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SECTION I

1F Number Theory
State the Chinese Remainder Theorem.

Find all solutions to the simultaneous congruences

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 5 (mod 7).

A positive integer is said to be square-free if it is the product of distinct primes.
Show that there are 100 consecutive numbers that are not square-free.

2G Topics in Analysis
State Liouville’s theorem on approximation of algebraic numbers by rationals.

Prove that the number

∞∑

n=0

1

2nn is transcendental.

3F Geometry and Groups
Define the limit set Λ(G) of a Kleinian group G. Assuming that G has no finite

orbit in H3 ∪S2
∞, and that Λ(G) 6= ∅, prove that if E ⊂ C∪ {∞} is any non-empty closed

set which is invariant under G, then Λ(G) ⊂ E.

4I Coding and Cryptography

Explain what is meant by a Bose–Ray Chaudhuri–Hocquenghem (BCH) code with

design distance δ. Prove that, for such a code, the minimum distance between code words

is at least δ. How many errors will the code detect? How many errors will it correct?
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5K Statistical Modelling
Consider the normal linear model where the n-vector of responses Y satisfies

Y = Xβ + ε with ε ∼ Nn(0, σ
2I) and X is an n × p design matrix with full column

rank. Write down a (1− α)-level confidence set for β.

Define the Cook’s distance for the observation (Yi, xi) where x
T
i is the ith row of X,

and give its interpretation in terms of confidence sets for β.

In the model above with n = 100 and p = 4, you observe that one observation has
Cook’s distance 3.1. Would you be concerned about the influence of this observation?
Justify your answer.

[Hint: You may find some of the following facts useful:

1. If Z ∼ χ2
4, then P(Z 6 1.06) = 0.1, P(Z 6 7.78) = 0.9.

2. If Z ∼ F4,96, then P(Z 6 0.26) = 0.1, P(Z 6 2.00) = 0.9.

3. If Z ∼ F96,4, then P(Z 6 0.50) = 0.1, P(Z 6 3.78) = 0.9.]

6B Mathematical Biology
The concentration c(x, t) of a chemical in one dimension obeys the equations

∂c

∂t
=

∂

∂x

(
c2

∂c

∂x

)
,

∫ ∞

−∞
c(x, t) dx = 1 .

State the physical interpretation of each equation.

Seek a similarity solution of the form c = tαf(ξ), where ξ = tβx. Find equations
involving α and β from the differential equation and the integral. Show that these are
satisfied by α = β = −1/4.

Find the solution for f(ξ). Find and sketch the solution for c(x, t).

7D Dynamical Systems
Consider the map xn+1 = λxn(1 − x2n) for −1 6 xn 6 1. What is the maximum

value, λmax, for which the interval [−1, 1] is mapped into itself?

Analyse the first two bifurcations that occur as λ increases from 0 towards λmax,
including an identification of the values of λ at which the bifurcation occurs and the type
of bifurcation.

What type of bifurcation do you expect as the third bifurcation? Briefly give your
reasoning.
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8B Further Complex Methods
Let f : C → C be a function such that

f(z + ω1) = f(z) , f(z + ω2) = f(z) , (1)

where ω1, ω2 ∈ C\{0} and ω1/ω2 is not real. Show that if f is analytic on C then it is a
constant. [Liouville’s theorem may be used if stated.] Give an example of a non-constant
meromorphic function which satisfies (1).

9A Classical Dynamics

Consider a heavy symmetric top of mass M with principal moments of inertia I1,
I2 and I3, where I1 = I2 6= I3. The top is pinned at point P , which is at a distance l from
the centre of mass, C, as shown in the figure.

P

C

l

Its angular velocity in a body frame (e1, e2, e3) is given by

ω = [φ̇ sin θ sinψ + θ̇ cosψ] e1 + [φ̇ sin θ cosψ − θ̇ sinψ] e2 + [ψ̇ + φ̇ cos θ] e3 ,

where φ, θ and ψ are the Euler angles.

(a) Assuming that {ea}, a = 1, 2, 3, are chosen to be the principal axes, write down the
Lagrangian of the top in terms of ωa and the principal moments of inertia. Hence
find the Lagrangian in terms of the Euler angles.

(b) Find all conserved quantities. Show that ω3, the spin of the top, is constant.

(c) By eliminating φ̇ and ψ̇, derive a second-order differential equation for θ.

Part II, Paper 4
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10E Cosmology
A homogeneous and isotropic universe, with cosmological constant Λ, has expansion

scale factor a(t) and Hubble expansion rate H = ȧ/a. The universe contains matter with
density ρ and pressure P which satisfy the positive-energy condition ρ+ 3P/c2 > 0. The
acceleration equation is

ä

a
= −4πG

3
(ρ+ 3P/c2) +

1

3
Λc2.

If Λ 6 0, show that
d

dt
(H−1) > 1.

Deduce that H → ∞ and a → 0 at a finite time in the past or the future. What property
of H distinguishes the two cases?

Give a simple counterexample with ρ = P = 0 to show that this deduction fails to
hold when Λ > 0.
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SECTION II

11F Number Theory
Define the Legendre and Jacobi symbols.

State the law of quadratic reciprocity for the Legendre symbol.

State the law of quadratic reciprocity for the Jacobi symbol, and deduce it from the
corresponding result for the Legendre symbol.

Let p be a prime with p ≡ 1 (mod 4). Prove that the sum of the quadratic residues
in the set {1, 2, . . . , p− 1} is equal to the sum of the quadratic non-residues in this set.

For which primes p is 7 a quadratic residue?

12F Geometry and Groups
Define the s-dimensional Hausdorff measure Hs(F ) of a set F ⊂ RN . Explain briefly

how properties of this measure may be used to define the Hausdorff dimension dimH(F )
of such a set.

Prove that the limit sets of conjugate Kleinian groups have equal Hausdorff
dimension. Hence, or otherwise, prove that there is no subgroup of PSL(2,R) which
is conjugate in PSL(2,C) to PSL(2,Z ⊕ Zi).

13K Statistical Modelling
In a study on infant respiratory disease, data are collected on a sample of 2074

infants. The information collected includes whether or not each infant developed a
respiratory disease in the first year of their life; the gender of each infant; and details
on how they were fed as one of three categories (breast-fed, bottle-fed and supplement).
The data are tabulated in R as follows:

disease nondisease gender food

1 77 381 Boy Bottle-fed

2 19 128 Boy Supplement

3 47 447 Boy Breast-fed

4 48 336 Girl Bottle-fed

5 16 111 Girl Supplement

6 31 433 Girl Breast-fed

Write down the model being fit by the R commands on the following page:

Part II, Paper 4
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> total <- disease + nondisease

> fit <- glm(disease/total ~ gender + food, family = binomial,

+ weights = total)

The following (slightly abbreviated) output from R is obtained.

> summary(fit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.6127 0.1124 -14.347 < 2e-16 ***

genderGirl -0.3126 0.1410 -2.216 0.0267 *

foodBreast-fed -0.6693 0.1530 -4.374 1.22e-05 ***

foodSupplement -0.1725 0.2056 -0.839 0.4013

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 26.37529 on 5 degrees of freedom

Residual deviance: 0.72192 on 2 degrees of freedom

Briefly explain the justification for the standard errors presented in the output above.

Explain the relevance of the output of the following R code to the data being studied,
justifying your answer:

> exp(c(-0.6693 - 1.96*0.153, -0.6693 + 1.96*0.153))

[1] 0.3793940 0.6911351

[Hint: It may help to recall that if Z ∼ N(0, 1) then P(Z > 1.96) = 0.025.]

Let D1 be the deviance of the model fitted by the following R command.

> fit1 <- glm(disease/total ~ gender + food + gender:food,

+ family = binomial, weights = total)

What is the numerical value of D1? Which of the two models that have been fitted should
you prefer, and why?
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14D Dynamical Systems
A dynamical system ẋ = f(x) has a fixed point at the origin. Define the terms

Lyapunov stability, asymptotic stability and Lyapunov function with respect to this fixed
point. State and prove Lyapunov’s first theorem and state (without proof) La Salle’s
invariance principle.

(a) Consider the system

ẋ = y ,

ẏ = −y − x3 + x5.

Construct a Lyapunov function of the form V = f(x)+g(y). Deduce that the origin
is asymptotically stable, explaining your reasoning carefully. Find the greatest value of
y0 such that use of this Lyapunov function guarantees that the trajectory through (0, y0)
approaches the origin as t → ∞.

(b) Consider the system

ẋ = x+ 4y + x2 + 2y2,

ẏ = −3x− 3y .

Show that the origin is asymptotically stable and that the basin of attraction of the
origin includes the region x2 + xy + y2 < 1

4 .

Part II, Paper 4



9

15A Classical Dynamics

(a) Consider a system with one degree of freedom, which undergoes periodic motion in
the potential V (q). The system’s Hamiltonian is

H(p, q) =
p2

2m
+ V (q) .

(i) Explain what is meant by the angle and action variables, θ and I, of the
system and write down the integral expression for the action variable I. Is I
conserved? Is θ conserved?

(ii) Consider V (q) = λq6, where λ is a positive constant. Find I in terms of λ,
the total energy E, the mass M , and a dimensionless constant factor (which
you need not compute explicitly).

(iii) Hence describe how E changes with λ if λ varies slowly with time. Justify
your answer.

(b) Consider now a particle which moves in a plane subject to a central force-field
F = −kr−2r̂.

(i) Working in plane polar coordinates (r, φ), write down the Hamiltonian of the
system. Hence deduce two conserved quantities. Prove that the system is
integrable and state the number of action variables.

(ii) For a particle which moves on an elliptic orbit find the action variables
associated with radial and tangential motions. Can the relationship between
the frequencies of the two motions be deduced from this result? Justify your
answer.

(iii) Describe how E changes with m and k if one or both of them vary slowly
with time.

[You may use

r2∫

r1

{(
1− r1

r

)(r2
r

− 1
)} 1

2
dr =

π

2
(r1 + r2)− π

√
r1 r2 ,

where 0 < r1 < r2 .]
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16I Logic and Set Theory
Explain what is meant by a chain-complete poset. State the Bourbaki–Witt fixed-

point theorem.

We call a poset (P,6) Bourbakian if every order-preserving map f : P → P has a
least fixed point µ(f). Suppose P is Bourbakian, and let f, g : P ⇉ P be order-preserving
maps with f(x) 6 g(x) for all x ∈ P ; show that µ(f) 6 µ(g). [Hint: Consider the function
h : P → P defined by h(x) = f(x) if x 6 µ(g), h(x) = µ(g) otherwise.]

Suppose P is Bourbakian and f : α → P is an order-preserving map from an ordinal
to P . Show that there is an order-preserving map g : P → P whose fixed points are exactly
the upper bounds of the set {f(β) | β < α}, and deduce that this set has a least upper
bound.

Let C be a chain with no greatest member. Using the Axiom of Choice and Hartogs’
Lemma, show that there is an order-preserving map f : α → C, for some ordinal α, whose
image has no upper bound in C. Deduce that any Bourbakian poset is chain-complete.

17I Graph Theory

Define the Ramsey number R(r)(s, t). What is the value of R(1)(s, t)? Prove that

R(r)(s, t) 6 1+R(r−1)(R(r)(s−1, t), R(r)(s, t−1)) holds for r > 2 and deduce that R(r)(s, t)

exists.

Show that R(2)(3, 3) = 6 and that R(2)(3, 4)=9.

Show that 7 6 R(3)(4, 4) 6 19. [Hint: For the lower bound, choose a suitable subset

U and colour e red if |U ∩ e| is odd.]

18H Galois Theory
(i) Let G be a finite subgroup of the multiplicative group of a field. Show that G is

cyclic.

(ii) Let Φn(X) be the nth cyclotomic polynomial. Let p be a prime not dividing n,
and let L be a splitting field for Φn over Fp. Show that L has pm elements, where m is
the least positive integer such that pm ≡ 1 (mod n).

(iii) Find the degrees of the irreducible factors of X35 − 1 over F2, and the number
of factors of each degree.

Part II, Paper 4
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19H Representation Theory
Let G =SU(2).

(i) Sketch a proof that there is an isomorphism of topological groups G/{±I} ∼=
SO(3).

(ii) Let V2 be the irreducible complex representation of G of dimension 3. Compute
the character of the (symmetric power) representation Sn(V2) of G for any n > 0. Show
that the dimension of the space of invariants (Sn(V2))

G, meaning the subspace of Sn(V2)
where G acts trivially, is 1 for n even and 0 for n odd. [Hint: You may find it helpful to
restrict to the unit circle subgroup S1 6 G. The irreducible characters of G may be quoted
without proof.]

Using the fact that V2 yields the standard 3-dimensional representation of SO(3),
show that

⊕
n>0 S

nV2
∼= C[x, y, z]. Deduce that the ring of complex polynomials in three

variables x, y, z which are invariant under the action of SO(3) is a polynomial ring in one
generator. Find a generator for this polynomial ring.

20F Number Fields
Explain what is meant by an integral basis for a number field. Splitting into the

cases d ≡ 1 (mod 4) and d ≡ 2, 3 (mod 4), find an integral basis for K = Q(
√
d) where

d 6= 0, 1 is a square-free integer. Justify your answer.

Find the fundamental unit in Q(
√
13). Determine all integer solutions to the

equation x2 + xy − 3y2 = 17.

21F Algebraic Topology
State the Lefschetz fixed point theorem.

Let X be an orientable surface of genus g (which you may suppose has a triangula-
tion), and let f : X → X be a continuous map such that

1. f3 = IdX ,

2. f has no fixed points.

By considering the eigenvalues of the linear map f∗ : H1(X;Q) → H1(X;Q), and their mul-
tiplicities, show that g must be congruent to 1 modulo 3.
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22G Linear Analysis
Define the spectrum σ(T ) and the approximate point spectrum σap(T ) of a bounded

linear operator T on a Banach space. Prove that σap(T ) ⊂ σ(T ) and that σ(T ) is a
closed and bounded subset of C. [You may assume without proof that the set of invertible
operators is open.]

Let T be a hermitian operator on a non-zero Hilbert space. Prove that σ(T ) is not
empty.

Let K be a non-empty, compact subset of C. Show that there is a bounded linear
operator T : ℓ2 → ℓ2 with σ(T ) = K. [You may assume without proof that a compact
metric space is separable.]

23H Algebraic Geometry

Let X be a smooth projective curve of genus g > 0 over an algebraically closed field

of characteristic 6= 2, and suppose there is a degree 2 morphism π : X → P1. How many

ramification points of π are there?

Suppose Q and R are distinct ramification points of π. Show that Q 6∼ R, but

2Q ∼ 2R.

Now suppose g = 2. Show that every divisor of degree 2 on X is linearly equivalent

to P + P ′ for some P,P ′ ∈ X, and deduce that every divisor of degree 0 is linearly

equivalent to P1 − P2 for some P1, P2 ∈ X.

Show that the subgroup {[D] ∈ Cl0(X) | 2[D] = 0} of the divisor class group of X

has order 16.

Part II, Paper 4



13

24G Differential Geometry

Let I = [0, l] be a closed interval, k(s), τ(s) smooth real valued functions on I with

k strictly positive at all points, and t0,n0,b0 a positively oriented orthonormal triad of

vectors in R3. An application of the fundamental theorem on the existence of solutions to

ODEs implies that there exists a unique smooth family of triples of vectors t(s),n(s),b(s)

for s ∈ I satisfying the differential equations

t′ = kn, n′ = −kt− τb, b′ = τn,

with initial conditions t(0) = t0, n(0) = n0 and b(0) = b0, and that {t(s),n(s),b(s)}
forms a positively oriented orthonormal triad for all s ∈ I. Assuming this fact, consider

α : I → R3 defined by α(s) =
∫ s
0 t(t)dt; show that α defines a smooth immersed curve

parametrized by arc-length, which has curvature and torsion given by k(s) and τ(s), and

that α is uniquely determined by this property up to rigid motions of R3. Prove that α

is a plane curve if and only if τ is identically zero.

If a > 0, calculate the curvature and torsion of the smooth curve given by

α(s) = (a cos(s/c), a sin(s/c), bs/c), where c =
√

a2 + b2.

Suppose now that α : [0, 2π] → R3 is a smooth simple closed curve parametrized by

arc-length with curvature everywhere positive. If both k and τ are constant, show that

k = 1 and τ = 0. If k is constant and τ is not identically zero, show that k > 1. Explain

what it means for α to be knotted; if α is knotted and τ is constant, show that k(s) > 2

for some s ∈ [0, 2π]. [You may use standard results from the course if you state them

precisely.]
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25K Probability and Measure
Let (Xn : n ∈ N) be a sequence of independent identically distributed random

variables. Set Sn = X1 + · · ·+Xn.

(i) State the strong law of large numbers in terms of the random variables Xn.

(ii) Assume now that the Xn are non-negative and that their expectation is infinite. Let
R ∈ (0,∞). What does the strong law of large numbers say about the limiting behaviour
of SR

n /n, where SR
n = (X1 ∧R) + · · ·+ (Xn ∧R)?

Deduce that Sn/n → ∞ almost surely.

Show that ∞∑

n=0

P(Xn > n) = ∞.

Show that Xn > Rn infinitely often almost surely.

(iii) Now drop the assumption that the Xn are non-negative but continue to assume that
E(|X1|) = ∞. Show that, almost surely,

lim sup
n→∞

|Sn|/n = ∞.

26J Applied Probability
(i) Define the M/M/1 queue with arrival rate λ and service rate µ. Find conditions

on the parameters λ and µ for the queue to be transient, null recurrent, and positive
recurrent, briefly justifying your answers. In the last case give with justification the
invariant distribution explicitly. Answer the same questions for an M/M/∞ queue.

(ii) At a taxi station, customers arrive at a rate of 3 per minute, and taxis at a
rate of 2 per minute. Suppose that a taxi will wait no matter how many other taxis are
present. However, if a person arriving does not find a taxi waiting he or she leaves to find
alternative transportation.

Find the long-run proportion of arriving customers who get taxis, and find the
average number of taxis waiting in the long run.

An agent helps to assign customers to taxis, and so long as there are taxis waiting
he is unable to have his coffee. Once a taxi arrives, how long will it take on average before
he can have another sip of his coffee?
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27J Principles of Statistics
Suppose you have at hand a pseudo-random number generator that can simulate an

i.i.d. sequence of uniform U [0, 1] distributed random variables U∗
1 , . . . , U

∗
N for any N ∈ N.

Construct an algorithm to simulate an i.i.d. sequence X∗
1 , . . . ,X

∗
N of standard normal

N(0, 1) random variables. [Should your algorithm depend on the inverse of any cumulative
probability distribution function, you are required to provide an explicit expression for this
inverse function.]

Suppose as a matter of urgency you need to approximately evaluate the integral

I =
1√
2π

∫

R

1

(π + |x|)1/4 e
−x2/2dx.

Find an approximation IN of this integral that requires N simulation steps from your
pseudo-random number generator, and which has stochastic accuracy

Pr(|IN − I| > N−1/4) 6 N−1/2,

where Pr denotes the joint law of the simulated random variables. Justify your answer.

28J Optimization and Control
A girl begins swimming from a point (0, 0) on the bank of a straight river. She

swims at a constant speed v relative to the water. The speed of the downstream current
at a distance y from the shore is c(y). Hence her trajectory is described by

ẋ = v cos θ + c(y) , ẏ = v sin θ ,

where θ is the angle at which she swims relative to the direction of the current.

She desires to reach a downstream point (1, 0) on the same bank as she starts,
as quickly as possible. Construct the Hamiltonian for this problem, and describe how
Pontryagin’s maximum principle can be used to give necessary conditions that must hold
on an optimal trajectory. Given that c(y) is positive, increasing and differentiable in y,
show that on an optimal trajectory

d

dt
tan

(
θ(t)

)
= −c′

(
y(t)

)
.
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29K Stochastic Financial Models
Write down the Black–Scholes partial differential equation (PDE), and explain

briefly its relevance to option pricing.

Show how a change of variables reduces the Black–Scholes PDE to the heat equation:

∂f

∂t
+

1

2

∂2f

∂x2
= 0 for all (t, x) ∈ [0, T )× R,

f(T, x) = ϕ(x) for all x ∈ R,

where ϕ is a given boundary function.

Consider the following numerical scheme for solving the heat equation on the equally
spaced grid (tn, xk) ∈ [0, T ]×R where tn = n∆t and xk = k∆x, n = 0, 1, . . . , N and k ∈ Z,
and ∆t = T/N . We approximate f(tn, xk) by fn

k where

0 =
fn+1 − fn

∆t
+ θLfn+1 + (1− θ)Lfn, fN

k = ϕ(xk), (∗)

and θ ∈ [0, 1] is a constant and the operator L is the matrix with non-zero entries

Lkk = − 1

(∆x)2
and Lk,k+1 = Lk,k−1 =

1

2(∆x)2
. By considering what happens when

ϕ(x) = exp(iωx), show that the finite-difference scheme (∗) is stable if and only if

1 > λ(2θ − 1),

where λ ≡ ∆t/(∆x)2. For what values of θ is the scheme (∗) unconditionally stable?
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30D Partial Differential Equations
(a) Derive the solution of the one-dimensional wave equation

utt − uxx = 0 , u(0, x) = u0(x) , ut(0, x) = u1(x) , (1)

with Cauchy data given by C2 functions uj = uj(x) , j = 0, 1, and where x ∈ R and
utt = ∂2t u etc. Explain what is meant by the property of finite propagation speed for the
wave equation. Verify that the solution to (1) satisfies this property.

(b) Consider the Cauchy problem

utt − uxx + x2u = 0 , u(0, x) = u0(x) , ut(0, x) = u1(x) . (2)

By considering the quantities

e = 1
2

(
u2t + u2x + x2u2

)
and p = −utux ,

prove that solutions of (2) also satisfy the property of finite propagation speed.

(c) Define what is meant by a strongly continuous one-parameter group of unitary
operators on a Hilbert space. Consider the Cauchy problem for the Schrödinger equation
for ψ(x, t) ∈ C:

iψt = −ψxx + x2ψ , ψ(x, 0) = ψ0(x) , −∞ < x <∞ . (3)

[In the following you may use without proof the fact that there is an orthonormal set
of (real-valued) Schwartz functions {fj(x)}∞j=1 which are eigenfunctions of the differential

operator P = −∂2x + x2 with eigenvalues 2j + 1, i.e.

Pfj = (2j + 1)fj , fj ∈ S(R) , (fj, fk)L2 =

∫

R
fj(x)fk(x)dx = δjk ,

and which have the property that any function u ∈ L2 can be written uniquely as a sum
u(x) =

∑
j(fj , u)L2fj(x) which converges in the metric defined by the L2 norm.]

Write down the solution to (3) in the case that ψ0 is given by a finite sum
ψ0 =

∑N
j=1(fj, ψ0)L2fj and show that your formula extends to define a strongly continuous

one-parameter group of unitary operators on the Hilbert space L2 of square-integrable
(complex-valued) functions, with inner product (f, g)L2 =

∫
R f(x)g(x)dx.
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31C Asymptotic Methods
Derive the leading-order Liouville–Green (or WKBJ) solution for ǫ ≪ 1 to the

ordinary differential equation

ǫ2
d2f

dy2
+Φ(y)f = 0 ,

where Φ(y) > 0.

The function f(y; ǫ) satisfies the ordinary differential equation

ǫ2
d2f

dy2
+

(
1 +

1

y
− 2ǫ2

y2

)
f = 0 , (1)

subject to the boundary condition f ′′(0) = 2. Show that the Liouville–Green solution of
(1) for ǫ ≪ 1 takes the asymptotic forms

f ∼ α1y
1
4 exp(2i

√
y/ǫ) + α2y

1
4 exp(−2i

√
y/ǫ) for ǫ2 ≪ y ≪ 1

and f ∼ B cos
[
θ2 + (y + log

√
y)/ǫ

]
for y ≫ 1 ,

where α1, α2, B and θ2 are constants.
[
Hint : You may assume that

∫ y

0

√
1 + u−1 du =

√
y(1 + y) + sinh−1√y .

]

Explain, showing the relevant change of variables, why the leading-order asymptotic
behaviour for 0 6 y ≪ 1 can be obtained from the reduced equation

d2f

dx2
+

(
1

x
− 2

x2

)
f = 0 . (2)

The unique solution to (2) with f ′′(0) = 2 is f = x1/2J3(2x
1/2), where the Bessel function

J3(z) is known to have the asymptotic form

J3(z) ∼
(

2

πz

)1/2

cos

(
z − 7π

4

)
as z → ∞ .

Hence find the values of α1 and α2.
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32A Principles of Quantum Mechanics
Define the interaction picture for a quantum mechanical system with Schrödinger

picture Hamiltonian H0 + V (t) and explain why the interaction and Schrödinger pictures
give the same physical predictions for transition rates between eigenstates of H0. Derive
the equation of motion for the interaction picture states |ψ(t)〉.

A system consists of just two states |1〉 and |2〉, with respect to which

H0 =

(
E1 0
0 E2

)
, V (t) = ~λ

(
0 eiωt

e−iωt 0

)
.

Writing the interaction picture state as |ψ(t)〉 = a1(t)|1〉 + a2(t)|2〉, show that the
interaction picture equation of motion can be written as

iȧ1(t) = λeiµta2(t) , iȧ2(t) = λe−iµta1(t) , (∗)

where µ = ω − ω21 and ω21 = (E2 − E1)/~. Hence show that a2(t) satisfies

ä2 + iµ ȧ2 + λ2a2 = 0 .

Given that a2(0) = 0, show that the solution takes the form

a2(t) = αe−iµt/2 sinΩt ,

where Ω is a frequency to be determined and α is a complex constant of integration.

Substitute this solution for a2(t) into (∗) to determine a1(t) and, by imposing the
normalization condition ‖|ψ(t)〉‖2 = 1 at t = 0, show that |α|2 = λ2/Ω2 .

At time t = 0 the system is in the state |1〉. Write down the probability of finding
the system in the state |2〉 at time t.
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33A Applications of Quantum Mechanics
Let Λ be a Bravais lattice in three dimensions. Define the reciprocal lattice Λ∗.

State and prove Bloch’s theorem for a particle moving in a potential V (x) obeying

V (x+ ℓ) = V (x) ∀ ℓ ∈ Λ, x ∈ R3 .

Explain what is meant by a Brillouin zone for this potential and how it is related to the
reciprocal lattice.

A simple cubic lattice Λ1 is given by the set of points

Λ1 =
{
ℓ ∈ R3 : ℓ = n1î+ n2ĵ+ n3k̂ , n1, n2, n3 ∈ Z

}
,

where î, ĵ and k̂ are unit vectors parallel to the Cartesian coordinate axes in R3. A body-
centred cubic (BCC) lattice ΛBCC is obtained by adding to Λ1 the points at the centre of
each cube, i.e. all points of the form

ℓ+
1

2

(
î+ ĵ+ k̂

)
, ℓ ∈ Λ1 .

Show that ΛBCC is Bravais with primitive vectors

a1 =
1

2

(
ĵ+ k̂− î

)
,

a2 =
1

2

(
k̂+ î− ĵ

)
,

a3 =
1

2

(
î+ ĵ− k̂

)
.

Find the reciprocal lattice Λ∗
BCC . Hence find a consistent choice for the first Brillouin

zone of a potential V (x) obeying

V (x+ ℓ) = V (x) ∀ ℓ ∈ ΛBCC , x ∈ R3 .

[Hint: The matrix M =
1

2




−1 1 1
1 −1 1
1 1 −1


 has inverse M−1 =




0 1 1
1 0 1
1 1 0


 . ]
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34E Statistical Physics
The Dieterici equation of state of a gas is

P =
kBT

v − b
exp

(
− a

kBTv

)
,

where P is the pressure, v = V/N is the volume divided by the number of particles, T is
the temperature, and kB is the Boltzmann constant. Provide a physical interpretation for
the constants a and b.

Briefly explain how the Dieterici equation captures the liquid–gas phase transition.
What is the maximum temperature at which such a phase transition can occur?

The Gibbs free energy is given by

G = E + PV − TS ,

where E is the energy and S is the entropy. Explain why the Gibbs free energy is
proportional to the number of particles in the system.

On either side of a first-order phase transition the Gibbs free energies are equal.
Use this fact to derive the Clausius–Clapeyron equation for a line along which there is a
first-order liquid–gas phase transition,

dP

dT
=

L

T (Vgas − Vliquid)
, (∗)

where L is the latent heat which you should define.

Assume that the volume of liquid is negligible compared to the volume of gas and
that the latent heat is constant. Further assume that the gas can be well approximated
by the ideal gas law. Solve (∗) to obtain an equation for the phase-transition line in the
(P, T ) plane.
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35C Electrodynamics
(i) The action S for a point particle of rest mass m and charge q moving along a

trajectory xµ(λ) in the presence of an electromagnetic 4-vector potential Aµ is

S = −mc

∫ (
−ηµν

dxµ

dλ

dxν

dλ

)1/2

dλ+ q

∫
Aµ

dxµ

dλ
dλ ,

where λ is an arbitrary parametrization of the path and ηµν is the Minkowski metric. By
varying the action with respect to xµ(λ), derive the equation of motion mẍµ = qFµ

ν ẋ
ν ,

where Fµν = ∂µAν −∂νAµ and overdots denote differentiation with respect to proper time
for the particle.

(ii) The particle moves in constant electric and magnetic fields with non-zero
Cartesian components Ez = E and By = B, with B > E/c > 0 in some inertial frame.
Verify that a suitable 4-vector potential has components

Aµ = (0, 0, 0,−Bx −Et)

in that frame.

Find the equations of motion for x, y, z and t in terms of proper time τ . For the
case of a particle that starts at rest at the spacetime origin at τ = 0, show that

z̈ +
q2

m2

(
B2 − E2

c2

)
z =

qE

m
.

Find the trajectory xµ(τ) and sketch its projection onto the (x, z) plane.
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36E General Relativity
A plane-wave spacetime has line element

ds2 = Hdu2 + 2du dv + dx2 + dy2,

where H = x2 − y2. Show that the line element is unchanged by the coordinate
transformation

u = ū, v = v̄ + x̄eū − 1
2e

2ū, x = x̄− eū, y = ȳ. (∗)

Show more generally that the line element is unchanged by coordinate transforma-
tions of the form

u = ū+ a, v = v̄ + bx̄+ c, x = x̄+ p, y = ȳ,

where a, b, c and p are functions of ū, which you should determine and which depend in
total on four parameters (arbitrary constants of integration).

Deduce (without further calculation) that the line element is unchanged by a 6-
parameter family of coordinate transformations, of which a 5-parameter family leave
invariant the surfaces u = constant.

For a general coordinate transformation xa = xa(x̄b), give an expression for the
transformed Ricci tensor R̄cd in terms of the Ricci tensor Rab and the transformation

matrices
∂xa

∂x̄c
. Calculate R̄x̄x̄ when the transformation is given by (∗) and deduce that

Rvv = Rvx.

37B Fluid Dynamics II
An incompressible fluid of density ρ and kinematic viscosity ν is confined in a channel

with rigid stationary walls at y = ±h. A spatially uniform pressure gradient −G cosωt is
applied in the x-direction. What is the physical significance of the dimensionless number
S = ωh2/ν?

Assuming that the flow is unidirectional and time-harmonic, obtain expressions for
the velocity profile and the total flux. [You may leave your answers as the real parts of
complex functions.]

In each of the limits S → 0 and S → ∞, find and sketch the flow profiles, find
leading-order asymptotic expressions for the total flux, and give a physical interpretation.

Suppose now that G = 0 and that the channel walls oscillate in their own plane with
velocity U cosωt in the x-direction. Without explicit calculation of the solution, sketch
the flow profile in each of the limits S → 0 and S → ∞.
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38C Waves
A one-dimensional shock wave propagates at a constant speed along a tube aligned

with the x-axis and containing a perfect gas. In the reference frame where the shock is at
rest at x = 0, the gas has speed U0, density ρ0 and pressure p0 in the region x < 0 and
speed U1, density ρ1 and pressure p1 in the region x > 0.

Write down equations of conservation of mass, momentum and energy across the
shock. Show that

γ

γ − 1

(
p1
ρ1

− p0
ρ0

)
=

p1 − p0
2

(
1

ρ1
+

1

ρ0

)
,

where γ is the ratio of specific heats.

From now on, assume γ = 2 and let P = p1/p0. Show that 1
3 < ρ1/ρ0 < 3.

The increase in entropy from x < 0 to x > 0 is given by ∆S = CV log(p1ρ
2
0/p0ρ

2
1),

where CV is a positive constant. Show that ∆S is a monotonic function of P .

If ∆S > 0, deduce that P > 1, ρ1/ρ0 > 1, (U0/c0)
2 > 1 and (U1/c1)

2 < 1, where
c0 and c1 are the sound speeds in x < 0 and x > 0, respectively. Given that ∆S must
have the same sign as U0 and U1, interpret these inequalities physically in terms of the
properties of the flow upstream and downstream of the shock.
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39D Numerical Analysis
Let A be a real symmetric n× n matrix with n distinct real eigenvalues λ1 < λ2 <

· · · < λn and a corresponding orthogonal basis of normalized real eigenvectors {wi}ni=1 .

(i) Let s ∈ R satisfy s < λ1. Given a unit vector x(0) ∈ Rn, the iteration scheme

(A− sI)y = x(k),

x(k+1) = y/‖y‖ ,

generates a sequence of vectors x(k+1) for k = 0, 1, 2, . . . . Assuming that x(0) =
∑

ciwi

with c1 6= 0, prove that x(k) tends to ±w1 as k → ∞. What happens to x(k) if s > λ1?
[Consider all cases.]

(ii) Describe how to implement an inverse-iteration algorithm to compute the
eigenvalues and eigenvectors of A, given some initial estimates for the eigenvalues.

(iii) Let n = 2. For iterates x(k) of an inverse-iteration algorithm with a fixed value
of s 6= λ1, λ2, show that if

x(k) = (w1 + ǫkw2)/(1 + ǫ2k)
1/2 ,

where |ǫk| is small, then |ǫk+1| is of the same order of magnitude as |ǫk|.
(iv) Let n = 2 still. Consider the iteration scheme

sk =
(
x(k) , Ax(k)

)
, (A− skI)y = x(k), x(k+1) = y/‖y‖

for k = 0, 1, 2, . . . , where ( , ) denotes the inner product. Show that with this scheme
|ǫk+1| = |ǫk|3 .

END OF PAPER
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