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Paper 1, Section I

3F Analysis I
Find the following limits:

(a) lim
x→0

sinx

x

(b) lim
x→0

(1 + x)1/x

(c) lim
x→∞

(1 + x)
x

1+x cos4 x

ex

Carefully justify your answers.

[You may use standard results provided that they are clearly stated.]

Paper 1, Section I

4E Analysis I
Let

∑
n>0 anz

n be a complex power series. State carefully what it means for the
power series to have radius of convergence R, with 0 6 R 6 ∞.

Find the radius of convergence of
∑

n>0 p(n)z
n, where p(n) is a fixed polynomial in n

with coefficients in C.

Paper 1, Section II

9F Analysis I
Let (an), (bn) be sequences of real numbers. Let Sn =

∑n
j=1 aj and set S0 = 0.

Show that for any 1 6 m 6 n we have

n∑

j=m

ajbj = Snbn − Sm−1bm +

n−1∑

j=m

Sj(bj − bj+1).

Suppose that the series
∑

n>1 an converges and that (bn) is bounded and monotonic.
Does

∑
n>1 anbn converge?

Assume again that
∑

n>1 an converges. Does
∑

n>1 n
1/nan converge?

Justify your answers.

[You may use the fact that a sequence of real numbers converges if and only if it is
a Cauchy sequence.]

Part IA, 2015 List of Questions



3

Paper 1, Section II

10D Analysis I
(a) For real numbers a, b such that a < b, let f : [a, b] → R be a continuous function.

Prove that f is bounded on [a, b], and that f attains its supremum and infimum
on [a, b].

(b) For x ∈ R, define

g(x) =

{
|x| 12 sin(1/ sin x), x 6= nπ

0, x = nπ
(n ∈ Z).

Find the set of points x ∈ R at which g(x) is continuous.

Does g attain its supremum on [0, π]?

Does g attain its supremum on [π, 3π/2]?

Justify your answers.

Paper 1, Section II

11D Analysis I
(i) State and prove the intermediate value theorem.

(ii) Let f : [0, 1] → R be a continuous function. The chord joining the points
(
α, f(α)

)

and
(
β, f(β)

)
of the curve y = f(x) is said to be horizontal if f(α) = f(β). Suppose

that the chord joining the points
(
0, f(0)

)
and

(
1, f(1)

)
is horizontal. By considering

the function g defined on [0, 12 ] by

g(x) = f(x+ 1
2)− f(x),

or otherwise, show that the curve y = f(x) has a horizontal chord of length 1
2 in

[0, 1]. Show, more generally, that it has a horizontal chord of length 1
n for each

positive integer n.

Paper 1, Section II

12E Analysis I
Let f : [0, 1] → R be a bounded function, and let Dn denote the dissection

0 < 1
n < 2

n < · · · < n−1
n < 1 of [0, 1]. Prove that f is Riemann integrable if and

only if the difference between the upper and lower sums of f with respect to the dissection
Dn tends to zero as n tends to infinity.

Suppose that f is Riemann integrable and g : R → R is continuously differentiable.
Prove that g ◦ f is Riemann integrable.

[You may use the mean value theorem provided that it is clearly stated.]
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Paper 2, Section I

1B Differential Equations
Find the general solution of the equation

dy

dx
− 2y = eλx, (∗)

where λ is a constant not equal to 2.

By subtracting from the particular integral an appropriate multiple of the comple-
mentary function, obtain the limit as λ → 2 of the general solution of (∗) and confirm
that it yields the general solution for λ = 2.

Solve equation (∗) with λ = 2 and y(1) = 2.

Paper 2, Section I

2B Differential Equations
Find the general solution of the equation

2
dy

dt
= y − y3.

Compute all possible limiting values of y as t → ∞.

Find a non-zero value of y(0) such that y(t) = y(0) for all t.

Paper 2, Section II

5B Differential Equations
Write as a system of two first-order equations the second-order equation

d2θ

dt2
+ c

dθ

dt

∣∣∣∣
dθ

dt

∣∣∣∣+ sin θ = 0, (∗)

where c is a small, positive constant, and find its equilibrium points. What is the nature
of these points?

Draw the trajectories in the (θ, ω) plane, where ω = dθ/dt, in the neighbourhood of
two typical equilibrium points.

By considering the cases of ω > 0 and ω < 0 separately, find explicit expressions
for ω2 as a function of θ. Discuss how the second term in (∗) affects the nature of the
equilibrium points.
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Paper 2, Section II

6B Differential Equations
Consider the equation

2
∂2u

∂x2
+ 3

∂2u

∂y2
− 7

∂2u

∂x ∂y
= 0 (∗)

for the function u(x, y), where x and y are real variables. By using the change of variables

ξ = x+ αy, η = βx+ y,

where α and β are appropriately chosen integers, transform (∗) into the equation

∂2u

∂ξ ∂η
= 0.

Hence, solve equation (∗) supplemented with the boundary conditions

u(0, y) = 4y2, u(−2y, y) = 0, for all y.
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Paper 2, Section II

7B Differential Equations
Suppose that u(x) satisfies the equation

d2u

dx2
− f(x)u = 0,

where f(x) is a given non-zero function. Show that under the change of coordinates
x = x(t),

d2u

dt2
− ẍ

ẋ

du

dt
− ẋ2f(x)u = 0,

where a dot denotes differentiation with respect to t. Furthermore, show that the function

U(t) = ẋ−
1
2u(x)

satisfies
d2U

dt2
−

[
ẋ2f(x) + ẋ−

1
2

(
ẍ

ẋ

d

dt

(
ẋ

1
2
)
− d2

dt2
(
ẋ

1
2
))]

U = 0.

Choosing ẋ =
(
f(x)

)− 1
2 , deduce that

d2U

dt2
−

(
1 + F (t)

)
U = 0,

for some appropriate function F (t). Assuming that F may be neglected, deduce that u(x)
can be approximated by

u(x) ≈ A(x)
(
c+e

G(x) + c−e−G(x)
)
,

where c+, c− are constants and A, G are functions that you should determine in terms
of f(x).
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Paper 2, Section II

8B Differential Equations
Suppose that x(t) ∈ R3 obeys the differential equation

dx

dt
= Mx, (∗)

where M is a constant 3× 3 real matrix.

(i) Suppose that M has distinct eigenvalues λ1, λ2, λ3 with corresponding eigenvectors
e1, e2, e3. Explain why x may be expressed in the form

∑3
i=1 ai(t)ei and deduce by

substitution that the general solution of (∗) is

x =
3∑

i=1

Aie
λitei,

where A1, A2, A3 are constants.

(ii) What is the general solution of (∗) if λ2 = λ3 6= λ1, but there are still three linearly
independent eigenvectors?

(iii) Suppose again that λ2 = λ3 6= λ1, but now there are only two linearly independent
eigenvectors: e1 corresponding to λ1 and e2 corresponding to λ2. Suppose that
a vector v satisfying the equation (M − λ2I)v = e2 exists, where I denotes the
identity matrix. Show that v is linearly independent of e1 and e2, and hence or
otherwise find the general solution of (∗).
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Paper 4, Section I

3C Dynamics and Relativity
Find the moment of inertia of a uniform sphere of mass M and radius a about an

axis through its centre.

The kinetic energy T of any rigid body with total massM, centre of massR, moment
of inertia I about an axis of rotation through R, and angular velocity ω about that same
axis, is given by T = 1

2MṘ2 + 1
2Iω

2. What physical interpretation can be given to the
two parts of this expression?

A spherical marble of uniform density and mass M rolls without slipping at speed V
along a flat surface. Explaining any relationship that you use between its speed and angular
velocity, show that the kinetic energy of the marble is 7

10MV 2.

Paper 4, Section I

4C Dynamics and Relativity
Write down the 4-momentum of a particle with energy E and 3-momentum p. State

the relationship between the energy E and wavelength λ of a photon.

An electron of mass m is at rest at the origin of the laboratory frame: write down
its 4-momentum. The electron is scattered by a photon of wavelength λ1 travelling along
the x-axis: write down the initial 4-momentum of the photon. Afterwards, the photon has
wavelength λ2 and has been deflected through an angle θ. Show that

λ2 − λ1 =
2h

mc
sin2(12θ)

where c is the speed of light and h is Planck’s constant.
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Paper 4, Section II

9C Dynamics and Relativity
A particle is projected vertically upwards at speed V from the surface of the Earth,

which may be treated as a perfect sphere. The variation of gravity with height should
not be ignored, but the rotation of the Earth should be. Show that the height z(t) of the
particle obeys

z̈ = − gR2

(R+ z)2
,

where R is the radius of the Earth and g is the acceleration due to gravity measured at
the Earth’s surface.

Using dimensional analysis, show that the maximum height H of the particle and
the time T taken to reach that height are given by

H = RF (λ) and T =
V

g
G(λ),

where F and G are functions of λ = V 2/gR.

Write down the equation of conservation of energy and deduce that

T =

∫ H

0

√
R+ z

V 2R− (2gR − V 2)z
dz.

Hence or otherwise show that

F (λ) =
λ

2− λ
and G(λ) =

∫ 1

0

√
2− λ+ λx

(2− λ)3(1− x)
dx.
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Paper 4, Section II

10C Dynamics and Relativity
A particle of mass m and charge q has position vector r(t) and moves in a constant,

uniform magnetic field B so that its equation of motion is

mr̈ = qṙ×B.

Let L = mr× ṙ be the particle’s angular momentum. Show that

L ·B+ 1
2q|r×B|2

is a constant of the motion. Explain why the kinetic energy T is also constant, and show
that it may be written in the form

T = 1
2mu ·

(
(u · v)v − r2ü

)
,

where v = ṙ, r = |r| and u = r/r.

[Hint: Consider u · u̇.]
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Paper 4, Section II

11C Dynamics and Relativity
Consider a particle with position vector r(t) moving in a plane described by polar

coordinates (r, θ). Obtain expressions for the radial (r) and transverse (θ) components of
the velocity ṙ and acceleration r̈.

A charged particle of unit mass moves in the electric field of another charge that is
fixed at the origin. The electrostatic force on the particle is −p/r2 in the radial direction,
where p is a positive constant. The motion takes place in an unusual medium that resists
radial motion but not tangential motion, so there is an additional radial force −kṙ/r2

where k is a positive constant. Show that the particle’s motion lies in a plane. Using polar
coordinates in that plane, show also that its angular momentum h = r2θ̇ is constant.

Obtain the equation of motion

d2u

dθ2
+

k

h

du

dθ
+ u =

p

h2
,

where u = r−1, and find its general solution assuming that k/|h| < 2. Show that so long
as the motion remains bounded it eventually becomes circular with radius h2/p.

Obtain the expression

E = 1
2h

2

(
u2 +

(du
dθ

)2
)
− pu

for the particle’s total energy, that is, its kinetic energy plus its electrostatic potential
energy. Hence, or otherwise, show that the energy is a decreasing function of time.
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Paper 4, Section II

12C Dynamics and Relativity
Write down the Lorentz transform relating the components of a 4-vector between

two inertial frames.

A particle moves along the x-axis of an inertial frame. Its position at time t is x(t),
its velocity is u = dx/dt, and its 4-position is X = (ct, x), where c is the speed of light.
The particle’s 4-velocity is given by U = dX/dτ and its 4-acceleration is A = dU/dτ ,
where proper time τ is defined by c2dτ2 = c2dt2 − dx2. Show that

U = γ (c, u) and A = γ4u̇ (u/c, 1)

where γ = (1− u2/c2)−
1
2 and u̇ = du/dt.

The proper 3-acceleration a of the particle is defined to be the spatial component
of its 4-acceleration measured in the particle’s instantaneous rest frame. By transforming
A to the rest frame, or otherwise, show that

a = γ3u̇ =
d

dt
(γu).

Given that the particle moves with constant proper 3-acceleration starting from rest
at the origin, show that

x(t) =
c2

a

(√
1 +

a2t2

c2
− 1

)
,

and that, if at ≪ c, then x ≈ 1
2at

2.
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Paper 3, Section I

1D Groups
Say that a group is dihedral if it has two generators x and y, such that x has order

n (greater than or equal to 2 and possibly infinite), y has order 2, and yxy−1 = x−1. In
particular the groups C2 and C2 × C2 are regarded as dihedral groups. Prove that:

(i) any dihedral group can be generated by two elements of order 2;

(ii) any group generated by two elements of order 2 is dihedral; and

(iii) any non-trivial quotient group of a dihedral group is dihedral.

Paper 3, Section I

2D Groups
How many cyclic subgroups (including the trivial subgroup) does S5 contain?

Exhibit two isomorphic subgroups of S5 which are not conjugate.

Paper 3, Section II

5D Groups
What does it mean for a group G to act on a set X? For x ∈ X, what is meant by

the orbit Orb(x) to which x belongs, and by the stabiliser Gx of x? Show that Gx is a
subgroup of G. Prove that, if G is finite, then |G| = |Gx| · |Orb(x)|.
(a) Prove that the symmetric group Sn acts on the set P (n) of all polynomials in

n variables x1, . . . , xn, if we define σ · f to be the polynomial given by

(σ · f)(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)),

for f ∈ P (n) and σ ∈ Sn. Find the orbit of f = x1x2 + x3x4 ∈ P (4) under S4. Find
also the order of the stabiliser of f .

(b) Let r, n be fixed positive integers such that r 6 n. Let Br be the set of all subsets
of size r of the set {1, 2, . . . , n}. Show that Sn acts on Br by defining σ · U to be
the set {σ(u) : u ∈ U}, for any U ∈ Br and σ ∈ Sn. Prove that Sn is transitive in
its action on Br. Find also the size of the stabiliser of U ∈ Br.
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Paper 3, Section II

6D Groups
Let G,H be groups and let ϕ : G → H be a function. What does it mean to say that

ϕ is a homomorphism with kernel K? Show that if K = {e, ξ} has order 2 then x−1ξx = ξ
for each x ∈ G. [If you use any general results about kernels of homomorphisms, then you
should prove them.]

Which of the following four statements are true, and which are false? Justify your
answers.

(a) There is a homomorphism from the orthogonal group O(3) to a group of order 2
with kernel the special orthogonal group SO(3).

(b) There is a homomorphism from the symmetry group S3 of an equilateral triangle
to a group of order 2 with kernel of order 3.

(c) There is a homomorphism from O(3) to SO(3) with kernel of order 2.

(d) There is a homomorphism from S3 to a group of order 3 with kernel of order 2.

Paper 3, Section II

7D Groups
(a) State and prove Lagrange’s theorem.

(b) Let G be a group and let H,K be fixed subgroups of G. For each g ∈ G, any set of
the form HgK = {hgk : h ∈ H, k ∈ K} is called an (H,K) double coset, or simply
a double coset if H and K are understood. Prove that every element of G lies in
some (H,K) double coset, and that any two (H,K) double cosets either coincide
or are disjoint.

Let G be a finite group. Which of the following three statements are true, and which
are false? Justify your answers.

(i) The size of a double coset divides the order of G.

(ii) Different double cosets for the same pair of subgroups have the same size.

(iii) The number of double cosets divides the order of G.
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Paper 3, Section II

8D Groups
(a) Let G be a non-trivial group and let Z(G) = {h ∈ G : gh = hg for all g ∈ G}. Show

that Z(G) is a normal subgroup of G. If the order of G is a power of a prime, show
that Z(G) is non-trivial.

(b) The Heisenberg group H is the set of all 3× 3 matrices of the form



1 x y
0 1 z
0 0 1


 ,

with x, y, z ∈ R. Show that H is a subgroup of the group of non-singular real
matrices under matrix multiplication.

Find Z(H) and show that H/Z(H) is isomorphic to R2 under vector addition.

(c) For p prime, the modular Heisenberg group Hp is defined as in (b), except that x, y
and z now lie in the field of p elements. Write down |Hp|. Find both Z(Hp) and
Hp/Z(Hp) in terms of generators and relations.
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Paper 4, Section I

1E Numbers and Sets
(a) Find all integers x and y such that

6x+ 2y ≡ 3 (mod 53) and 17x+ 4y ≡ 7 (mod 53).

(b) Show that if an integer n > 4 is composite then (n− 1)! ≡ 0 (mod n).

Paper 4, Section I

2E Numbers and Sets
State the Chinese remainder theorem and Fermat’s theorem. Prove that

p4 ≡ 1 (mod 240)

for any prime p > 5.

Paper 4, Section II

5E Numbers and Sets
(i) Let ∼ be an equivalence relation on a set X. What is an equivalence class of ∼?

What is a partition of X? Prove that the equivalence classes of ∼ form a partition
of X.

(ii) Let ∼ be the relation on the natural numbers N = {1, 2, 3, . . .} defined by

m ∼ n ⇐⇒ ∃ a, b ∈ N such that m divides na and n divides mb.

Show that ∼ is an equivalence relation, and show that it has infinitely many
equivalence classes, all but one of which are infinite.
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Paper 4, Section II

6E Numbers and Sets
Let p be a prime. A base p expansion of an integer k is an expression

k = k0 + p · k1 + p2 · k2 + · · · + pℓ · kℓ

for some natural number ℓ, with 0 6 ki < p for i = 0, 1, . . . , ℓ.

(i) Show that the sequence of coefficients k0, k1, k2, . . . , kℓ appearing in a base p
expansion of k is unique, up to extending the sequence by zeroes.

(ii) Show that (
p

j

)
≡ 0 (mod p), 0 < j < p,

and hence, by considering the polynomial (1 + x)p or otherwise, deduce that

(
pi

j

)
≡ 0 (mod p), 0 < j < pi.

(iii) If n0 + p · n1 + p2 · n2 + · · ·+ pℓ · nℓ is a base p expansion of n, then, by considering
the polynomial (1 + x)n or otherwise, show that

(
n

k

)
≡

(
n0

k0

)(
n1

k1

)
· · ·

(
nℓ

kℓ

)
(mod p).

Paper 4, Section II

7E Numbers and Sets
State the inclusion–exclusion principle.

Let n ∈ N. A permutation σ of the set {1, 2, 3, . . . , n} is said to contain a
transposition if there exist i, j with 1 6 i < j 6 n such that σ(i) = j and σ(j) = i. Derive
a formula for the number, f(n), of permutations which do not contain a transposition,
and show that

lim
n→∞

f(n)

n!
= e−

1
2 .
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Paper 4, Section II

8E Numbers and Sets
What does it mean for a set to be countable? Prove that

(a) if B is countable and f : A → B is injective, then A is countable;

(b) if A is countable and f : A → B is surjective, then B is countable.

Prove that N× N is countable, and deduce that

(i) if X and Y are countable, then so is X × Y ;

(ii) Q is countable.

Let C be a collection of circles in the plane such that for each point a on the x-axis,
there is a circle in C passing through the point a which has the x-axis tangent to the circle
at a. Show that C contains a pair of circles that intersect.
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Paper 2, Section I

3F Probability
Let U be a uniform random variable on (0, 1), and let λ > 0.

(a) Find the distribution of the random variable −(logU)/λ.

(b) Define a new random variable X as follows: suppose a fair coin is tossed, and if it
lands heads we set X = U2 whereas if it lands tails we set X = 1 − U2. Find the
probability density function of X.

Paper 2, Section I

4F Probability
Let A,B be events in the sample space Ω such that 0 < P (A) < 1 and 0 < P (B) < 1.

The event B is said to attract A if the conditional probability P (A|B) is greater than P (A),
otherwise it is said that A repels B. Show that if B attracts A, then A attracts B. Does
Bc = Ω \B repel A?

Paper 2, Section II

9F Probability
Lionel and Cristiana have a and b million pounds, respectively, where a, b ∈ N.

They play a series of independent football games in each of which the winner receives one
million pounds from the loser (a draw cannot occur). They stop when one player has lost
his or her entire fortune. Lionel wins each game with probability 0 < p < 1 and Cristiana
wins with probability q = 1− p, where p 6= q. Find the expected number of games before
they stop playing.
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Paper 2, Section II

10F Probability
Consider the function

φ(x) =
1√
2π

e−x2/2, x ∈ R.

Show that φ defines a probability density function. If a random variable X has probability
density function φ, find the moment generating function ofX, and find all moments E[Xk],
k ∈ N.

Now define

r(x) =
P (X > x)

φ(x)
.

Show that for every x > 0,
1

x
− 1

x3
< r(x) <

1

x
.

Paper 2, Section II

11F Probability
State and prove Markov’s inequality and Chebyshev’s inequality, and deduce the

weak law of large numbers.

If X is a random variable with mean zero and finite variance σ2, prove that for any
a > 0,

P (X > a) 6 σ2

σ2 + a2
.

[Hint: Show first that P (X > a) 6 P
(
(X + b)2 > (a+ b)2

)
for every b > 0.]

Paper 2, Section II

12F Probability
When coin A is tossed it comes up heads with probability 1

4 , whereas coin B comes
up heads with probability 3

4 . Suppose one of these coins is randomly chosen and is tossed
twice. If both tosses come up heads, what is the probability that coin B was tossed?
Justify your answer.

In each draw of a lottery, an integer is picked independently at random from the
first n integers 1, 2, . . . , n, with replacement. What is the probability that in a sample
of r successive draws the numbers are drawn in a non-decreasing sequence? Justify your
answer.
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Paper 3, Section I

3A Vector Calculus
(i) For r = |x| with x ∈ R3 \ {0}, show that

∂r

∂xi
=

xi
r

(i = 1, 2, 3).

(ii) Consider the vector fields F(x) = r2x, G(x) = (a ·x)x and H(x) = a× x̂, where a is
a constant vector in R3 and x̂ is the unit vector in the direction of x. Using suffix
notation, or otherwise, find the divergence and the curl of each of F, G and H.

Paper 3, Section I

4A Vector Calculus
The smooth curve C in R3 is given in parametrised form by the function x(u). Let

s denote arc length measured along the curve.

(a) Express the tangent t in terms of the derivative x′ = dx/du, and show that
du/ds = |x′|−1.

(b) Find an expression for dt/ds in terms of derivatives of x with respect to u, and show
that the curvature κ is given by

κ =
|x′ × x′′|
|x′|3 .

[Hint: You may find the identity (x′ · x′′)x′ − (x′ · x′)x′′ = x′ × (x′ × x′′) helpful.]

(c) For the curve

x(u) =



u cos u
u sinu

0


 ,

with u > 0, find the curvature as a function of u.
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Paper 3, Section II

9A Vector Calculus
The vector field F(x) is given in terms of cylindrical polar coordinates (ρ, φ, z) by

F(x) = f(ρ)eρ,

where f is a differentiable function of ρ, and eρ = cosφ ex + sinφ ey is the unit basis
vector with respect to the coordinate ρ. Compute the partial derivatives ∂F1/∂x, ∂F2/∂y,
∂F3/∂z and hence find the divergence ∇ · F in terms of ρ and φ.

The domain V is bounded by the surface z = (x2+y2)−1, by the cylinder x2+y2 = 1,
and by the planes z = 1

4 and z = 1. Sketch V and compute its volume.

Find the most general function f(ρ) such that ∇ · F = 0, and verify the divergence
theorem for the corresponding vector field F(x) in V.

Paper 3, Section II

10A Vector Calculus
State Stokes’ theorem.

Let S be the surface in R3 given by z2 = x2+ y2+1−λ, where 0 6 z 6 1 and λ is a
positive constant. Sketch the surface S for representative values of λ and find the surface
element dS with respect to the Cartesian coordinates x and y.

Compute ∇× F for the vector field

F(x) =



−y
x
z




and verify Stokes’ theorem for F on the surface S for every value of λ.

Now compute ∇×G for the vector field

G(x) =
1

x2 + y2



−y
x
0




and find the line integral
∫
∂S G · dx for the boundary ∂S of the surface S. Is it possible

to obtain this result using Stokes’ theorem? Justify your answer.
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Paper 3, Section II

11A Vector Calculus
(i) Starting with the divergence theorem, derive Green’s first theorem

∫

V
(ψ∇2φ+∇ψ · ∇φ) dV =

∫

∂V
ψ
∂φ

∂n
dS.

(ii) The function φ(x) satisfies Laplace’s equation ∇2φ = 0 in the volume V with given
boundary conditions φ(x) = g(x) for all x ∈ ∂V. Show that φ(x) is the only such
function. Deduce that if φ(x) is constant on ∂V then it is constant in the whole
volume V.

(iii) Suppose that φ(x) satisfies Laplace’s equation in the volume V. Let Vr be the sphere
of radius r centred at the origin and contained in V. The function f(r) is defined
by

f(r) =
1

4πr2

∫

∂Vr

φ(x) dS.

By considering the derivative df/dr, and by introducing the Jacobian in spherical
polar coordinates and using the divergence theorem, or otherwise, show that f(r) is
constant and that f(r) = φ(0).

(iv) LetM denote the maximum of φ on ∂Vr and m the minimum of φ on ∂Vr. By using
the result from (iii), or otherwise, show that m 6 φ(0) 6M .

Paper 3, Section II

12A Vector Calculus
(a) Let tij be a rank 2 tensor whose components are invariant under rotations through

an angle π about each of the three coordinate axes. Show that tij is diagonal.

(b) An array of numbers aij is given in one orthonormal basis as δij+ǫ1ij and in another
rotated basis as δij. By using the invariance of the determinant of any rank 2 tensor,
or otherwise, prove that aij is not a tensor.

(c) Let aij be an array of numbers and bij a tensor. Determine whether the following
statements are true or false. Justify your answers.

(i) If aijbij is a scalar for any rank 2 tensor bij , then aij is a rank 2 tensor.

(ii) If aijbij is a scalar for any symmetric rank 2 tensor bij , then aij is a rank 2
tensor.

(iii) If aij is antisymmetric and aijbij is a scalar for any symmetric rank 2 tensor bij ,
then aij is an antisymmetric rank 2 tensor.

(iv) If aij is antisymmetric and aijbij is a scalar for any antisymmetric rank 2
tensor bij, then aij is an antisymmetric rank 2 tensor.
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Paper 1, Section I

1B Vectors and Matrices
(a) Describe geometrically the curve

|αz + βz̄| =
√

αβ (z + z̄) + (α− β)2,

where z ∈ C and α, β are positive, distinct, real constants.

(b) Let θ be a real number not equal to an integer multiple of 2π. Show that

N∑

m=1

sin(mθ) =
sin θ + sin(Nθ)− sin(Nθ + θ)

2(1 − cos θ)
,

and derive a similar expression for

N∑

m=1

cos(mθ).

Paper 1, Section I

2C Vectors and Matrices
Precisely one of the four matrices specified below is not orthogonal. Which is it?

Give a brief justification.

1√
6




1 −
√
3

√
2

1
√
3

√
2

−2 0
√
2


 1

3



1 2 −2
2 −2 −1
2 1 2


 1√

6




1 −2 1

−
√
6 0

√
6

1 1 1


 1

9




7 −4 −4
−4 1 −8
−4 −8 1




Given that the four matrices represent transformations of R3 corresponding (in no
particular order) to a rotation, a reflection, a combination of a rotation and a reflection,
and none of these, identify each matrix. Explain your reasoning.

[Hint: For two of the matrices, A and B say, you may find it helpful to calculate
det(A− I) and det(B − I), where I is the identity matrix.]
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Paper 1, Section II

5B Vectors and Matrices
(i) State and prove the Cauchy–Schwarz inequality for vectors in Rn. Deduce the

inequalities

|a+ b| 6 |a|+ |b| and |a+ b+ c| 6 |a|+ |b|+ |c|

for a,b, c ∈ Rn.

(ii) Show that every point on the intersection of the planes

x · a = A, x · b = B,

where a 6= b, satisfies

|x|2 > (A−B)2

|a− b|2 .

What happens if a = b?

(iii) Using your results from part (i), or otherwise, show that for any x1,x2,y1,y2 ∈ Rn,

|x1 − y1| − |x1 − y2| 6 |x2 − y1|+ |x2 − y2|.

Paper 1, Section II

6C Vectors and Matrices
(i) Consider the map from R4 to R3 represented by the matrix




α 1 1 −1
2 −α 0 −2

−α 2 1 1




where α ∈ R. Find the image and kernel of the map for each value of α.

(ii) Show that any linear map f : Rn → R may be written in the form f(x) = a · x for
some fixed vector a ∈ Rn. Show further that a is uniquely determined by f.

It is given that n = 4 and that the vectors

( 1
1
1

−1

)
,

( 2
−1
0

−2

)
,

(−1
2
1
1

)

lie in the kernel of f. Determine the set of possible values of a.
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Paper 1, Section II

7A Vectors and Matrices
(i) Find the eigenvalues and eigenvectors of the following matrices and show that both

are diagonalisable:

A =




1 1 −1
−1 3 −1
−1 1 1


 , B =




1 4 −3
−4 10 −4
−3 4 1


 .

(ii) Show that, if two real n×n matrices can both be diagonalised using the same basis
transformation, then they commute.

(iii) Suppose now that two real n × n matrices C and D commute and that D has
n distinct eigenvalues. Show that for any eigenvector x of D the vector Cx is a
scalar multiple of x. Deduce that there exists a common basis transformation that
diagonalises both matrices.

(iv) Show that A and B satisfy the conditions in (iii) and find a matrix S such that both
of the matrices S−1AS and S−1BS are diagonal.

Paper 1, Section II

8A Vectors and Matrices
(a) A matrix is called normal if A†A = AA†. Let A be a normal n×n complex matrix.

(i) Show that for any vector x ∈ Cn,

|Ax| = |A†x|.

(ii) Show that A− λI is also normal for any λ ∈ C, where I denotes the identity
matrix.

(iii) Show that if x is an eigenvector of A with respect to the eigenvalue λ ∈ C, then
x is also an eigenvector of A†, and determine the corresponding eigenvalue.

(iv) Show that if xλ and xµ are eigenvectors of A with respect to distinct
eigenvalues λ and µ respectively, then xλ and xµ are orthogonal.

(v) Show that if A has a basis of eigenvectors, then A can be diagonalised using
an orthonormal basis. Justify your answer.

[You may use standard results provided that they are clearly stated.]

(b) Show that any matrix A satisfying A† = A is normal, and deduce using results from
(a) that its eigenvalues are real.

(c) Show that any matrix A satisfying A† = −A is normal, and deduce using results
from (a) that its eigenvalues are purely imaginary.

(d) Show that any matrix A satisfying A† = A−1 is normal, and deduce using results
from (a) that its eigenvalues have unit modulus.
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