
and antineutrinos in addition to photons, electrons and positrons. If the weak interaction
rate is Γ = (T/1010 K)5 s−1 and the expansion rate of the universe is H =

√
8πGρ/3,

where ρ is the total density of the universe, calculate the temperature T∗ at which the

neutrons and protons cease to interact via weak interactions, and show that T∗ ∝ g
1/6
∗ .

State the formula for the equilibrium ratio of neutrons to protons at T∗, and briefly
describe the sequence of events as the temperature falls from T∗ to the temperature at
which the nucleosynthesis of helium and deuterium ends.

What is the effect of an increase or decrease of g∗ on the abundance of helium-4
resulting from nucleosynthesis? Why do changes in g∗ have a very small effect on the final
abundance of deuterium?

Part II, 2015 List of Questions [TURN OVER



24

Paper 3, Section I

8C Cosmology

What is the flatness problem? Show by reference to the Friedmann equation how a
period of accelerated expansion of the scale factor a(t) in the early stages of the universe
can solve the flatness problem if ρ + 3P < 0, where ρ is the mass density and P is the
pressure.

In the very early universe, where we can neglect the spatial curvature and the
cosmological constant, there is a homogeneous scalar field φ with a vacuum potential
energy

V (φ) = m2φ2 ,

and the Friedmann energy equation (in units where 8πG = 1) is

3H2 =
1

2
φ̇2 + V (φ) ,

where H is the Hubble parameter. The field φ obeys the evolution equation

φ̈+ 3Hφ̇ +
dV

dφ
= 0 .

During inflation, φ evolves slowly after starting from a large initial value φi at t = 0. State
what is meant by the slow-roll approximation. Show that in this approximation,

φ(t) = φi −
2√
3
mt ,

a(t) = ai exp

[
mφi√

3
t− 1

3
m2t2

]
= ai exp

[
φ2
i − φ2(t)

4

]
,

where ai is the initial value of a.

As φ(t) decreases from its initial value φi, what is its approximate value when the
slow-roll approximation fails?

Part II, 2015 List of Questions



25

Paper 2, Section I

8C Cosmology

The mass density perturbation equation for non-relativistic matter (P ≪ ρc2) with
wave number k in the late universe (t > teq) is

δ̈ + 2
ȧ

a
δ̇ −

(
4πGρ − c2s k

2

a2

)
δ = 0 . (∗)

Suppose that a non-relativistic fluid with the equation of state P ∝ ρ4/3 dominates the
universe when a(t) = t2/3, and the curvature and the cosmological constant can be
neglected. Show that the sound speed can be written in the form c2s(t) ≡ dP/dρ =
c̄2s t

−2/3 where c̄s is a constant.

Find power-law solutions to (∗) of the form δ ∝ tβ and hence show that the general
solution is

δ = Ak t
n+ + Bk t

n−

where

n± = −1

6
±

[(5
6

)2
− c̄2s k

2

]1/2
.

Interpret your solutions in the two regimes k ≪ kJ and k ≫ kJ where kJ =
5

6c̄s
.

Part II, 2015 List of Questions [TURN OVER



26

Paper 1, Section I

8C Cosmology

Consider three galaxies O, A and B with position vectors rO, rA and rB in a
homogeneous universe. Assuming they move with non-relativistic velocities vO = 0, vA

and vB , show that spatial homogeneity implies that the velocity field v(r) satisfies

v(rB − rA) = v(rB − rO)− v(rA − rO) ,

and hence that v is linearly related to r by

vi =

3∑

j=1

Hijrj ,

where the components of the matrix Hij are independent of r.

Suppose the matrix Hij has the form

Hij =
D

t



5 −1 −2
1 5 −1
2 1 5


 ,

with D > 0 constant. Describe the kinematics of the cosmological expansion.
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12C Cosmology

Massive particles and antiparticles each with mass m and respective number
densities n(t) and n̄(t) are present at time t in the radiation era of an expanding universe
with zero curvature and no cosmological constant. Assuming they interact with cross-
section σ at speed v, explain, by identifying the physical significance of each of the terms,
why the evolution of n(t) is described by

dn

dt
= −3

ȧ

a
n− 〈σv〉nn̄+ P (t) ,

where the expansion scale factor of the universe is a(t), and where the meaning of P (t)
should be briefly explained. Show that

(n− n̄)a3 = constant .

Assuming initial particle-antiparticle symmetry, show that

d(na3)

dt
= 〈σv〉 (n2

eq − n2)a3 ,

where neq is the equilibrium number density at temperature T .

Let Y = n/T 3 and x = m/T . Show that

dY

dx
= − λ

x2
(Y 2 − Y 2

eq) ,

where λ = m3 〈σv〉 /Hm and Hm is the Hubble expansion rate when T = m.

When x > xf ≃ 10, the number density n can be assumed to be depleted only by
annihilations. If λ is constant, show that as x → ∞ at late time, Y approaches a constant
value given by

Y =
xf
λ

.

Why do you expect weakly interacting particles to survive in greater numbers than strongly
interacting particles?
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12C Cosmology

A closed universe contains black-body radiation, has a positive cosmological con-
stant Λ, and is governed by the equation

ȧ2

a2
=

Γ

a4
− 1

a2
+

Λ

3
,

where a(t) is the scale factor and Γ is a positive constant. Using the substitution y = a2

and the boundary condition y(0) = 0, deduce the boundary condition for ẏ(0) and show
that

ÿ =
4Λ

3
y − 2

and hence that

a2(t) =
3

2Λ

[
1− cosh

(√
4Λ

3
t

)
+ λ sinh

(√
4Λ

3
t

)]
.

Express the constant λ in terms of Λ and Γ.

Sketch the graphs of a(t) for the cases λ > 1 and 0 < λ < 1.
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21G Differential Geometry

Let U(n) denote the set of n × n unitary complex matrices. Show that U(n) is a

smooth (real) manifold, and find its dimension. [You may use any general results from

the course provided they are stated correctly.] For A any matrix in U(n) and H an n× n

complex matrix, determine when H represents a tangent vector to U(n) at A.

Consider the tangent spaces to U(n) equipped with the metric induced from the

standard (Euclidean) inner product 〈·, ·〉 on the real vector space of n×n complex matrices,

given by 〈L,K〉 = Re trace (LK∗), where Re denotes the real part and K∗ denotes the

conjugate transpose of K. Suppose that H represents a tangent vector to U(n) at the

identity matrix I. Sketch an explicit construction of a geodesic curve on U(n) passing

through I and with tangent direction H, giving a brief proof that the acceleration of the

curve is always orthogonal to the tangent space to U(n).

[Hint: You will find it easier to work directly with n × n complex matrices, rather

than the corresponding 2n× 2n real matrices.]

Paper 3, Section II

21G Differential Geometry

Show that the surface S of revolution x2 + y2 = cosh2 z in R3 is homeomorphic to

a cylinder and has everywhere negative Gaussian curvature. Show moreover the existence

of a closed geodesic on S.

Let S ⊂ R3 be an arbitrary embedded surface which is homeomorphic to a cylinder

and has everywhere negative Gaussian curvature. By using a suitable version of the

Gauss–Bonnet theorem, show that S contains at most one closed geodesic. [If required,

appropriate forms of the Jordan curve theorem in the plane may also be used without

proof.]
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22G Differential Geometry

If U denotes a domain in R2, what is meant by saying that a smooth map φ : U → R3

is an immersion? Define what it means for such an immersion to be isothermal. Explain

what it means to say that an immersed surface is minimal.

Let φ(u, v) = (x(u, v), y(u, v), z(u, v)) be an isothermal immersion. Show that it is

minimal if and only if x, y, z are harmonic functions of u, v. [You may use the formula

for the mean curvature given in terms of the first and second fundamental forms, namely

H = (eG − 2fF + gE)/(2{EG − F 2}) . ]
Produce an example of an immersed minimal surface which is not an open subset of

a catenoid, helicoid, or a plane. Prove that your example does give an immersed minimal

surface in R3.

Paper 1, Section II

22G Differential Geometry

Let Ω ⊂ R2 be a domain (connected open subset) with boundary ∂Ω a continuously

differentiable simple closed curve. Denoting by A(Ω) the area of Ω and l(∂Ω) the length

of the curve ∂Ω, state and prove the isoperimetric inequality relating A(Ω) and l(∂Ω)

with optimal constant, including the characterization for equality. [You may appeal to

Wirtinger’s inequality as long as you state it precisely.]

Does the result continue to hold if the boundary ∂Ω is allowed finitely many points at

which it is not differentiable? Briefly justify your answer by giving either a counterexample

or an indication of a proof.
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28B Dynamical Systems

Let f : I → I be a continuous one-dimensional map of an interval I ⊂ R. Explain
what is meant by the statements (i) that f has a horseshoe and (ii) that f is chaotic
(according to Glendinning’s definition).

Assume that f has a 3-cycle {x0, x1, x2} with x1 = f(x0), x2 = f(x1), x0 = f(x2)
and, without loss of generality, x0 < x1 < x2. Prove that f2 has a horseshoe. [You may
assume the intermediate value theorem.]

Represent the effect of f on the intervals Ia = [x0, x1] and Ib = [x1, x2] by means of
a directed graph, explaining carefully how the graph is constructed. Explain what feature
of the graph implies the existence of a 3-cycle.

The map g : I → I has a 5-cycle {x0, x1, x2, x3, x4} with xi+1 = g(xi), 0 6 i 6 3
and x0 = g(x4), and x0 < x1 < x2 < x3 < x4. For which n, 1 6 n 6 4, is an n-cycle of g
guaranteed to exist? Is g guaranteed to be chaotic? Is g guaranteed to have a horseshoe?
Justify your answers. [You may use a suitable directed graph as part of your arguments.]

How do your answers to the above change if instead x4 < x2 < x1 < x3 < x0?

Paper 3, Section II

28B Dynamical Systems

Consider the dynamical system

ẋ = −µ+ x2 − y,

ẏ = y(a− x),

where a is to be regarded as a fixed real constant and µ as a real parameter.

Find the fixed points of the system and determine the stability of the system
linearized about the fixed points. Hence identify the values of µ at given a where
bifurcations occur.

Describe informally the concepts of centre manifold theory and apply it to analyse
the bifurcations that occur in the above system with a = 1. In particular, for each
bifurcation derive an equation for the dynamics on the extended centre manifold and
hence classify the bifurcation.

What can you say, without further detailed calculation, about the case a = 0?
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28B Dynamical Systems

(a) An autonomous dynamical system ẋ = f(x) in R2 has a periodic orbit x = X(t) with
period T . The linearized evolution of a small perturbation x = X(t) + η(t) is given
by ηi(t) = Φij(t)ηj(0). Obtain the differential equation and initial condition satisfied
by the matrix Φ(t).

Define the Floquet multipliers of the orbit. Explain why one of the multipliers is always
unity and give a brief argument to show that the other is given by

exp

(∫ T

0
∇ · f(X(t)) dt

)
.

(b) Use the energy-balance method for nearly Hamiltonian systems to find leading-order
approximations to the two limit cycles of the equation

ẍ+ ǫ(2ẋ3 + 2x3 − 4x4ẋ− ẋ) + x = 0,

where 0 < ǫ ≪ 1.

Determine the stability of each limit cycle, giving reasoning where necessary.

[You may assume that
∫ 2π
0 cos4 θ dθ = 3π/4 and

∫ 2π
0 cos6 θ dθ = 5π/8.]
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28B Dynamical Systems

(a) What is a Lyapunov function?

Consider the dynamical system for x(t) =
(
x(t), y(t)

)
given by

ẋ = −x+ y + x(x2 + y2) ,

ẏ = −y − 2x+ y(x2 + y2) .

Prove that the origin is asymptotically stable (quoting carefully any standard results
that you use).

Show that the domain of attraction of the origin includes the region x2 + y2 < r21
where the maximum possible value of r1 is to be determined.

Show also that there is a region E = {x |x2+y2 > r22} such that x(0) ∈ E implies that
|x(t)| increases without bound. Explain your reasoning carefully. Find the smallest
possible value of r2.

(b) Now consider the dynamical system

ẋ = x− y − x(x2 + y2) ,

ẏ = y + 2x− y(x2 + y2) .

Prove that this system has a periodic solution (again, quoting carefully any standard
results that you use).

Demonstrate that this periodic solution is unique.
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33A Electrodynamics

A point particle of charge q has trajectory yµ(τ) in Minkowski space, where τ is
its proper time. The resulting electromagnetic field is given by the Liénard–Wiechert
4-potential

Aµ(x) = −q µ0 c

4π

uµ(τ∗)
Rν(τ∗)uν(τ∗)

, where Rν = xν − yν(τ) and uµ = dyµ/dτ .

Write down the condition that determines the point yµ(τ∗) on the trajectory of the particle
for a given value of xµ. Express this condition in terms of components, setting xµ = (ct,x)
and yµ = (ct′,y), and define the retarded time tr.

Suppose that the 3-velocity of the particle v(t′) = ẏ(t′) = dy/dt′ is small in size
compared to c, and suppose also that r = |x| ≫ |y|. Working to leading order in 1/r and
to first order in v, show that

φ(x) =
q µ0 c

4πr
( c + r̂ · v(tr) ) , A(x) =

q µ0

4πr
v(tr) , where r̂ = x/r .

Now assume that tr can be replaced by t− = t−(r/c) in the expressions for φ and A
above. Calculate the electric and magnetic fields to leading order in 1/r and hence show
that the Poynting vector is (in this approximation)

N(x) =
q2µ0

(4π)2 c

r̂

r2

∣∣∣ r̂× v̇(t−)
∣∣∣
2
.

If the charge q is performing simple harmonic motion y(t′) = An cosωt′, where n is
a unit vector and Aω ≪ c, find the total energy radiated during one period of oscillation.
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34A Electrodynamics

(i) Consider the action

S = − 1

4µ0c

∫ (
FµνF

µν + 2λ2AµA
µ
)
d4x +

1

c

∫
AµJ

µ d4x ,

where Aµ(x) is a 4-vector potential, Fµν = ∂µAν −∂νAµ is the field strength tensor, Jµ(x)
is a conserved current, and λ > 0 is a constant. Derive the field equation

∂µF
µν − λ2Aν = −µ0J

ν .

For λ = 0 the action S describes standard electromagnetism. Show that in this case
the theory is invariant under gauge transformations of the field Aµ(x), which you should
define. Is the theory invariant under these same gauge transformations when λ > 0 ?

Show that when λ > 0 the field equation above implies

∂µ∂
µAν − λ2Aν = −µ0J

ν . (∗)

Under what circumstances does (∗) hold in the case λ = 0?

(ii) Now suppose that Aµ(x) and Jµ(x) obeying (∗) reduce to static 3-vectors A(x)
and J(x) in some inertial frame. Show that there is a solution

A(x) = −µ0

∫
G( |x−x′ | )J(x′) d3x′

for a suitable Green’s function G(R) with G(R) → 0 as R → ∞. Determine G(R) for any
λ > 0. [Hint: You may find it helpful to consider first the case λ = 0 and then the case

λ > 0, using the result ∇2
( 1

R
f(R)

)
= ∇2

( 1

R

)
f(R) +

1

R
f ′′(R) , where R = |x−x′ | . ]

If J(x) is zero outside some bounded region, comment on the effect of the value of λ
on the behaviour of A(x) when |x| is large. [No further detailed calculations are required.]
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34A Electrodynamics

Briefly explain how to interpret the components of the relativistic stress–energy
tensor in terms of the density and flux of energy and momentum in some inertial frame.

(i) The stress–energy tensor of the electromagnetic field is

T µν
em =

1

µ0

(
FµαF ν

α − 1

4
ηµνFαβFαβ

)
,

where Fµν is the field strength, ηµν is the Minkowski metric, and µ0 is the permeability of
free space. Show that ∂µT

µν
em = −F ν

µJ
µ , where Jµ is the current 4-vector.

[ Maxwell’s equations are ∂µF
µν = −µ0J

ν and ∂ρFµν + ∂νFρµ + ∂µFνρ = 0 . ]

(ii) A fluid consists of point particles of rest mass m and charge q. The fluid can be
regarded as a continuum, with 4-velocity uµ(x) depending on the position x in spacetime.
For each x there is an inertial frame Sx in which the fluid particles at x are at rest. By
considering components in Sx, show that the fluid has a current 4-vector field

Jµ = q n0u
µ ,

and a stress–energy tensor
T µν
fluid = mn0u

µuν ,

where n0(x) is the proper number density of particles (the number of particles per unit
spatial volume in Sx in a small region around x). Write down the Lorentz 4-force on a
fluid particle at x. By considering the resulting 4-acceleration of the fluid, show that the
total stress–energy tensor is conserved, i.e.

∂µ
(
T µν
em + T µν

fluid

)
= 0 .
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35E Fluid Dynamics II

A stationary inviscid fluid of thickness h and density ρ is located below a free surface
at y = h and above a deep layer of inviscid fluid of the same density in y < 0 flowing with
uniform velocity U > 0 in the ex direction. The base velocity profile is thus

u = U, y < 0; u = 0, 0 < y < h,

while the free surface at y = h is maintained flat by gravity.

By considering small perturbations of the vortex sheet at y = 0 of the form
η = η0e

ikx+σt, k > 0, calculate the dispersion relationship between k and σ in the
irrotational limit. By explicitly deriving that

Re(σ) = ±
√
tanh(hk)

1 + tanh(hk)
Uk,

deduce that the vortex sheet is unstable at all wavelengths. Show that the growth rates
of the unstable modes are approximately Uk/2 when hk ≫ 1 and Uk

√
hk when hk ≪ 1.
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35E Fluid Dynamics II

Consider an infinite rigid cylinder of radius a parallel to a horizontal rigid stationary
surface. Let ex be the direction along the surface perpendicular to the cylinder axis, ey
the direction normal to the surface (the surface is at y = 0) and ez the direction along
the axis of the cylinder. The cylinder moves with constant velocity Uex. The minimum
separation between the cylinder and the surface is denoted by h0 ≪ a.

(i) What are the conditions for the flow in the thin gap between the cylinder and the
surface to be described by the lubrication equations? State carefully the relevant length
scale in the ex direction.

(ii) Without doing any calculation, explain carefully why, in the lubrication limit,
the net fluid force F acting on the stationary surface at y = 0 has no component in the
ey direction.

(iii) Using the lubrication approximation, calculate the ex component of the velocity
field in the gap between the cylinder and the surface, and determine the pressure gradient
as a function of the gap thickness h(x).

(iv) Compute the tangential component of the force, ex · F, acting on the bottom
surface per unit length in the ez direction.

[You may quote the following integrals:

∫ ∞

−∞

du

(1 + u2)
= π,

∫ ∞

−∞

du

(1 + u2)2
=

π

2
,

∫ ∞

−∞

du

(1 + u2)3
=

3π

8
· ]
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Consider a three-dimensional high-Reynolds number jet without swirl induced by a
force F = Fez imposed at the origin in a fluid at rest. The velocity in the jet, described
using cylindrical coordinates (r, θ, z), is assumed to remain steady and axisymmetric, and
described by a boundary layer analysis.

(i) Explain briefly why the flow in the jet can be described by the boundary layer
equations

ur
∂uz
∂r

+ uz
∂uz
∂z

= ν
1

r

∂

∂r

(
r
∂uz
∂r

)
.

(ii) Show that the momentum flux in the jet, F =
∫
S ρu

2
zdS, where S is an infinite

surface perpendicular to ez, is not a function of z. Combining this result with scalings
from the boundary layer equations, derive the scalings for the unknown width δ(z) and
typical velocity U(z) of the jet as functions of z and the other parameters of the problem
(ρ, ν, F ).

(iii) Solving for the flow using a self-similar Stokes streamfunction

ψ(r, z) = U(z)δ2(z)f(η), η = r/δ(z),

show that f(η) satisfies the differential equation

ff ′ − η(f ′2 + ff ′′) = f ′ − ηf ′′ + η2f ′′′.

What boundary conditions should be applied to this equation? Give physical reasons
for them.

[Hint: In cylindrical coordinates for axisymmetric incompressible flow
(
ur(r, z), 0, uz(r, z)

)

you are given the incompressibility condition as

1

r

∂

∂r
(rur) +

∂uz
∂z

= 0,

the z-component of the Navier–Stokes equation as

ρ

(
∂uz
∂t

+ ur
∂uz
∂r

+ uz
∂uz
∂z

)
= −∂p

∂z
+ µ

[
1

r

∂

∂r

(
r
∂uz
∂r

)
+
∂2uz
∂z2

]
,

and the relationship between the Stokes streamfunction, ψ(r, z), and the velocity compo-
nents as

ur = −1

r

∂ψ

∂z
, uz =

1

r

∂ψ

∂r
· ]
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36E Fluid Dynamics II

(i) In a Newtonian fluid, the deviatoric stress tensor is linearly related to the velocity
gradient so that the total stress tensor is

σij = −pδij +Aijkl
∂uk
∂xl

·

Show that for an incompressible isotropic fluid with a symmetric stress tensor we
necessarily have

Aijkl
∂uk
∂xl

= 2µeij ,

where µ is a constant which we call the dynamic viscosity and eij is the symmetric part
of ∂ui/∂xj .

(ii) Consider Stokes flow due to the translation of a rigid sphere Sa of radius a so
that the sphere exerts a force F on the fluid. At distances much larger than the radius of
the sphere, the instantaneous velocity and pressure fields are

ui(x) =
1

8µπ

(
Fi

r
+

Fmxmxi
r3

)
, p(x) =

1

4π

Fmxm
r3

,

where x is measured with respect to an origin located at the centre of the sphere, and
r = |x|.

Consider a sphere SR of radius R ≫ a instantaneously concentric with Sa. By
explicitly computing the tractions and integrating them, show that the force G exerted
by the fluid located in r > R on SR is constant and independent of R, and evaluate it.

(iii) Explain why the Stokes equations in the absence of body forces can be written
as

∂σij
∂xj

= 0.

Show that by integrating this equation in the fluid volume located instantaneously between
Sa and SR, you can recover the result in (ii) directly.
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6B Further Complex Methods

Explain how the Papperitz symbol

P





z1 z2 z3
α1 β1 γ1 z
α2 β2 γ2





represents a differential equation with certain properties. [You need not write down the
differential equation explicitly.]

The hypergeometric function F (a, b, c ; z) is defined to be the solution of the equation
given by the Papperitz symbol

P





0 ∞ 1
0 a 0 z

1− c b c− a− b





that is analytic at z = 0 and such that F (a, b, c ; 0) = 1. Show that

F (a, b, c ; z) = (1− z)−aF
(
a, c−b, c ;

z

z − 1

)
,

indicating clearly any general results for manipulating Papperitz symbols that you use.

Paper 3, Section I

6B Further Complex Methods

Define what is meant by the Cauchy principal value in the particular case

P
∫ ∞

−∞

cos x

x2 − a2
dx ,

where the constant a is real and strictly positive. Evaluate this expression explicitly,
stating clearly any standard results involving contour integrals that you use.
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Paper 2, Section I

6B Further Complex Methods

Give a brief description of what is meant by analytic continuation.

The dilogarithm function is defined by

Li2(z) =

∞∑

n=1

zn

n2
, |z| < 1 .

Let

f(z) = −
∫

C

1

u
ln(1− u) du

where C is a contour that runs from the origin to the point z. Show that f(z) provides an

analytic continuation of Li2(z) and describe its domain of definition in the complex plane,

given a suitable branch cut.

Paper 1, Section I

6B Further Complex Methods

Evaluate the real integral ∫ ∞

0

x1/2 lnx

1 + x2
dx

where x1/2 is taken to be the positive square root.

What is the value of ∫ ∞

0

x1/2

1 + x2
dx ?
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Paper 2, Section II

11B Further Complex Methods

The Riemann zeta function is defined by the sum

ζ(s) =
∞∑

n=1

n−s ,

which converges for Re s > 1. Show that

ζ(s) =
1

Γ(s)

∫ ∞

0

ts−1

et − 1
dt , Re s > 1 . (∗)

The analytic continuation of ζ(s) is given by the Hankel contour integral

ζ(s) =
Γ(1− s)

2πi

∫ 0+

−∞

ts−1

e−t − 1
dt .

Verify that this agrees with the integral (∗) above when Re s > 1 and s is not an integer.
[You may assume Γ(s)Γ(1− s) = π/ sin πs .] What happens when s = 2, 3, 4, . . . ?

Evaluate ζ(0). Show that (e−t − 1)−1 + 1
2 is an odd function of t and hence, or

otherwise, show that ζ(−2n) = 0 for any positive integer n.

Paper 1, Section II

11B Further Complex Methods

Consider the differential equation

xy′′ + (a− x)y′ − by = 0 (∗)

where a and b are constants with Re (b) > 0 and Re (a − b) > 0. Laplace’s method for
finding solutions involves writing

y(x) =

∫

C
extf(t) dt

for some suitable contour C and some suitable function f(t). Determine f(t) for
the equation (∗) and use a clearly labelled diagram to specify contours C giving two
independent solutions when x is real in each of the cases x > 0 and x < 0.

Now let a = 3 and b = 1. Find explicit expressions for two independent solutions
to (∗). Find, in addition, a solution y(x) with y(0) = 1.
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Paper 3, Section II

16F Galois Theory

Let f ∈ Q[t] be of degree n > 0, with no repeated roots, and let L be a splitting
field for f .

(i) Show that f is irreducible if and only if for any α, β ∈ Rootf (L) there is
φ ∈ Gal(L/Q) such that φ(α) = β.

(ii) Explain how to define an injective homomorphism τ : Gal(L/Q) → Sn. Find an
example in which the image of τ is the subgroup of S3 generated by (2 3). Find another
example in which τ is an isomorphism onto S3.

(iii) Let f(t) = t5 − 3 and assume f is irreducible. Find a chain of subgroups of
Gal(L/Q) that shows it is a solvable group. [You may quote without proof any theorems
from the course, provided you state them clearly.]

Paper 4, Section II

17F Galois Theory

(i) Prove that a finite solvable extension K ⊆ L of fields of characteristic zero is a
radical extension.

(ii) Let x1, . . . , x7 be variables, L = Q(x1, . . . , x7), and K = Q(e1, . . . , e7) where ei
are the elementary symmetric polynomials in the variables xi. Is there an element α ∈ L
such that α2 ∈ K but α /∈ K? Justify your answer.

(iii) Find an example of a field extension K ⊆ L of degree two such that L 6= K(
√
α)

for any α ∈ K. Give an example of a field which has no extension containing an 11th
primitive root of unity.

Paper 2, Section II

17F Galois Theory

(i) State the fundamental theorem of Galois theory, without proof. Let L be a
splitting field of t3 − 2 ∈ Q[t]. Show that Q ⊆ L is Galois and that Gal(L/Q) has a
subgroup which is not normal.

(ii) Let Φ8 be the 8th cyclotomic polynomial and denote its image in F7[t] again by
Φ8. Show that Φ8 is not irreducible in F7[t].

(iii) Let m and n be coprime natural numbers, and let µm = exp(2πi/m) and
µn = exp(2πi/n) where i =

√
−1. Show that Q(µm) ∩Q(µn) = Q.
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Paper 1, Section II

17F Galois Theory

(i) Let K ⊆ L be a field extension and f ∈ K[t] be irreducible of positive degree.
Prove the theorem which states that there is a 1-1 correspondence

Rootf (L)←→ HomK

(
K[t]

〈f〉 , L
)
.

(ii) Let K be a field and f ∈ K[t]. What is a splitting field for f? What does it
mean to say f is separable? Show that every f ∈ K[t] is separable if K is a finite field.

(iii) The primitive element theorem states that if K ⊆ L is a finite separable field
extension, then L = K(α) for some α ∈ L. Give the proof of this theorem assuming K is
infinite.
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Paper 4, Section II

34D General Relativity

In static spherically symmetric coordinates, the metric gab for de Sitter space is
given by

ds2 = −(1− r2/a2)dt2 + (1− r2/a2)−1dr2 + r2dΩ2

where dΩ2 = dθ2 + sin2 θdφ2 and a is a constant.

(a) Let u = t− a tanh−1(r/a) for r 6 a. Use the (u, r, θ, φ) coordinates to show that the
surface r = a is non-singular. Is r = 0 a space-time singularity?

(b) Show that the vector field gabu,a is null.

(c) Show that the radial null geodesics must obey either

du

dr
= 0 or

du

dr
= − 2

1− r2/a2
.

Which of these families of geodesics is outgoing (dr/dt > 0)?

Sketch these geodesics in the (u, r) plane for 0 6 r 6 a, where the r-axis is horizontal
and lines of constant u are inclined at 45◦ to the horizontal.

(d) Show, by giving an explicit example, that an observer moving on a timelike geodesic
starting at r = 0 can cross the surface r = a within a finite proper time.
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Paper 2, Section II

34D General Relativity

(a) The Schwarzschild metric is

ds2 = −(1− rs/r)dt
2 + (1− rs/r)

−1dr2 + r2(dθ2 + sin2 θdφ2)

(in units for which the speed of light c = 1). Show that a timelike geodesic in the
equatorial plane obeys

1
2 ṙ

2 + V (r) = 1
2E

2 ,

where

2V (r) =
(
1− rs

r

)(
1 +

h2

r2

)

and E and h are constants.

(b) For a circular orbit of radius r, show that

h2 =
r2rs

2r − 3rs
.

Given that the orbit is stable, show that r > 3rs.

(c) Alice lives on a small planet that is in a stable circular orbit of radius r around a
(non-rotating) black hole of radius rs. Bob lives on a spacecraft in deep space far from
the black hole and at rest relative to it. Bob is ageing k times faster than Alice. Find
an expression for k2 in terms of r and rs and show that k <

√
2.
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Paper 3, Section II

35D General Relativity

Let Γa
bc be the Levi-Civita connection and Ra

bcd the Riemann tensor corresponding
to a metric gab(x), and let Γ̃a

bc be the Levi-Civita connection and R̃a
bcd the Riemann tensor

corresponding to a metric g̃ab(x). Let T
a
bc = Γ̃a

bc − Γa
bc .

(a) Show that T a
bc is a tensor.

(b) Using local inertial coordinates for the metric gab, or otherwise, show that

R̃a
bcd −Ra

bcd = 2T a
b[d;c] − 2T a

e[dT
e
c]b

holds in all coordinate systems, where the semi-colon denotes covariant differentiation
using the connection Γa

bc. [You may assume that Ra
bcd = 2Γa

b[d,c] − 2Γa
e[dΓ

e
c]b .]

(c) In the case that T a
bc = ℓagbc for some vector field ℓa, show that R̃bd = Rbd if and only

if
ℓb;d + ℓbℓd = 0 .

(d) Using the result that ℓ[a;b] = 0 if and only if ℓa = φ,a for some scalar field φ, show that
the condition on ℓa in part (c) can be written as

ka;b = 0

for a certain covector field ka, which you should define.
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Paper 1, Section II

35D General Relativity

A vector field ξa is said to be a conformal Killing vector field of the metric gab if

ξ(a;b) =
1
2ψgab (∗)

for some scalar field ψ. It is a Killing vector field if ψ = 0.

(a) Show that (∗) is equivalent to

ξcgab,c + ξc,a gbc + ξc,b gac = ψ gab .

(b) Show that if ξa is a conformal Killing vector field of the metric gab, then ξ
a is a Killing

vector field of the metric e2φgab, where φ is any function that obeys

2ξcφ,c + ψ = 0 .

(c) Use part (b) to find an example of a metric with coordinates t, x, y and z (where
t > 0) for which (t, x, y, z) are the contravariant components of a Killing vector field.
[Hint: You may wish to start by considering what happens in Minkowski space.]
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Paper 1, Section II

14I Graph Theory

(a) What does it mean to say that a graph G is strongly regular with parameters
(k, a, b)?

(b) Let G be an incomplete, strongly regular graph with parameters (k, a, b) and of
order n. Suppose b > 1. Show that the numbers

1

2

(
n− 1± (n− 1)(b − a)− 2k√

(a− b)2 + 4(k − b)

)

are integers.

(c) Suppose now that G is an incomplete, strongly regular graph with parameters
(k, 0, 3). Show that |G| ∈ {6, 162}.

Paper 2, Section II

14I Graph Theory

(a) Define the Ramsey numbers R(s, t) and R(s) for integers s, t > 2. Show that
R(s, t) exists for all s, t > 2 and that if s, t > 3 then R(s, t) 6 R(s− 1, t) +R(s, t− 1).

(b) Show that, as s → ∞, we have R(s) = O(4s) and R(s) = Ω(2s/2).

(c) Show that, as t → ∞, we have R(3, t) = O(t2) and R(3, t) = Ω

((
t

log t

)3/2
)
.

[Hint: For the lower bound in (c), you may wish to begin by modifying a random
graph to show that for all n and p we have

R(3, t) > n−
(
n

3

)
p3 −

(
n

t

)
(1− p)(

t
2). ]
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Paper 3, Section II

14I Graph Theory

(a) Let G be a graph. What is a Hamilton cycle in G? What does it mean to say
that G is Hamiltonian?

(b) Let G be a graph of order n > 3 satisfying δ(G) > n
2 . Show that G is

Hamiltonian. For each n > 3, exhibit a non-Hamiltonian graph Gn of order n with
δ(Gn) =

⌈
n
2

⌉
− 1.

(c) Let H be a bipartite graph with n > 2 vertices in each class satisfying δ(H) > n
2 .

Show that H is Hamiltonian. For each n > 2, exhibit a non-Hamiltonian bipartite graph
Hn with n vertices in each class and δ(Hn) =

⌊
n
2

⌋
.

Paper 4, Section II

14I Graph Theory

Let G be a bipartite graph with vertex classes X and Y . What does it mean to say
that G contains a matching from X to Y ? State and prove Hall’s Marriage Theorem.

Suppose now that every x ∈ X has d(x) > 1, and that if x ∈ X and y ∈ Y with
xy ∈ E(G) then d(x) > d(y). Show that G contains a matching from X to Y .
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Paper 1, Section II

29D Integrable Systems

Let ut = K(x, u, ux, . . .) be an evolution equation for the function u = u(x, t).
Assume u and all its derivatives decay rapidly as |x| → ∞. What does it mean to say that
the evolution equation for u can be written in Hamiltonian form?

The modified KdV (mKdV) equation for u is

ut + uxxx − 6u2ux = 0 .

Show that small amplitude solutions to this equation are dispersive.

Demonstrate that the mKdV equation can be written in Hamiltonian form and
define the associated Poisson bracket { , } on the space of functionals of u. Verify that
the Poisson bracket is linear in each argument and anti-symmetric.

Show that a functional I = I[u] is a first integral of the mKdV equation if and only
if {I,H} = 0, where H = H[u] is the Hamiltonian.

Show that if u satisfies the mKdV equation then

∂

∂t

(
u2

)
+

∂

∂x

(
2uuxx − u2x − 3u4

)
= 0 .

Using this equation, show that the functional

I[u] =

∫
u2 dx

Poisson-commutes with the Hamiltonian.
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Paper 2, Section II

29D Integrable Systems

(a) Explain how a vector field

V = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u

generates a 1-parameter group of transformations gǫ : (x, u) 7→ (x̃, ũ) in terms of the
solution to an appropriate differential equation. [You may assume the solution to the
relevant equation exists and is unique.]

(b) Suppose now that u = u(x). Define what is meant by a Lie-point symmetry of the
ordinary differential equation

∆
[
x, u, u(1), . . . , u(n)

]
= 0 , where u(k) ≡ dku

dxk
, k = 1, . . . , n .

(c) Prove that every homogeneous, linear ordinary differential equation for u = u(x)
admits a Lie-point symmetry generated by the vector field

V = u
∂

∂u
.

By introducing new coordinates

s = s(x, u), t = t(x, u)

which satisfy V (s) = 1 and V (t) = 0, show that every differential equation of the form

d2u

dx2
+ p(x)

du

dx
+ q(x)u = 0

can be reduced to a first-order differential equation for an appropriate function.
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Paper 3, Section II

29D Integrable Systems

Let L = L(t) and A = A(t) be real N × N matrices, with L symmetric and A
antisymmetric. Suppose that

dL

dt
= LA−AL .

Show that all eigenvalues of the matrix L(t) are t-independent. Deduce that the coefficients
of the polynomial

P (x) = det(xI − L(t))

are first integrals of the system.

What does it mean for a 2n-dimensional Hamiltonian system to be integrable?
Consider the Toda system with coordinates (q1, q2, q3) obeying

d2qi
dt2

= eqi−1−qi − eqi−qi+1 , i = 1, 2, 3

where here and throughout the subscripts are to be determined modulo 3 so that q4 ≡ q1
and q0 ≡ q3. Show that

H(qi, pi) =
1

2

3∑

i=1

p2i +

3∑

i=1

e qi−qi+1

is a Hamiltonian for the Toda system.

Set ai =
1
2 exp

(
qi−qi+1

2

)
and bi = −1

2pi. Show that

dai
dt

= (bi+1 − bi) ai ,
dbi
dt

= 2
(
a2i − a2i−1

)
, i = 1, 2, 3 .

Is this coordinate transformation canonical?

By considering the matrices

L =



b1 a1 a3
a1 b2 a2
a3 a2 b3


 , A =




0 −a1 a3
a1 0 −a2
−a3 a2 0


 ,

or otherwise, compute three independent first integrals of the Toda system. [Proof of
independence is not required.]
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Paper 3, Section II

18G Linear Analysis

State and prove the Baire Category Theorem. [Choose any version you like.]

An isometry from a metric space (M,d) to another metric space (N, e) is a function
ϕ : M → N such that e(ϕ(x), ϕ(y)) = d(x, y) for all x, y ∈ M . Prove that there exists no
isometry from the Euclidean plane ℓ22 to the Banach space c0 of sequences converging to 0.
[Hint: Assume ϕ : ℓ22 → c0 is an isometry. For n ∈ N and x ∈ ℓ22 let ϕn(x) denote the nth

coordinate of ϕ(x). Consider the sets Fn consisting of all pairs (x, y) with ‖x‖2 = ‖y‖2 = 1
and ‖ϕ(x)− ϕ(y)‖∞ = |ϕn(x)− ϕn(y)|.]

Show that for each n ∈ N there is a linear isometry ℓn1 → c0.

Paper 4, Section II

19G Linear Analysis

Let H be a Hilbert space and T ∈ B(H). Define what is meant by an adjoint of T
and prove that it exists, it is linear and bounded, and that it is unique. [You may use the
Riesz Representation Theorem without proof.]

What does it mean to say that T is a normal operator? Give an example of a
bounded linear map on ℓ2 that is not normal.

Show that T is normal if and only if ‖Tx‖ = ‖T ∗x‖ for all x ∈ H.

Prove that if T is normal, then σ(T ) = σap(T ), that is, that every element of the
spectrum of T is an approximate eigenvalue of T .
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Paper 2, Section II

19G Linear Analysis

(a) Let T : X → Y be a linear map between normed spaces. What does it mean to say
that T is bounded? Show that T is bounded if and only if T is continuous. Define the
operator norm of T and show that the set B(X,Y ) of all bounded, linear maps from
X to Y is a normed space in the operator norm.

(b) For each of the following linear maps T , determine if T is bounded. When T is
bounded, compute its operator norm and establish whether T is compact. Justify
your answers. Here ‖f‖∞ = supt∈[0,1]|f(t)| for f ∈ C[0, 1] and ‖f‖ = ‖f‖∞ + ‖f ′‖∞
for f ∈ C1[0, 1].

(i) T :
(
C1[0, 1], ‖·‖∞

)
→

(
C1[0, 1], ‖·‖

)
, T (f) = f .

(ii) T :
(
C1[0, 1], ‖·‖

)
→ (C[0, 1], ‖·‖∞), T (f) = f .

(iii) T :
(
C1[0, 1], ‖·‖

)
→ (C[0, 1], ‖·‖∞), T (f) = f ′.

(iv) T : (C[0, 1], ‖·‖∞) → R, T (f) =

∫ 1

0
f(t)h(t) dt, where h is a given element of

C[0, 1]. [Hint: Consider first the case that h(x) 6= 0 for every x ∈ [0, 1], and
apply T to a suitable function. In the general case apply T to a suitable sequence
of functions.]

Paper 1, Section II

19G Linear Analysis

(a) Let (en)
∞
n=1 be an orthonormal basis of an inner product space X. Show that for

all x ∈ X there is a unique sequence (an)
∞
n=1 of scalars such that x =

∑∞
n=1 anen.

Assume now that X is a Hilbert space and that (fn)
∞
n=1 is another orthonormal

basis of X. Prove that there is a unique bounded linear map U : X → X such that
U(en) = fn for all n ∈ N. Prove that this map U is unitary.

(b) Let 1 6 p < ∞ with p 6= 2. Show that no subspace of ℓ2 is isomorphic to ℓp. [Hint:
Apply the generalized parallelogram law to suitable vectors.]

Part II, 2015 List of Questions



57

Paper 4, Section II

13I Logic and Set Theory

State the Axiom of Foundation and the Principle of ǫ-Induction, and show that they

are equivalent (in the presence of the other axioms of ZF ). [You may assume the existence

of transitive closures.]

Explain briefly how the Principle of ǫ-Induction implies that every set is a member

of some Vα.

Find the ranks of the following sets:

(i) {ω + 1, ω + 2, ω + 3},
(ii) the Cartesian product ω × ω,

(iii) the set of all functions from ω to ω2.

[You may assume standard properties of rank.]

Paper 3, Section II

13I Logic and Set Theory

(i) State and prove Zorn’s Lemma. [You may assume Hartogs’ Lemma.] Where in

your proof have you made use of the Axiom of Choice?

(ii) Let < be a partial ordering on a set X. Prove carefully that < may be extended

to a total ordering of X.

What does it mean to say that < is well-founded?

If < has an extension that is a well-ordering, must < be well-founded? If < is

well-founded, must every total ordering extending it be a well-ordering? Justify your

answers.
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Paper 2, Section II

13I Logic and Set Theory

(a) Give the inductive and synthetic definitions of ordinal addition, and prove that
they are equivalent. Give the inductive definitions of ordinal multiplication and ordinal
exponentiation.

(b) Answer, with brief justification, the following:

(i) For ordinals α, β and γ with α < β, must we have α+ γ < β + γ? Must we
have γ + α < γ + β?

(ii) For ordinals α and β with α < β, must we have αω < βω?

(iii) Is there an ordinal α > 1 such that αω = α?

(iv) Show that ωω1 = ω1. Is ω1 the least ordinal α such that ωα = α?

[You may use standard facts about ordinal arithmetic.]

Paper 1, Section II

13I Logic and Set Theory

State and prove the Completeness Theorem for Propositional Logic.

[You do not need to give definitions of the various terms involved. You may assume

the Deduction Theorem, provided that you state it precisely.]

State the Compactness Theorem and the Decidability Theorem, and deduce them

from the Completeness Theorem.

Let S consist of the propositions pn+1 ⇒ pn for n = 1, 2, 3, . . .. Does S prove p1?

Justify your answer. [Here p1, p2, p3, . . . are primitive propositions.]
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Paper 4, Section I

5E Mathematical Biology

(i) A variant of the classic logistic population model is given by the Hutchinson–
Wright equation

dx(t)

dt
= αx(t) [ 1− x(t− T ) ]

where α, T > 0. Determine the condition on α (in terms of T ) for the constant solution
x(t) = 1 to be stable.

(ii) Another variant of the logistic model is given by the equation

dx(t)

dt
= α

[
x(t− T )− x(t)2

]
,

where α, T > 0. Give a brief interpretation of what this model represents.

Determine the condition on α (in terms of T ) for the constant solution x(t) = 1 to
be stable in this model.

Paper 3, Section I

5E Mathematical Biology

The number of a certain type of annual plant in year n is given by xn. Each plant
produces k seeds that year and then dies before the next year. The proportion of seeds
that germinate to produce a new plant the next year is given by e−γ xn where γ > 0.
Explain briefly why the system can be described by

xn+1 = k xne
−γ xn .

Give conditions on k for a stable positive equilibrium of the plant population size
to be possible.

Winters become milder and now a proportion s of all plants survive each year
(s ∈ (0, 1)). Assume that plants produce seeds as before while they are alive. Show that
a wider range of k now gives a stable positive equilibrium population.
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Paper 2, Section I

5E Mathematical Biology

An activator-inhibitor system is described by the equations

∂u

∂t
= 2u + u2 − u v +

∂2u

∂x2
,

∂v

∂t
= a

(
u2 − v

)
+ d

∂2v

∂x2
,

where a, d > 0.

Find the range of a for which the spatially homogeneous system has a stable
equilibrium solution with u > 0 and v > 0.

For the case when the homogeneous system is stable, consider spatial perturbations
proportional to cos(kx) to the equilibrium solution found above. Show that the system
has a Turing instability when

d >
(
7
2 + 2

√
3
)
a .

Paper 1, Section I

5E Mathematical Biology

The population density n(a, t) of individuals of age a at time t satisfies

∂n

∂t
+

∂n

∂a
= −µ(a)n(a, t), n(0, t) =

∫ ∞

0
b(a)n(a, t) da

where µ(a) is the age-dependent death rate and b(a) is the birth rate per individual of age
a. Show that this may be solved with a similarity solution of the form n(a, t) = eγtr(a) if
the growth rate γ satisfies φ(γ) = 1 where

φ(γ) =

∫ ∞

0
b(a) e−γa−

∫ a
0 µ(s) ds da.

Suppose now that the birth rate is given by b(a) = Bape−λa with B,λ > 0 and p is
a positive integer, and the death rate is constant in age (i.e. µ(a) = µ). Find the average
number of offspring per individual.

Find the similarity solution, and find the threshold B∗ for the birth parameter B
so that B > B∗ corresponds to a growing population.
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11E Mathematical Biology

In a stochastic model of multiple populations, P = P (x, t) is the probability that
the population sizes are given by the vector x at time t. The jump rate W (x, r) is the
probability per unit time that the population sizes jump from x to x+ r . Under suitable
assumptions, the system may be approximated by the multivariate Fokker–Planck equation
(with summation convention)

∂

∂t
P = − ∂

∂xi
AiP +

1

2

∂2

∂xi∂xj
BijP ,

where Ai(x) =
∑

r riW (x, r) and matrix elements Bij(x) =
∑

r rirjW (x, r).

(a) Use the multivariate Fokker–Planck equation to show that

d

dt
〈xk〉 = 〈Ak〉

d

dt
〈xkxl〉 = 〈xlAk + xkAl +Bkl〉.

[You may assume that P (x, t) → 0 as |x| → ∞.]

(b) For small fluctuations, you may assume that the vector A may be approximated
by a linear function in x and the matrix B may be treated as constant, i.e. Ak(x) ≈
akl(xl − 〈xl〉) and Bkl(x) ≈ Bkl(〈x〉) = bkl (where akl and bkl are constants). Show that
at steady state the covariances Cij = cov(xi, xj) satisfy

aikCjk + ajkCik + bij = 0 .

(c) A lab-controlled insect population consists of x1 larvae and x2 adults. Larvae
are added to the system at rate λ. Larvae each mature at rate γ per capita. Adults die at
rate β per capita. Give the vector A and matrix B for this model. Show that at steady
state

〈x1〉 =
λ

γ
, 〈x2〉 =

λ

β
.

(d) Find the variance of each population size near steady state, and show that the
covariance between the populations is zero.
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11E Mathematical Biology

A fungal disease is introduced into an isolated population of frogs. Without disease,
the normalised population size x would obey the logistic equation ẋ = x(1 − x), where
the dot denotes differentiation with respect to time. The disease causes death at rate d
and there is no recovery. The disease transmission rate is β and, in addition, offspring of
infected frogs are infected from birth.

(a) Briefly explain why the population sizes x and y of uninfected and infected frogs
respectively now satisfy

ẋ = x [ 1− x− (1 + β)y ]

ẏ = y [ (1− d)− (1− β)x− y ] .

(b) The population starts at the disease-free population size (x = 1) and a small
number of infected frogs are introduced. Show that the disease will successfully invade if
and only if β > d.

(c) By finding all the equilibria in x > 0, y > 0 and considering their stability, find
the long-term outcome for the frog population. State the relationships between d and β
that distinguish different final populations.

(d) Plot the long-term steady total population size as a function of d for fixed β,
and note that an intermediate mortality rate is actually the most harmful. Explain why
this is the case.
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16H Number Fields

Let K be a number field. State Dirichlet’s unit theorem, defining all the terms you

use, and what it implies for a quadratic field Q(
√
d), where d 6= 0, 1 is a square-free integer.

Find a fundamental unit of Q(
√
26).

Find all integral solutions (x, y) of the equation x2 − 26y2 = ±10.

Paper 2, Section II

16H Number Fields

(i) Let d ≡ 2 or 3 mod 4. Show that (p) remains prime in OQ(
√
d) if and only if

x2 − d is irreducible mod p.

(ii) Factorise (2), (3) in OK , when K = Q(
√
−14). Compute the class group of K.

Paper 1, Section II

16H Number Fields

(a) Let K be a number field, and f a monic polynomial whose coefficients are in

OK . Let M be a field containing K and α ∈ M . Show that if f(α) = 0, then α is an

algebraic integer.

Hence conclude that if h ∈ K[x] is monic, with hn ∈ OK [x], then h ∈ OK [x].

(b) Compute an integral basis for OQ(α) when the minimum polynomial of α is

x3 − x− 4.
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Show that if 10n + 1 is prime then n must be a power of 2. Now assuming n is a
power of 2, show that if p is a prime factor of 10n + 1 then p ≡ 1 (mod 2n).

Explain the method of Fermat factorization, and use it to factor 104 + 1.

Paper 3, Section I

1H Number Theory

What does it mean to say that a positive definite binary quadratic form is reduced?
Find the three smallest positive integers properly represented by each of the forms
f(x, y) = 3x2 + 8xy + 9y2 and g(x, y) = 15x2 + 34xy + 20y2. Show that every odd
integer represented by some positive definite binary quadratic form with discriminant −44
is represented by at least one of the forms f and g.

Paper 2, Section I

1H Number Theory

Define the Euler totient function φ and the Möbius function µ. Suppose f and g are
functions defined on the natural numbers satisfying f(n) =

∑
d|n g(d). State and prove a

formula for g in terms of f . Find a relationship between µ and φ.

Define the Riemann zeta function ζ(s). Find a Dirichlet series for ζ(s − 1)/ζ(s)
valid for Re(s) > 2.

Paper 1, Section I

1H Number Theory

Define the Legendre symbol
(
a
p

)
. State and prove Euler’s criterion, assuming if you

wish the existence of primitive roots mod p.

By considering the prime factors of n2+4 for n an odd integer, prove that there are
infinitely many primes p with p ≡ 5 (mod 8).
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State the Chinese Remainder Theorem.

Let N be an odd positive integer. Define the Jacobi symbol
(
a
N

)
. Which of the

following statements are true, and which are false? Give a proof or counterexample as
appropriate.

(i) If
(
a
N

)
= 1 then the congruence x2 ≡ a (mod N) is soluble.

(ii) If N is not a square then
∑N

a=1

(
a
N

)
= 0.

(iii) If N is composite then there exists an integer a coprime to N with

aN−1 6≡ 1 (mod N).

(iv) If N is composite then there exists an integer a coprime to N with

a(N−1)/2 6≡
(
a

N

)
(mod N).

Paper 3, Section II

9H Number Theory

Let θ be a real number with continued fraction expansion [a0, a1, a2, . . .]. Define the
convergents pn/qn (by means of recurrence relations) and show that for β > 0 we have

[a0, a1, . . . , an−1, β] =
βpn−1 + pn−2

βqn−1 + qn−2
.

Show that ∣∣∣∣θ −
pn
qn

∣∣∣∣ <
1

qnqn+1

and deduce that pn/qn → θ as n → ∞.

By computing a suitable continued fraction expansion, find solutions in positive
integers x and y to each of the equations x2 − 53y2 = 4 and x2 − 53y2 = −7.
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37E Numerical Analysis

(a) Define the mth Krylov space Km(A, v) for A ∈ Rn×n and 0 6= v ∈ Rn. Letting δm be
the dimension of Km(A, v), prove the following results.

(i) There exists a positive integer s 6 n such that δm = m for m 6 s and δm = s
for m > s.

(ii) If v =
∑s′

i=1 ciwi, where wi are eigenvectors of A for distinct eigenvalues and all
ci are nonzero, then s = s′.

(b) Define the term residual in the conjugate gradient (CG) method for solving a system
Ax = b with symmetric positive definite A. Explain (without proof) the connection
to Krylov spaces and prove that for any right-hand side b the CG method finds an
exact solution after at most t steps, where t is the number of distinct eigenvalues of A.
[You may use without proof known properties of the iterates of the CG method.]

Define what is meant by preconditioning, and explain two ways in which precondi-
tioning can speed up convergence. Can we choose the preconditioner so that the CG
method requires only one step? If yes, is it a reasonable method for speeding up the
computation?
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37E Numerical Analysis

(a) The boundary value problem −∆u + cu = f on the unit square [0, 1]2 with zero
boundary conditions and scalar constant c > 0 is discretised using finite differences as

−ui−1,j − ui+1,j − ui,j−1 − ui,j+1 + 4ui,j + ch2ui,j = h2f(ih, jh),

i, j = 1, . . . ,m,

with h = 1/(m+1). Show that for the resulting system Au = b, for a suitable matrix
A and vectors u and b, both the Jacobi and Gauss–Seidel methods converge. [You may
cite and use known results on the discretised Laplace operator and on the convergence
of iterative methods.]

Define the Jacobi method with relaxation parameter ω. Find the eigenvalues λk,l of
the iteration matrix Hω for the above problem and show that, in order to ensure
convergence for all h, the condition 0 < ω 6 1 is necessary.

[Hint: The eigenvalues of the discretised Laplace operator in two dimensions are
4
(
sin2 πkh

2 + sin2 πlh
2

)
for integers k, l.]

(b) Explain the components and steps in a multigrid method for solving the Poisson
equation, discretised as Ahuh = bh. If we use the relaxed Jacobi method within the
multigrid method, is it necessary to choose ω 6= 1 to get fast convergence? Explain
why or why not.
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(a) Given the finite-difference recurrence

s∑

k=r

aku
n+1
m+k =

s∑

k=r

bku
n
m+k, m ∈ Z, n ∈ Z+,

that discretises a Cauchy problem, the amplification factor is defined by

H(θ) =

(
s∑

k=r

bke
ikθ

)/(
s∑

k=r

ake
ikθ

)
.

Show how H(θ) acts on the Fourier transform ûn of un. Hence prove that the method
is stable if and only if |H(θ)| 6 1 for all θ ∈ [−π, π].

(b) The two-dimensional diffusion equation

ut = uxx + cuyy

for some scalar constant c > 0 is discretised with the forward Euler scheme

un+1
i,j = uni,j + µ(uni+1,j − 2uni,j + uni−1,j + cuni,j+1 − 2cuni,j + cuni,j−1).

Using Fourier stability analysis, find the range of values µ > 0 for which the scheme
is stable.
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38E Numerical Analysis

(a) The diffusion equation

∂u

∂t
=

∂

∂x

(
a(x)

∂u

∂x

)
in 0 6 x 6 1, t > 0,

with the initial condition u(x, 0) = φ(x) in 0 6 x 6 1 and zero boundary conditions
at x = 0 and x = 1, is solved by the finite-difference method

un+1
m = unm + µ

[
am− 1

2
unm−1 − ( am− 1

2
+ am+ 1

2
)unm + am+ 1

2
unm+1

]
,

m = 1, 2, . . . ,M,

where µ = k/h2, k = ∆t, h = 1/(M + 1), unm ≈ u(mh,nk), and aα = a(αh).

Assuming that the function a and the exact solution are sufficiently smooth, prove
that the exact solution satisfies the numerical scheme with error O(h3) for constant µ.

(b) For the problem in part (a), assume that there exist 0 < a− < a+ < ∞ such that
a− 6 a(x) 6 a+ for all 0 6 x 6 1. State (without proof) the Gershgorin theorem and
prove that the method is stable for 0 < µ 6 1/(2a+).
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25K Optimization and Control

Consider the scalar system evolving as

xt = xt−1 + ut−1 + ǫt, t = 1, 2, . . . ,

where {ǫt}∞t=1 is a white noise sequence with Eǫt = 0 and Eǫ2t = v. It is desired to choose

controls {ut}h−1
t=0 to minimize E

[∑h−1
t=0

(
1
2x

2
t + u2t

)
+ x2h

]
. Show that for h = 6 the minimal

cost is x20 + 6v.

Find a constant λ and a function φ which solve

φ(x) + λ = min
u

[
1
2x

2 + u2 + Eφ(x+ u+ ǫ1)
]
.

Let P be the class of those policies for which every ut obeys the constraint
(xt + ut)

2 6 (0.9)x2t . Show that Eπφ(xt) 6 x20 + 10v, for all π ∈ P . Find, and prove
optimal, a policy which over all π ∈ P minimizes

lim
h→∞

1

h
Eπ

[
h−1∑

t=0

(
1
2x

2
t + u2t

)
]
.

Paper 3, Section II

25K Optimization and Control

A burglar having wealth xmay retire, or go burgling another night, in either of towns
1 or 2. If he burgles in town i then with probability pi = 1− qi he will, independently of
previous nights, be caught, imprisoned and lose all his wealth. If he is not caught then his
wealth increases by 0 or 2ai, each with probability 1/2 and independently of what happens
on other nights. Values of pi and ai are the same every night. He wishes to maximize his
expected wealth at the point he retires, is imprisoned, or s nights have elapsed.

Using the dynamic programming equation

Fs(x) = max
{
x, q1EFs−1(x+R1), q2EFs−1(x+R2)

}

with Rj , F0(x) appropriately defined, prove that there exists an optimal policy under
which he burgles another night if and only if his wealth is less than x∗ = maxi{aiqi/pi}.

Suppose q1 > q2 and q1a1 > q2a2. Prove that he should never burgle in town 2.

[Hint: Suppose x < x∗, there are s nights to go, and it has been shown that he ought not
burgle in town 2 if less than s nights remain. For the case a2 > a1, separately consider
subcases x+ 2a2 > x∗ and x+ 2a2 < x∗. An interchange argument may help.]
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As a function of policy π and initial state x, let

F (π, x) = Eπ

[ ∞∑

t=0

βtr(xt, ut)
∣∣∣ x0 = x

]
,

where β > 1 and r(x, u) > 0 for all x, u. Suppose that for a specific policy π, and all x,

F (π, x) = sup
u

{
r(x, u) + βE[F (π, x1) | x0 = x, u0 = u]

}
.

Prove that F (π, x) > F (π′, x) for all π′ and x.

A gambler plays games in which he may bet 1 or 2 pounds, but no more than
his present wealth. Suppose he has xt pounds after t games. If he bets i pounds then
xt+1 = xt + i, or xt+1 = xt − i, with probabilities pi and 1 − pi respectively. Gambling
terminates at the first τ such that xτ = 0 or xτ = 100. His final reward is (9/8)τ/2xτ . Let
π be the policy of always betting 1 pound. Given p1 = 1/3, show that F (π, x) ∝ x2x/2.

Is π optimal when p2 = 1/4 ?
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29E Partial Differential Equations

(a) Show that the Cauchy problem for u(x, t) satisfying

ut + u = uxx

with initial data u(x, 0) = u0(x), which is a smooth 2π-periodic function of x, defines a
strongly continuous one parameter semi-group of contractions on the Sobolev space Hs

per

for any s ∈ {0, 1, 2, . . . } .
(b) Solve the Cauchy problem for the equation

utt + ut +
1

4
u = uxx

with u(x, 0) = u0(x) , ut(x, 0) = u1(x), where u0, u1 are smooth 2π-periodic functions of
x, and show that the solution is smooth. Prove from first principles that the solution
satisfies the property of finite propagation speed.

[In this question all functions are real-valued, and

Hs
per =

{
u =

∑

m∈Z
û(m)eimx ∈ L2 : ‖u‖2Hs =

∑

m∈Z
(1 +m2)s|û(m)|2 < ∞

}

are the Sobolev spaces of functions which are 2π-periodic in x, for s = 0, 1, 2, . . . .]
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(a) Show that if f ∈ S(Rn) is a Schwartz function and u is a tempered distribution
which solves

−∆u+m2u = f

for some constant m 6= 0, then there exists a number C > 0 which depends only on m,
such that ‖u‖Hs+2 6 C‖f‖Hs for any s > 0 . Explain briefly why this inequality remains
valid if f is only assumed to be in Hs(Rn).

Show that if ǫ > 0 is given then ‖v‖2H1 6 ǫ‖v‖2H2 +
1
4ǫ‖v‖2H0 for any v ∈ H2(Rn).

[Hint: The inequality a 6 ǫa2 + 1
4ǫ holds for any positive ǫ and a ∈ R .]

Prove that if u is a smooth bounded function which solves

−∆u+m2u = u3 + α · ∇u

for some constant vector α ∈ Rn and constant m 6= 0, then there exists a number C ′ > 0
such that ‖u‖H2 6 C ′ and C ′ depends only on m,α, ‖u‖L∞ , ‖u‖L2 .

[You may use the fact that, for non-negative s, the Sobolev space of functions

Hs(Rn) = {f ∈ L2(Rn) : ‖f‖2Hs =

∫

Rn

(1 + ‖ξ‖2)s|f̂(ξ)|2 dξ < ∞} .]

(b) Let u(x, t) be a smooth real-valued function, which is 2π-periodic in x and
satisfies the equation

ut = u2uxx + u3 .

Give a complete proof that if u(x, 0) > 0 for all x then u(x, t) > 0 for all x and t > 0.
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30E Partial Differential Equations

Prove that if φ ∈ C(Rn) is absolutely integrable with
∫
φ(x) dx = 1, and

φǫ(x) = ǫ−nφ(x/ǫ) for ǫ > 0, then for every Schwartz function f ∈ S(Rn) the convolution

φǫ ∗ f(x) → f(x)

uniformly in x as ǫ ↓ 0.

Show that the function Nǫ ∈ C∞(R3) given by

Nǫ(x) =
1

4π
√

|x|2 + ǫ2

for ǫ > 0 satisfies

lim
ǫ→0

∫

R3

−∆Nǫ(x) f(x) dx = f(0)

for f ∈ S(Rn). Hence prove that the tempered distribution determined by the function
N(x) = (4π|x|)−1 is a fundamental solution of the operator −∆.

[You may use the fact that
∫∞
0 r2/(1 + r2)5/2 dr = 1/3 .]

Paper 1, Section II

30E Partial Differential Equations

(a) State the Cauchy–Kovalevskaya theorem, and explain for which values of a ∈ R
it implies the existence of solutions to the Cauchy problem

xux + yuy + auz = u , u(x, y, 0) = f(x, y) ,

where f is real analytic. Using the method of characteristics, solve this problem for these
values of a, and comment on the behaviour of the characteristics as a approaches any
value where the non-characteristic condition fails.

(b) Consider the Cauchy problem

uy = vx , vy = −ux

with initial data u(x, 0) = f(x) and v(x, 0) = 0 which are 2π-periodic in x. Give
an example of a sequence of smooth solutions (un, vn) which are also 2π-periodic in
x whose corresponding initial data un(x, 0) = fn(x) and vn(x, 0) = 0 are such that∫ 2π

0
|fn(x)|2dx → 0 while

∫ 2π

0
|un(x, y)|2dx → ∞ for non-zero y as n → ∞.

Comment on the significance of this in relation to the concept of well-posedness.
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30A Principles of Quantum Mechanics

The Hamiltonian for a quantum system in the Schrödinger picture is H0 + λV (t),
where H0 is independent of time and the parameter λ is small. Define the interaction
picture corresponding to this Hamiltonian and derive a time evolution equation for
interaction picture states.

Suppose that |χ〉 and |φ〉 are eigenstates of H0 with distinct eigenvalues E and E′,
respectively. Show that if the system is in state |χ〉 at time zero then the probability of
measuring it to be in state |φ〉 at time t is

λ2

~2

∣∣∣∣
∫ t

0
dt′ 〈φ|V (t′)|χ〉 ei(E′−E)t′/~

∣∣∣∣
2

+ O(λ3) .

Let H0 be the Hamiltonian for an isotropic three-dimensional harmonic oscillator of
mass m and frequency ω, with χ(r) being the ground state wavefunction (where r = |x|)
and φi(x) = (2mω/~)1/2 xi χ(r) being wavefunctions for the states at the first excited
energy level (i = 1, 2, 3). The oscillator is in its ground state at t = 0 when a perturbation

λV (t) = λ x̂3 e
−µt

is applied, with µ > 0, and H0 is then measured after a very large time has elapsed. Show
that to first order in perturbation theory the oscillator will be found in one particular
state at the first excited energy level with probability

λ2

2~mω (µ2 + ω2)
,

but that the probability that it will be found in either of the other excited states is zero
(to this order).

[
You may use the fact that 4π

∫ ∞

0
r4 |χ(r)|2 dr =

3~
2mω

.
]
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Let | j, m 〉 denote the normalised joint eigenstates of J2 and J3, where J is the
angular momentum operator for a quantum system. State clearly the possible values of
the quantum numbers j and m and write down the corresponding eigenvalues in units
with ~ = 1.

Consider two quantum systems with angular momentum states | 12 , r 〉 and | j, m 〉.
The eigenstates corresponding to their combined angular momentum can be written as

|J, M 〉 =
∑

r ,m

CJ M
rm | 12 , r 〉 | j, m 〉 ,

where CJ M
rm are Clebsch–Gordan coefficients for addition of angular momenta 1

2 and j.
What are the possible values of J and what is a necessary condition relating r, m and M
in order that CJ M

rm 6= 0 ?

Calculate the values of CJ M
rm for j = 2 and for all M > 3

2 . Use the sign convention
that CJ J

rm > 0 when m takes its maximum value.

A particle X with spin 3
2 and intrinsic parity ηX is at rest. It decays into two

particles A and B with spin 1
2 and spin 0, respectively. Both A and B have intrinsic

parity −1. The relative orbital angular momentum quantum number for the two particle
system is ℓ. What are the possible values of ℓ for the cases ηX = +1 and ηX = −1 ?

Suppose particle X is prepared in the state | 32 , 3
2 〉 before it decays. Calculate the

probability P for particle A to be found in the state | 12 , 1
2 〉, given that ηX = +1.

What is the probability P if instead ηX = −1 ?

[Units with ~ = 1 should be used throughout. You may also use without proof

J−| j, m 〉 =
√

(j+m)(j−m+1) | j, m−1 〉 . ]
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Express the spin operator S for a particle of spin 1
2 in terms of the Pauli matrices

σ = (σ1, σ2, σ3) where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Show that (n · σ)2 = I for any unit vector n and deduce that

e−iθ n·S/~ = I cos(θ/2) − i(n · σ) sin(θ/2) .

The space of states V for a particle of spin 1
2 has basis states | ↑ 〉, | ↓ 〉 which are

eigenstates of S3 with eigenvalues 1
2~ and −1

2~ respectively. If the Hamiltonian for the
particle is H = 1

2α~σ1, find

e−itH/~| ↑ 〉 and e−itH/~| ↓ 〉

as linear combinations of the basis states.

The space of states for a system of two spin 1
2 particles is V ⊗V . Write down explicit

expressions for the joint eigenstates of J2 and J3, where J is the sum of the spin operators
for the particles.

Suppose that the two-particle system has Hamiltonian H = 1
2λ~(σ1 ⊗ I − I ⊗ σ1)

and that at time t = 0 the system is in the state with J3 eigenvalue ~. Calculate the
probability that at time t > 0 the system will be measured to be in the state with J2

eigenvalue zero.
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31A Principles of Quantum Mechanics

If A and B are operators which each commute with their commutator [A,B], show
that

F (λ) = eλA eλB e−λ(A+B) satisfies F ′(λ) = λ [A,B]F (λ) .

By solving this differential equation for F (λ), deduce that

eA eB = e
1
2 [A,B] eA+B .

The annihilation and creation operators for a harmonic oscillator of mass m and
frequency ω are defined by

a =

√
mω

2~

(
x̂+

i

mω
p̂
)
, a† =

√
mω

2~

(
x̂− i

mω
p̂
)
.

Write down an expression for the general normalised eigenstate |n〉 (n = 0, 1, 2, . . .) of the
oscillator Hamiltonian H in terms of the ground state |0〉. What is the energy eigenvalue
En of the state |n〉 ?

Suppose the oscillator is now subject to a small perturbation so that it is described
by the modified Hamiltonian H + εV (x̂) with V (x̂) = cos(µx̂). Show that

V (x̂) = 1
2 e

−γ2/2
(
eiγ a†eiγ a + e−iγ a†e−iγ a

)
,

where γ is a constant, to be determined. Hence show that to O(ε2) the shift in the ground
state energy as a result of the perturbation is

ε e−µ2~/4mω − ε2 e−µ2~/2mω 1

~ω

∞∑

p=1

1

(2p)! 2p

( µ2~
2mω

)2p
.

[Standard results of perturbation theory may be quoted without proof.]
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Paper 4, Section II

24J Principles of Statistics

Given independent and identically distributed observations X1, . . . ,Xn with finite
mean E(X1) = µ and variance Var(X1) = σ2, explain the notion of a bootstrap sample
Xb

1, . . . ,X
b
n, and discuss how you can use it to construct a confidence interval Cn for µ.

Suppose you can operate a random number generator that can simulate independent
uniform random variables U1, . . . , Un on [0, 1]. How can you use such a random number
generator to simulate a bootstrap sample?

Suppose that (Fn : n ∈ N) and F are cumulative probability distribution functions
defined on the real line, that Fn(t) → F (t) as n → ∞ for every t ∈ R, and that F is
continuous on R. Show that, as n → ∞,

sup
t∈R

|Fn(t)− F (t)| → 0.

State (without proof) the theorem about the consistency of the bootstrap of the
mean, and use it to give an asymptotic justification of the confidence interval Cn. That
is, prove that as n → ∞, PN(µ ∈ Cn) → 1 − α where PN is the joint distribution of
X1,X2, . . . .

[You may use standard facts of stochastic convergence and the Central Limit
Theorem without proof.]
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Paper 3, Section II

24J Principles of Statistics

Define what it means for an estimator θ̂ of an unknown parameter θ to be consistent.

Let Sn be a sequence of random real-valued continuous functions defined on R such
that, as n → ∞, Sn(θ) converges to S(θ) in probability for every θ ∈ R, where S : R → R
is non-random. Suppose that for some θ0 ∈ R and every ε > 0 we have

S(θ0 − ε) < 0 < S(θ0 + ε),

and that Sn has exactly one zero θ̂n for every n ∈ N. Show that θ̂n →P θ0 as n → ∞, and
deduce from this that the maximum likelihood estimator (MLE) based on observations
X1, . . . ,Xn from a N(θ, 1), θ ∈ R model is consistent.

Now consider independent observations X1, . . . ,Xn of bivariate normal random
vectors

Xi = (X1i,X2i)
T ∼ N2

[
(µi, µi)

T , σ2I2
]
, i = 1, . . . , n,

where µi ∈ R, σ > 0 and I2 is the 2× 2 identity matrix. Find the MLE µ̂ = (µ̂1, . . . , µ̂n)
T

of µ = (µ1, . . . , µn)
T and show that the MLE of σ2 equals

σ̂2 =
1

n

n∑

i=1

s2i , s2i =
1

2
[(X1i − µ̂i)

2 + (X2i − µ̂i)
2].

Show that σ̂2 is not consistent for estimating σ2. Explain briefly why the MLE fails in
this model.

[You may use the Law of Large Numbers without proof.]
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Paper 2, Section II

25J Principles of Statistics

Consider a random variable X arising from the binomial distribution Bin(n, θ),
θ ∈ Θ = [0, 1]. Find the maximum likelihood estimator θ̂MLE and the Fisher information
I(θ) for θ ∈ Θ.

Now consider the following priors on Θ:

(i) a uniform U([0, 1]) prior on [0, 1],

(ii) a prior with density π(θ) proportional to
√

I(θ),

(iii) a Beta(
√
n/2,

√
n/2) prior.

Find the means E[θ|X] and modes mθ|X of the posterior distributions corresponding to
the prior distributions (i)–(iii). Which of these posterior decision rules coincide with θ̂MLE?
Which one is minimax for quadratic risk? Justify your answers.

[You may use the following properties of the Beta(a, b) (a > 0, b > 0) distribution.
Its density f(x; a, b), x ∈ [0, 1], is proportional to xa−1(1 − x)b−1, its mean is equal to
a/(a+ b), and its mode is equal to

max(a− 1, 0)

max(a, 1) +max(b, 1)− 2

provided either a > 1 or b > 1.

You may further use the fact that a unique Bayes rule of constant risk is a unique
minimax rule for that risk.]
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Paper 1, Section II

25J Principles of Statistics

Consider a normally distributed random vector X ∈ Rp modelled as X ∼ N(θ, Ip)
where θ ∈ Rp, Ip is the p× p identity matrix, and where p > 3. Define the Stein estimator

θ̂STEIN of θ.

Prove that θ̂STEIN dominates the estimator θ̃ = X for the risk function induced by
quadratic loss

ℓ(a, θ) =

p∑

i=1

(ai − θi)
2, a ∈ Rp.

Show however that the worst case risks coincide, that is, show that

sup
θ∈Rp

Eθ ℓ(X, θ) = sup
θ∈Rp

Eθ ℓ(θ̂STEIN, θ).

[You may use Stein’s lemma without proof, provided it is clearly stated.]
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Paper 4, Section II

22J Probability and Measure

(a) State Fatou’s lemma.

(b) Let X be a random variable on Rd and let (Xk)
∞
k=1 be a sequence of random

variables on Rd. What does it mean to say that Xk → X weakly?

State and prove the Central Limit Theorem for i.i.d. real-valued random variables.
[You may use auxiliary theorems proved in the course provided these are clearly stated.]

(c) Let X be a real-valued random variable with characteristic function ϕ. Let
(hn)

∞
n=1 be a sequence of real numbers with hn 6= 0 and hn → 0. Prove that if we have

lim inf
n→∞

2ϕ(0) − ϕ(−hn)− ϕ(hn)

h2n
< ∞,

then E[X2] < ∞.

Paper 3, Section II

22J Probability and Measure

(a) Let (E, E , µ) be a measure space. What does it mean to say that T : E → E
is a measure-preserving transformation? What does it mean to say that a set A ∈ E is
invariant under T ? Show that the class of invariant sets forms a σ-algebra.

(b) Take E to be [0, 1) with Lebesgue measure on its Borel σ-algebra. Show that
the baker’s map T : [0, 1) → [0, 1) defined by

T (x) = 2x− ⌊2x⌋

is measure-preserving.

(c) Describe in detail the construction of the canonical model for sequences of
independent random variables having a given distribution m.

Define the Bernoulli shift map and prove it is a measure-preserving ergodic trans-
formation.

[You may use without proof other results concerning sequences of independent
random variables proved in the course, provided you state these clearly.]
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Paper 2, Section II

23J Probability and Measure

(a) Let (E, E , µ) be a measure space, and let 1 6 p < ∞. What does it mean to say
that f belongs to Lp(E, E , µ)?

(b) State Hölder’s inequality.

(c) Consider the measure space of the unit interval endowed with Lebesgue measure.
Suppose f ∈ L2(0, 1) and let 0 < α < 1/2.

(i) Show that for all x ∈ R,
∫ 1

0
|f(y)||x− y|−α dy < ∞ .

(ii) For x ∈ R, define

g(x) =

∫ 1

0
f(y)|x− y|−αdy .

Show that for x ∈ R fixed, the function g satisfies

|g(x+ h)− g(x)| 6 ‖f‖2 · (I(h))1/2,

where

I(h) =

∫ 1

0

(
|x+ h− y|−α − |x− y|−α

)2
dy.

(iii) Prove that g is a continuous function. [Hint: You may find it helpful to
split the integral defining I(h) into several parts.]
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Paper 1, Section II

23J Probability and Measure

(a) Define the following concepts: a π-system, a d-system and a σ-algebra.

(b) State the Dominated Convergence Theorem.

(c) Does the set function

µ(A) =

{
0 for A bounded,

1 for A unbounded,

furnish an example of a Borel measure?

(d) Suppose g : [0, 1] → [0, 1] is a measurable function. Let f : [0, 1] → R be
continuous with f(0) 6 f(1). Show that the limit

lim
n→∞

∫ 1

0
f( g(x)n) dx

exists and lies in the interval [f(0), f(1)].
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Paper 4, Section II

15F Representation Theory

(a) Let S1 be the circle group. Assuming any required facts about continuous
functions from real analysis, show that every 1-dimensional continuous representation of
S1 is of the form

z 7→ zn

for some n ∈ Z.

(b) Let G = SU(2), and let ρV be a continuous representation of G on a finite-
dimensional vector space V .

(i) Define the character χV of ρV , and show that χV ∈ N[z, z−1].

(ii) Show that χV (z) = χV (z
−1).

(iii) Let V be the irreducible 4-dimensional representation of G. Decompose V ⊗V
into irreducible representations. Hence decompose the exterior square Λ2V
into irreducible representations.

Paper 3, Section II

15F Representation Theory

(a) State Mackey’s theorem, defining carefully all the terms used in the statement.

(b) Let G be a finite group and suppose that G acts on the set Ω.

If n ∈ N, we say that the action of G on Ω is n-transitive if Ω has at least n elements
and for every pair of n-tuples (a1, . . . , an) and (b1, . . . , bn) such that the ai are distinct
elements of Ω and the bi are distinct elements of Ω, there exists g ∈ G with gai = bi
for every i.

(i) Let Ω have at least n elements, where n > 1 and let ω ∈ Ω. Show that G acts
n-transitively on Ω if and only if G acts transitively on Ω and the stabiliser Gω acts
(n− 1)-transitively on Ω \ {ω}.
(ii) Show that the permutation module CΩ can be decomposed as

CΩ = CG ⊕ V,

where CG is the trivial module and V is some CG-module.

(iii) Assume that |Ω| > 2, so that V 6= 0. Prove that V is irreducible if and only if G
acts 2-transitively on Ω. In that case show also that V is not the trivial representation.
[Hint: Pick any orbit of G on Ω; it is isomorphic as a G-set to G/H for some subgroup
H 6 G. Consider the induced character IndGH 1H .]
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Paper 2, Section II

15F Representation Theory

Let G be a finite group. Suppose that ρ : G → GL(V ) is a finite-dimensional
complex representation of dimension d. Let n ∈ N be arbitrary.

(i) Define the nth symmetric power SnV and the nth exterior power ΛnV and write
down their respective dimensions.

Let g ∈ G and let λ1, . . . , λd be the eigenvalues of g on V . What are the eigenvalues
of g on SnV and on ΛnV ?

(ii) Let X be an indeterminate. For any g ∈ G, define the characteristic polynomial
Q = Q(g,X) of g on V by Q(g,X) := det(g−XI). What is the relationship between
the coefficients of Q and the character χΛnV of the exterior power?

Find a relation between the character χSnV of the symmetric power and the
polynomial Q.

Paper 1, Section II

15F Representation Theory

(a) Let G be a finite group and let ρ : G → GL2(C) be a representation of G. Suppose
that there are elements g, h in G such that the matrices ρ(g) and ρ(h) do not commute.
Use Maschke’s theorem to prove that ρ is irreducible.

(b) Let n be a positive integer. You are given that the dicyclic group

G4n = 〈a, b : a2n = 1, an = b2, b−1ab = a−1〉

has order 4n.

(i) Show that if ǫ is any (2n)th root of unity in C, then there is a representation
of G4n over C which sends

a 7→
(

ǫ 0
0 ǫ−1

)
, b 7→

(
0 1
ǫn 0

)
.

(ii) Find all the irreducible representations of G4n.

(iii) Find the character table of G4n.

[Hint: You may find it helpful to consider the cases n odd and n even separately.]
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Paper 3, Section II

19F Riemann Surfaces

Let ℘(z) denote the Weierstrass ℘-function with respect to a lattice Λ ⊂ C and let
f be an even elliptic function with periods Λ. Prove that there exists a rational function
Q such that f(z) = Q(℘(z)). If we write Q(w) = p(w)/q(w) where p and q are coprime
polynomials, find the degree of f in terms of the degrees of the polynomials p and q.
Describe all even elliptic functions of degree two. Justify your answers. [You may use
standard properties of the Weierstrass ℘-function.]

Paper 2, Section II

20F Riemann Surfaces

Let G be a domain in C. Define the germ of a function element (f,D) at z ∈ D.
Let G be the set of all germs of function elements in G. Define the topology on G. Show
it is a topology, and that it is Hausdorff. Define the complex structure on G, and show
that there is a natural projection map π : G → G which is an analytic covering map on
each connected component of G.

Given a complete analytic function F on G, describe how it determines a connected
component GF of G. [You may assume that a function element (g,E) is an analytic
continuation of a function element (f,D) along a path γ : [0, 1] → G if and only if there
is a lift of γ to G starting at the germ of (f,D) at γ(0) and ending at the germ of (g,E)
at γ(1).]

In each of the following cases, give an example of a domain G in C and a complete
analytic function F such that:

(i) π : GF → G is regular but not bijective;

(ii) π : GF → G is surjective but not regular.
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Paper 1, Section II

20F Riemann Surfaces

Let f : R → S be a non-constant holomorphic map between compact connected
Riemann surfaces and let B ⊂ S denote the set of branch points. Show that the map
f : R \ f−1(B) → S \B is a regular covering map.

Given w ∈ S \B and a closed curve γ in S \B with initial and final point w, explain
how this defines a permutation of the (finite) set f−1(w). Show that the group H obtained
from all such closed curves is a transitive subgroup of the full symmetric group of the fibre
f−1(w).

Find the group H for f : C∞ → C∞ where f(z) = z3/(1 − z2).
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Paper 4, Section I

4J Statistical Modelling

Data on 173 nesting female horseshoe crabs record for each crab its colour as one
of 4 factors (simply labelled 1, . . . , 4), its width (in cm) and the presence of male crabs
nearby (a 1 indicating presence). The data are collected into the R data frame crabs and
the first few lines are displayed below.

> crabs[1:4, ]

colour width males

1 2 28.3 1

2 3 22.5 0

3 1 26.0 1

4 4 21.0 0

Describe the model being fitted by the R command below.

> fit1 <- glm(males ~ colour + width, family = binomial, data=crabs)

The following (abbreviated) output is obtained from the summary command.

> summary(fit1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -11.38 2.873 -3.962 7.43e-05 ***

colour2 0.07 0.740 0.098 0.922

colour3 -0.22 0.777 -0.288 0.773

colour4 -1.32 0.853 -1.560 0.119

width 0.46 0.106 4.434 9.26e-06 ***

Write out the calculation for an approximate 95% confidence interval for the coefficient for
width. Describe the calculation you would perform to obtain an estimate of the probability
that a female crab of colour 3 and with a width of 20cm has males nearby. [You need
not actually compute the end points of the confidence interval or the estimate of the
probability above, but merely show the calculations that would need to be performed in
order to arrive at them.]
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Paper 3, Section I
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4J Statistical Modelling

Data are available on the number of counts (atomic disintegration events that take
place within a radiation source) recorded with a Geiger counter at a nuclear plant. The
counts were registered at each second over a 30 second period for a short-lived, man-made
radioactive compound. The first few rows of the dataset are displayed below.

> geiger[1:3, ]

Time Counts

1 0 750.0

2 1 725.2

3 2 695.0

Describe the model being fitted with the following R command.

> fit1 <- lm(Counts ~ Time, data=geiger)

Below is a plot against time of the residuals from the model fitted above.
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Referring to the plot, suggest how the model could be improved, and write out the R code
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for fitting this new model. Briefly describe how one could test in R whether the new model
is to be preferred over the old model.

Paper 2, Section I

4J Statistical Modelling

Let Y1, . . . , Yn be independent Poisson random variables with means µ1, . . . , µn,
where log(µi) = βxi for some known constants xi ∈ R and an unknown parameter β. Find
the log-likelihood for β.

By first computing the first and second derivatives of the log-likelihood for β,
describe the algorithm you would use to find the maximum likelihood estimator β̂. [Hint:
Recall that if Z ∼ Pois(µ) then

P(Z = k) =
µke−µ

k!

for k ∈ {0, 1, 2, . . .}.]

Paper 1, Section I

4J Statistical Modelling

The outputs Y1, . . . , Yn of a particular process are positive and are believed to be
related to p-vectors of covariates x1, . . . , xn according to the following model

log(Yi) = µ+ xTi β + εi.

In this model εi are i.i.d. N(0, σ2) random variables where σ > 0 is known. It is not
possible to measure the output directly, but we can detect whether the output is greater
than or less than or equal to a certain known value c > 0. If

Zi =

{
1 if Yi > c

0 if Yi 6 c,

show that a probit regression model can be used for the data (Zi, xi), i = 1, . . . , n.

How can we recover µ and β from the parameters of the probit regression model?
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Paper 4, Section II

10J Statistical Modelling

Consider the normal linear model where the n-vector of responses Y satisfies
Y = Xβ + ε with ε ∼ Nn(0, σ

2I). Here X is an n × p matrix of predictors with full
column rank where p > 3 and β ∈ Rp is an unknown vector of regression coefficients.
For j ∈ {1, . . . , p}, denote the jth column of X by Xj , and let X−j be X with its jth
column removed. Suppose X1 = 1n where 1n is an n-vector of 1’s. Denote the maximum
likelihood estimate of β by β̂. Write down the formula for β̂j involving P−j , the orthogonal
projection onto the column space of X−j .

Consider j, k ∈ {2, . . . , p} with j < k. By thinking about the orthogonal projection
of Xj onto Xk, show that

var(β̂j) > σ2

‖Xj‖2

(
1 −

(
XT

k Xj

‖Xk‖‖Xj‖

)2 )−1

. (∗)

[You may use standard facts about orthogonal projections including the fact that if V
and W are subspaces of Rn with V a subspace of W and ΠV and ΠW denote orthogonal
projections onto V and W respectively, then for all v ∈ Rn, ‖ΠW v‖2 > ‖ΠV v‖2.]

This question continues on the next page
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10J Statistical Modelling (continued)

By considering the fitted values Xβ̂, explain why if, for any j > 2, a constant
is added to each entry in the jth column of X, then β̂j will remain unchanged. Let
X̄j =

∑n
i=1Xij/n. Why is (∗) also true when all instances of Xj and Xk are replaced by

Xj − X̄j1n and Xk − X̄k1n respectively?

The marks from mid-year statistics and mathematics tests and an end-of-year
statistics exam are recorded for 100 secondary school students. The first few lines of
the data are given below.

> exam_marks[1:3, ]

Stat_exam Maths_test Stat_test

1 83 94 92

2 76 45 27

3 73 67 62

The following abbreviated output is obtained:

> summary(lm(Stat_exam ~ Maths_test + Stat_test, data=exam_marks))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 25.0342 8.2694 3.027 0.00316 **

Maths_test 0.2782 0.3708 0.750 0.45503

Stat_test 0.1643 0.3364 0.488 0.62641

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

F-statistic: 6.111 on 2 and 97 DF, p-value: 0.003166

What are the hypothesis tests corresponding to the final column of the coefficients
table? What is the hypothesis test corresponding to the final line of the output? Interpret
the results when testing at the 5% level.

How does the following sample correlation matrix for the data help to explain the
relative sizes of some of the p-values?

> cor(exam_marks)

Stat_exam Maths_test Stat_test

Stat_exam 1.0000000 0.331224 0.3267138

Maths_test 0.3312240 1.000000 0.9371630

Stat_test 0.3267138 0.937163 1.0000000
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Paper 1, Section II

10J Statistical Modelling

An experiment is conducted where scientists count the numbers of each of three
different strains of fleas that are reproducing in a controlled environment. Varying
concentrations of a particular toxin that impairs reproduction are administered to the
fleas. The results of the experiment are stored in a data frame fleas in R, whose first few
rows are given below.

> fleas[1:3, ]

number conc strain

1 81 0.250 0

2 93 0.250 2

3 102 0.875 1

The full dataset has 80 rows. The first column provides the number of fleas, the second
provides the concentration of the toxin and the third specifies the strain of the flea as
factors 0, 1 or 2. Strain 0 is the common flea and strains 1 and 2 have been genetically
modified in a way thought to increase their ability to reproduce in the presence of the
toxin.

This question continues on the next page
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10J Statistical Modelling (continued)

Explain and interpret the R commands and (abbreviated) output below. In
particular, you should describe the model being fitted, briefly explain how the standard
errors are calculated, and comment on the hypothesis tests being described in the summary.

> fit1 <- glm(number ~ conc*strain, data=fleas, family=poisson)

> summary(fit1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.47171 0.03849 116.176 < 2e-16 ***

conc -0.28700 0.06727 -4.266 1.99e-05 ***

strain1 0.09381 0.05483 1.711 0.087076 .

strain2 0.12157 0.05591 2.175 0.029666 *

conc:strain1 0.34215 0.09178 3.728 0.000193 ***

conc:strain2 0.02385 0.09789 0.244 0.807510

Explain and motivate the following R code in the light of the output above. Briefly explain
the differences between the models fitted below, and the model corresponding to fit1.

> strain_grp <- fleas$strain

> levels(strain_grp)

[1] "0" "1" "2"

> levels(strain_grp) <- c(0, 1, 0)

> fit2 <- glm(number ~ conc + strain + conc:strain_grp,

+ data=fleas, family=poisson)

> fit3 <- glm(number ~ conc*strain_grp, data=fleas, family=poisson)

Denote by M1,M2,M3 the three models being fitted in sequence above. Explain the
hypothesis tests comparing the models to each other that can be performed using the
output from the following R code.

> c(fit1$dev, fit2$dev, fit3$dev)

[1] 56.87 56.93 76.98

> qchisq(0.95, df = 1)

[1] 3.84

Use these numbers to comment on the most appropriate model for the data.
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Paper 4, Section II

32C Statistical Physics

The Ising model consists of N particles, labelled by i, arranged on a D-dimensional
Euclidean lattice with periodic boundary conditions. Each particle has spin up si = +1,
or down si = −1, and the energy in the presence of a magnetic field B is

E = −B
∑

i

si − J
∑

〈i,j〉
si sj ,

where J > 0 is a constant and 〈i, j〉 indicates that the second sum is over each pair of
nearest neighbours (every particle has 2D nearest neighbours). Let β = 1/kBT , where T
is the temperature.

(i) Express the average spin per particle, m = (
∑

i〈si〉)/N , in terms of the canonical
partition function Z.

(ii) Show that in the mean-field approximation

Z = C [Z1(βBeff ) ]
N

where Z1 is a single-particle partition function, Beff is an effective magnetic field
which you should find in terms of B, J , D and m, and C is a prefactor which you
should also evaluate.

(iii) Deduce an equation that determines m for general values of B, J and temperature
T . Without attempting to solve for m explicitly, discuss how the behaviour of the
system depends on temperature when B = 0, deriving an expression for the critical
temperature Tc and explaining its significance.

(iv) Comment briefly on whether the results obtained using the mean-field approximation
for B = 0 are consistent with an expression for the free energy of the form

F (m,T ) = F0(T ) +
a

2
(T − Tc)m

2 +
b

4
m4

where a and b are positive constants.
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Paper 3, Section II

33C Statistical Physics

(a) A sample of gas has pressure p, volume V , temperature T and entropy S.

(i) Use the first law of thermodynamics to derive the Maxwell relation

(∂S
∂p

)
T
= −

(∂V
∂T

)
p
.

(ii) Define the heat capacity at constant pressure Cp and the enthalpy H and show
that Cp = (∂H/∂T )p.

(b) Consider a perfectly insulated pipe with a throttle valve, as shown.

p

V

p
2

V21

1

Gas initially occupying volume V1 on the left is forced slowly through the valve at
constant pressure p1. A constant pressure p2 is maintained on the right and the final
volume occupied by the gas after passing through the valve is V2.

(i) Show that the enthalpy H of the gas is unchanged by this process.

(ii) The Joule–Thomson coefficient is defined to be µ = (∂T/∂p)H . Show that

µ =
V

Cp

[
T

V

(∂V
∂T

)
p
− 1

]
.

[You may assume the identity (∂y/∂x)u = −(∂u/∂x)y
/
(∂u/∂y)x.]

(iii) Suppose that the gas obeys an equation of state

p = kBT

[
N

V
+B2(T )

N2

V 2

]

where N is the number of particles. Calculate µ to first order in N/V and

hence derive a condition on
d

dT

(B2(T )

T

)
for obtaining a positive Joule–Thomson

coefficient.
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Paper 2, Section II

33C Statistical Physics

(a) State the Bose–Einstein distribution formula for the mean occupation numbers ni

of discrete single-particle states i with energies Ei in a gas of bosons. Write down
expressions for the total particle number N and the total energy U when the single-
particle states can be treated as continuous, with energies E > 0 and density of states
g(E).

(b) Blackbody radiation at temperature T is equivalent to a gas of photons with

g(E) = AV E2

where V is the volume and A is a constant. What value of the chemical potential is
required when applying the Bose–Einstein distribution to photons? Show that the heat
capacity at constant volume satisfies CV ∝ Tα for some constant α, to be determined.

(c) Consider a system of bosonic particles of fixed total number N ≫ 1. The particles
are trapped in a potential which has ground state energy zero and which gives rise
to a density of states g(E) = BE2, where B is a constant. Explain, for this system,
what is meant by Bose–Einstein condensation and show that the critical temperature
satisfies Tc ∝ N1/3. If N0 is the number of particles in the ground state, show that
for T just below Tc

N0/N ≈ 1− (T/Tc)
γ

for some constant γ, to be determined.

(d) Would you expect photons to exhibit Bose–Einstein condensation? Explain your
answer very briefly.
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Paper 1, Section II

33C Statistical Physics

(a) Define the canonical partition function Z for a system with energy levels En, where n
labels states, given that the system is in contact with a heat reservoir at temperature
T . What is the probability p(n) that the system occupies state n ? Starting from an
expression for the entropy S = kB ∂ (T lnZ) / ∂T , deduce that

S = −kB
∑

n

p(n) ln p(n) . (∗)

(b) Consider an ensemble consisting of W copies of the system in part (a) with W very
large, so that there are Wp(n) members of the ensemble in state n. Starting from an
expression for the number of ways in which this can occur, find the entropy SW of the
ensemble and hence re-derive the expression (∗). [You may assume Stirling’s formula
lnX! ≈ X lnX −X for X large.]

(c) Consider a system of N non-interacting particles at temperature T . Each particle has
q internal states with energies

0 , E , 2E , . . . , (q−1)E .

Assuming that the internal states are the only relevant degrees of freedom, calculate
the total entropy of the system. Find the limiting values of the entropy as T → 0 and
T → ∞ and comment briefly on your answers.
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Paper 4, Section II

26K Stochastic Financial Models

(i) An investor in a single-period market with time-0 wealth w0 may generate any
time-1 wealth w1 of the form w1 = w0+X, where X is any element of a vector space V of
random variables. The investor’s objective is to maximize E[U(w1)], where U is strictly
increasing, concave and C2. Define the utility indifference price π(Y ) of a random variable
Y .

Prove that the map Y 7→ π(Y ) is concave. [You may assume that any supremum is
attained.]

(ii) Agent j has utility Uj(x) = − exp(−γjx), j = 1, . . . , J . The agents may buy for
time-0 price p a risky asset which will be worth X at time 1, where X is random and has
density

f(x) = 1
2αe

−α|x| , −∞ < x < ∞ .

Assuming zero interest, prove that agent j will optimally choose to buy

θj = −
√

1 + p2α2 − 1

γj p

units of the risky asset at time 0.

If the asset is in unit net supply, if Γ−1 ≡ ∑
j γ

−1
j , and if α > Γ, prove that the

market for the risky asset will clear at price

p = − 2Γ

α2 − Γ2
.

What happens if α 6 Γ?
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Paper 3, Section II

26K Stochastic Financial Models

A single-period market consists of n assets whose prices at time t are denoted by
St = (S1

t , . . . , S
n
t )

T , t = 0, 1, and a riskless bank account bearing interest rate r. The value
of S0 is given, and S1 ∼ N(µ, V ). An investor with utility U(x) = − exp(−γx) wishes
to choose a portfolio of the available assets so as to maximize the expected utility of her
wealth at time 1. Find her optimal investment.

What is the market portfolio for this problem? What is the beta of asset i? Derive
the Capital Asset Pricing Model, that

Excess return of asset i = Excess return of market portfolio × βi.

The Sharpe ratio of a portfolio θ is defined to be the excess return of the portfolio θ
divided by the standard deviation of the portfolio θ. If ρi is the correlation of the return
on asset i with the return on the market portfolio, prove that

Sharpe ratio of asset i = Sharpe ratio of market portfolio × ρi.

Paper 1, Section II

26K Stochastic Financial Models

(i) What does it mean to say that (Xn,Fn)n>0 is a martingale?

(ii) If Y is an integrable random variable and Yn = E[Y | Fn ], prove that (Yn,Fn)
is a martingale. [Standard facts about conditional expectation may be used without proof
provided they are clearly stated.] When is it the case that the limit limn→∞ Yn exists
almost surely?

(iii) An urn contains initially one red ball and one blue ball. A ball is drawn at
random and then returned to the urn with a new ball of the other colour. This process is
repeated, adding one ball at each stage to the urn. If the number of red balls after n draws
and replacements is Xn, and the number of blue balls is Yn, show that Mn = h(Xn, Yn) is
a martingale, where

h(x, y) = (x− y)(x+ y − 1).

Does this martingale converge almost surely?
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27K Stochastic Financial Models

(i) What is Brownian motion?

(ii) Suppose that (Bt)t>0 is Brownian motion, and the price St at time t of a risky
asset is given by

St = S0 exp{ σBt + (µ − 1
2σ

2)t }
where µ > 0 is the constant growth rate, and σ > 0 is the constant volatility of the asset.
Assuming that the riskless rate of interest is r > 0, derive an expression for the price at
time 0 of a European call option with strike K and expiry T , explaining briefly the basis
for your calculation.

(iii) With the same notation, derive the time-0 price of a European option with
expiry T which at expiry pays

{(ST −K)+}2/ST .
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Paper 4, Section I

2I Topics in Analysis

Let K be the set of all non-empty compact subsets ofm-dimensional Euclidean space
Rm. Define the Hausdorff metric on K, and prove that it is a metric.

Let K1 ⊇ K2 ⊇ . . . be a sequence in K. Show that K =

∞⋂

n=1

Kn is also in K and

that Kn → K as n → ∞ in the Hausdorff metric.

Paper 3, Section I

2I Topics in Analysis

Let K be a compact subset of C with path-connected complement. If w /∈ K and
ǫ > 0, show that there is a polynomial P such that

∣∣∣∣P (z)− 1

w − z

∣∣∣∣ 6 ǫ

for all z ∈ K.
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Paper 2, Section I

2I Topics in Analysis

Let x1, x2, . . . , xn be the roots of the Legendre polynomial of degree n. Let A1,
A2, . . . , An be chosen so that

∫ 1

−1
p(t) dt =

n∑

j=1

Ajp(xj)

for all polynomials p of degree n − 1 or less. Assuming any results about Legendre
polynomials that you need, prove the following results:

(i)

∫ 1

−1
p(t) dt =

n∑

j=1

Ajp(xj) for all polynomials p of degree 2n− 1 or less;

(ii) Aj > 0 for all 1 6 j 6 n;

(iii)
n∑

j=1

Aj = 2.

Now consider Qn(f) =
∑n

j=1Ajf(xj). Show that

Qn(f) →
∫ 1

−1
f(t) dt

as n → ∞ for all continuous functions f .

Paper 1, Section I

2I Topics in Analysis

Let Ω be a non-empty bounded open subset of R2 with closure Ω̄ and boundary ∂Ω.
Let φ : Ω̄ → R be continuous with φ twice differentiable on Ω.

(i) Why does φ have a maximum on Ω̄?

(ii) If ǫ > 0 and ∇2φ > ǫ on Ω, show that φ has a maximum on ∂Ω.

(iii) If ∇2φ > 0 on Ω, show that φ has a maximum on ∂Ω.

(iv) If ∇2φ = 0 on Ω and φ = 0 on ∂Ω, show that φ = 0 on Ω̄.
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Paper 2, Section II

9I Topics in Analysis

State and prove Sperner’s lemma concerning the colouring of triangles.

Deduce a theorem, to be stated clearly, on retractions to the boundary of a disc.

State Brouwer’s fixed point theorem for a disc and sketch a proof of it.

Let g : R2 → R2 be a continuous function such that for some K > 0 we have
‖g(x) − x‖ 6 K for all x ∈ R2. Show that g is surjective.

Paper 3, Section II

10I Topics in Analysis

Let α > 0. By considering the set Em consisting of those f ∈ C([0, 1]) for which
there exists an x ∈ [0, 1] with |f(x+ h)− f(x)| 6 m|h|α for all x+ h ∈ [0, 1], or otherwise,
give a Baire category proof of the existence of continuous functions f on [0, 1] such that

lim sup
h→0

|h|−α|f(x+ h)− f(x)| = ∞

at each x ∈ [0, 1].

Are the following statements true? Give reasons.

(i) There exists an f ∈ C([0, 1]) such that

lim sup
h→0

|h|−α|f(x+ h)− f(x)| = ∞

for each x ∈ [0, 1] and each α > 0.

(ii) There exists an f ∈ C([0, 1]) such that

lim sup
h→0

|h|−α|f(x+ h)− f(x)| = ∞

for each x ∈ [0, 1] and each α > 0.
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Paper 4, Section II

36B Waves

The shallow-water equations

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0

describe one-dimensional flow over a horizontal boundary with depth h(x, t) and velocity
u(x, t), where g is the acceleration due to gravity.

Show that the Riemann invariants u ± 2(c − c0) are constant along characteristics
C± satisfying dx/dt = u±c, where c(h) is the linear wave speed and c0 denotes a reference
state.

An initially stationary pool of fluid of depth h0 is held between a stationary wall
at x = a > 0 and a removable barrier at x = 0. At t = 0 the barrier is instantaneously
removed allowing the fluid to flow into the region x < 0.

For 0 6 t 6 a/c0, find u(x, t) and c(x, t) in each of the regions

(i) c0t 6 x 6 a

(ii) −2c0t 6 x 6 c0t

explaining your argument carefully with a sketch of the characteristics in the (x, t) plane.

For t > a/c0, show that the solution in region (ii) above continues to hold in the
region −2c0t 6 x 6 3a(c0t/a)

1/3 − 2c0t. Explain why this solution does not hold in
3a(c0t/a)

1/3 − 2c0t < x < a.
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Paper 2, Section II

36B Waves

A uniform elastic solid with density ρ and Lamé moduli λ and µ occupies the region
between rigid plane boundaries z = 0 and z = h. Starting with the linear elastic wave
equation, show that SH waves can propagate in the x-direction within this waveguide, and
find the dispersion relation ω(k) for the various modes.

State the cut-off frequency for each mode. Find the corresponding phase velocity
c(k) and group velocity cg(k), and sketch these functions for k, ω > 0.

Define the time and cross-sectional average appropriate for a mode with frequency
ω. Show that for each mode the average kinetic energy is equal to the average elastic
energy. [You may assume that the elastic energy per unit volume is 1

2(λe
2
kk + 2µeijeij).]

An elastic displacement of the form u = (0, f(x, z), 0) is created in a region near
x = 0, and then released at t = 0. Explain briefly how the amplitude of the resulting
disturbance varies with time as t → ∞ at the moving position x = V t for each of the cases
0 < V 2 < µ/ρ and V 2 > µ/ρ. [You may quote without proof any generic results from the
method of stationary phase.]

Paper 3, Section II

37B Waves

Derive the ray-tracing equations for the quantities dki/dt, dω/dt and dxi/dt
during wave propagation through a slowly varying medium with local dispersion relation
ω = Ω(k,x, t), explaining the meaning of the notation d/dt.

The dispersion relation for water waves is Ω2 = gκ tanh(κh), where h is the water
depth, κ2 = k2 + l2, and k and l are the components of k in the horizontal x and y
directions. Water waves are incident from an ocean occupying x > 0, −∞ < y < ∞ onto
a beach at x = 0. The undisturbed water depth is h(x) = αxp, where α, p are positive
constants and α is sufficiently small that the depth can be assumed to be slowly varying.
Far from the beach, the waves are planar with frequency ω∞ and with crests making an
acute angle θ∞ with the shoreline.

Obtain a differential equation (with k defined implicitly) for a ray y = y(x) and
show that near the shore the ray satisfies

y − y0 ∼ Axq

where A and q should be found. Sketch the shape of the wavecrests near the shoreline for
the case p < 2.
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37B Waves

An acoustic plane wave (not necessarily harmonic) travels at speed c0 in the direction
k̂, where |k̂| = 1, through an inviscid, compressible fluid of unperturbed density ρ0. Show
that the velocity ũ is proportional to the perturbation pressure p̃, and find ũ/p̃. Define
the acoustic intensity I.

A harmonic acoustic plane wave with wavevector k = k(cos θ, sin θ, 0) and unit-
amplitude perturbation pressure is incident from x < 0 on a thin elastic membrane at
unperturbed position x = 0. The regions x < 0 and x > 0 are both occupied by gas with
density ρ0 and sound speed c0. The kinematic boundary conditions at the membrane are
those appropriate for an inviscid fluid, and the (linearized) dynamic boundary condition
is

m
∂2X

∂t2
− T

∂2X

∂y2
+

[
p̃(0, y, t)

]+
− = 0

where T and m are the tension and mass per unit area of the membrane, and x = X(y, t)
(with |kX| ≪ 1) is its perturbed position. Find the amplitudes of the reflected and
transmitted pressure perturbations, expressing your answers in terms of the dimensionless
parameter

α =
ρ0c

2
0

k cos θ(mc20 − T sin2 θ)
.

Hence show that the time-averaged energy flux in the x-direction is conserved across the
membrane.
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