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SECTION I

1E Groups, Rings and Modules
State and prove Hilbert’s Basis Theorem.

2F Analysis II
Let U ⊂ Rn be an open set and let f : U → R be a differentiable function on U

such that ‖ Df |x ‖6 M for some constant M and all x ∈ U , where ‖ Df |x ‖ denotes the
operator norm of the linear map Df |x. Let [a, b] = {ta+ (1− t)b : 0 6 t 6 1} (a, b,∈ Rn)
be a straight-line segment contained in U . Prove that |f(b) − f(a)| 6 M‖b − a‖, where
‖ · ‖ denotes the Euclidean norm on Rn.

Prove that if U is an open ball and Df |x= 0 for each x ∈ U , then f is constant
on U .

3E Metric and Topological Spaces
Suppose (X, d) is a metric space. Do the following necessarily define a metric on

X? Give proofs or counterexamples.

(i) d1(x, y) = kd(x, y) for some constant k > 0, for all x, y ∈ X.

(ii) d2(x, y) = min{1, d(x, y)} for all x, y ∈ X.

(iii) d3(x, y) = (d(x, y))2 for all x, y ∈ X.

4B Complex Methods
Find the most general cubic form

u(x, y) = ax3 + bx2y + cxy2 + dy3

which satisfies Laplace’s equation, where a, b, c and d are all real. Hence find an analytic
function f(z) = f(x+ iy) which has such a u as its real part.

5F Geometry
Let f(x) = Ax+b be an isometry Rn → Rn, where A is an n×n matrix and b ∈ Rn.

What are the possible values of detA?

Let I denote the n × n identity matrix. Show that if n = 2 and detA > 0, but
A 6= I, then f has a fixed point. Must f have a fixed point if n = 3 and detA > 0, but
A 6= I? Justify your answer.
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6C Variational Principles
Let f(x, y, z) = xz + yz. Using Lagrange multipliers, find the location(s) and value

of the maximum of f on the intersection of the unit sphere (x2 + y2 + z2 = 1) and the
ellipsoid given by 1

4x
2 + 1

4y
2 + 4z2 = 1.

7D Methods
Using the method of characteristics, solve the differential equation

−y
∂u

∂x
+ x

∂u

∂y
= 0 ,

where x, y ∈ R and u = cos y2 on x = 0, y > 0.

8A Quantum Mechanics
The wavefunction of a normalised Gaussian wavepacket for a particle of mass m in

one dimension with potential V (x) = 0 is given by

ψ(x, t) = B
√
A(t) exp

(−x2A(t)
2

)
,

where A(0) = 1. Given that ψ(x, t) is a solution of the time-dependent Schrödinger
equation, find the complex-valued function A(t) and the real constant B.

[You may assume that
∫∞
−∞ e−λx2

dx =
√
π/

√
λ.]
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9H Markov Chains
Let (Xn : n > 0) be a homogeneous Markov chain with state space S. For i, j in S

let pi,j(n) denote the n-step transition probability P(Xn = j | X0 = i).

(i) Express the (m + n)-step transition probability pi,j(m + n) in terms of the n-step
and m-step transition probabilities.

(ii) Write i → j if there exists n > 0 such that pi,j(n) > 0, and i ↔ j if i → j and
j → i. Prove that if i ↔ j and i 6= j then either both i and j are recurrent or both
i and j are transient. [You may assume that a state i is recurrent if and only if∑∞

n=0 pi,i(n) = ∞, and otherwise i is transient.]

(iii) A Markov chain has state space {0, 1, 2, 3} and transition matrix




1
2

1
3 0 1

6

0 3
4 0 1

4

1
2

1
2 0 0

1
2 0 0 1

2




,

For each state i, determine whether i is recurrent or transient. [Results from the
course may be quoted without proof, provided they are clearly stated.]
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SECTION II

10G Linear Algebra

Let q be a nonsingular quadratic form on a finite-dimensional real vector space V .

Prove that we may write V = P
⊕

N , where the restriction of q to P is positive definite,

the restriction of q to N is negative definite, and q(x+ y) = q(x) + q(y) for all x ∈ P and

y ∈ N . [No result on diagonalisability may be assumed.]

Show that the dimensions of P and N are independent of the choice of P and N .

Give an example to show that P and N are not themselves uniquely defined.

Find such a decomposition V = P
⊕

N when V = R3 and q is the quadratic form

q((x, y, z)) = x2 + 2y2 − 2xy − 2xz .

11E Groups, Rings and Modules
Let R be a ring, M an R-module and S = {m1, . . . ,mk} a subset of M . Define

what it means to say S spans M . Define what it means to say S is an independent set.

We say S is a basis for M if S spans M and S is an independent set. Prove that
the following two statements are equivalent.

1. S is a basis for M .

2. Every element of M is uniquely expressible in the form r1m1 + · · ·+ rkmk for some
r1, . . . , rk ∈ R.

We say S generates M freely if S spans M and any map Φ : S → N , where N is an
R-module, can be extended to an R-module homomorphism Θ : M → N . Prove that S
generates M freely if and only if S is a basis for M .

Let M be an R-module. Are the following statements true or false? Give reasons.

(i) If S spans M then S necessarily contains an independent spanning set for M .

(ii) If S is an independent subset of M then S can always be extended to a basis for M .
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12F Analysis II
Let fn, n = 1, 2, . . ., be continuous functions on an open interval (a, b). Prove that

if the sequence (fn) converges to f uniformly on (a, b) then the function f is continuous
on (a, b).

If instead (fn) is only known to converge pointwise to f and f is continuous, must
(fn) be uniformly convergent? Justify your answer.

Suppose that a function f has a continuous derivative on (a, b) and let

gn(x) = n

(
f(x+

1

n
)− f(x)

)
.

Stating clearly any standard results that you require, show that the functions gn converge
uniformly to f ′ on each interval [α, β] ⊂ (a, b).

13G Complex Analysis

State the Residue Theorem precisely.

Let D be a star-domain, and let γ be a closed path in D. Suppose that f is a

holomorphic function on D, having no zeros on γ. Let N be the number of zeros of f

inside γ, counted with multiplicity (i.e. order of zero and winding number). Show that

N =
1

2πi

∫

γ

f ′(z)
f(z)

dz .

[The Residue Theorem may be used without proof.]

Now suppose that g is another holomorphic function on D, also having no zeros on

γ and with |g(z)| < |f(z)| on γ. Explain why, for any 0 6 t 6 1, the expression

I(t) =

∫

γ

f ′(z) + tg′(z)
f(z) + tg(z)

dz

is well-defined. By considering the behaviour of the function I(t) as t varies, deduce

Rouché’s Theorem.

For each n, let pn be the polynomial
∑n

k=0
zk

k! . Show that, as n tends to infinity,

the smallest modulus of the roots of pn also tends to infinity.

[You may assume any results on convergence of power series, provided that they are

stated clearly.]
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14F Geometry
Let T be a decomposition of the two-dimensional sphere into polygonal domains,

with every polygon having at least three edges. Let V , E, and F denote the numbers of
vertices, edges and faces of T , respectively. State Euler’s formula. Prove that 2E > 3F .

Suppose that at least three edges meet at every vertex of T . Let Fn be the number
of faces of T that have exactly n edges (n > 3) and let Vm be the number of vertices at
which exactly m edges meet (m > 3). Is it possible for T to have V3 = F3 = 0? Justify
your answer.

By expressing 6F − ∑
n nFn in terms of the Vj, or otherwise, show that T has at

least four faces that are triangles, quadrilaterals and/or pentagons.

15D Methods
Let L be a linear second-order differential operator on the interval [0, π/2]. Consider the
problem

Ly(x) = f(x) ; y(0) = y(π/2) = 0 ,

with f(x) bounded in [0, π/2].

(i) How is a Green’s function for this problem defined?

(ii) How is a solution y(x) for this problem constructed from the Green’s function?

(iii) Describe the continuity and jump conditions used in the construction of the Green’s
function.

(iv) Use the continuity and jump conditions to construct the Green’s function for the
differential equation

d2y

dx2
− dy

dx
+

5

4
y = f(x)

on the interval [0, π/2] with the boundary conditions y(0) = 0, y(π/2)=0 and an arbitrary
bounded function f(x). Use the Green’s function to construct a solution y(x) for the
particular case f(x) = ex/2.
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16A Quantum Mechanics
The Hamiltonian of a two-dimensional isotropic harmonic oscillator is given by

H =
p2x + p2y
2m

+
mω2

2
(x2 + y2) ,

where x and y denote position operators and px and py the corresponding momentum
operators.

State without proof the commutation relations between the operators x, y, px, py.
From these commutation relations, write [x2, px] and [x, p2x] in terms of a single operator.
Now consider the observable

L = xpy − ypx.

Ehrenfest’s theorem states that, for some observable Q with expectation value 〈Q〉,

d〈Q〉
dt

=
1

i~
〈[Q, H]〉+ 〈∂Q

∂t
〉.

Use it to show that the expectation value of L is constant with time.

Given two states

ψ1 = αx exp
(
−β(x2 + y2)

)
and ψ2 = αy exp

(
−β(x2 + y2)

)
,

where α and β are constants, find a normalised linear combination of ψ1 and ψ2 that is an
eigenstate of L, and the corresponding L eigenvalue. [You may assume that α correctly
normalises both ψ1 and ψ2.] If a quantum state is prepared in the linear combination you
have found at time t = 0, what is the expectation value of L at a later time t?

17A Electromagnetism
(i) Consider charges −q at ±d and 2q at (0, 0, 0). Write down the electric potential.

(ii) Take d = (0, 0, d). A quadrupole is defined in the limit that q → ∞, d → 0
such that qd2 tends to a constant p. Find the quadrupole’s potential, showing that it is
of the form

φ(r) = A
(r2 + CzD)

rB
,

where r = |r|. Determine the constants A, B, C and D.

(iii) The quadrupole is fixed at the origin. At time t = 0 a particle of charge
−Q (Q has the same sign as q) and mass m is at (1, 0, 0) travelling with velocity
dr/dt = (−κ, 0, 0), where

κ =

√
Qp

2πǫ0 m
.

Neglecting gravity, find the time taken for the particle to reach the quadrupole in terms
of κ, given that the force on the particle is equal to md2r/dt2.
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18B Fluid Dynamics
A bubble of gas occupies the spherical region r 6 R(t), and an incompressible

irrotational liquid of constant density ρ occupies the outer region r > R, such that as
r → ∞ the liquid is at rest with constant pressure p∞. Briefly explain why it is appropriate
to use a velocity potential φ(r, t) to describe the liquid velocity u.

By applying continuity of velocity across the gas-liquid interface, show that the
liquid pressure (for r > R) satisfies

p

ρ
+

1

2

(
R2Ṙ

r2

)2

− 1

r

d

dt

(
R2Ṙ

)
=

p∞
ρ

, where Ṙ =
dR

dt
.

Show that the excess pressure ps − p∞ at the bubble surface r = R is

ps − p∞ =
ρ

2

(
3Ṙ2 + 2RR̈

)
, where R̈ =

d2R

dt2
,

and hence that

ps − p∞ =
ρ

2R2

d

dR

(
R3Ṙ2

)
.

The pressure pg(t) inside the gas bubble satisfies the equation of state

pgV
4/3 = C,

where C is a constant, and V (t) is the bubble volume. At time t = 0 the bubble is at rest
with radius R = a. If the bubble then expands and comes to rest at R = 2a, determine
the required gas pressure p0 at t = 0 in terms of p∞.

[You may assume that there is contact between liquid and gas for all time, that all motion
is spherically symmetric about the origin r = 0, and that there is no body force. You may
also assume Bernoulli’s integral of the equation of motion to determine the liquid pressure
p:

p

ρ
+

∂φ

∂t
+

1

2
|∇φ|2 = A(t),

where φ(r, t) is the velocity potential.]
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19C Numerical Analysis
A Runge–Kutta scheme is given by

k1 = hf(yn), k2 = hf(yn + [(1 − a)k1 + ak2]), yn+1 = yn +
1

2
(k1 + k2)

for the solution of an autonomous differential equation y′ = f(y), where a is a real
parameter. What is the order of the scheme? Identify all values of a for which the
scheme is A-stable. Determine the linear stability domain for this range.

20H Statistics
Suppose that X1, . . . ,Xn are independent identically distributed random variables

with

P(Xi = x) =

(
k

x

)
θx(1− θ)k−x, x = 0, . . . , k,

where k is known and θ (0 < θ < 1) is an unknown parameter. Find the maximum
likelihood estimator θ̂ of θ.

Statistician 1 has prior density for θ given by π1(θ) = αθα−1, 0 < θ < 1, where
α > 1. Find the posterior distribution for θ after observing data X1 = x1, . . . ,Xn = xn.

Write down the posterior mean θ̂
(B)
1 , and show that

θ̂
(B)
1 = c θ̂ + (1− c)θ̃1,

where θ̃1 depends only on the prior distribution and c is a constant in (0, 1) that is to be
specified.

Statistician 2 has prior density for θ given by π2(θ) = α(1−θ)α−1, 0 < θ < 1. Briefly
describe the prior beliefs that the two statisticians hold about θ. Find the posterior mean

θ̂
(B)
2 and show that θ̂

(B)
2 < θ̂

(B)
1 .

Suppose that α increases (but n, k and the xi remain unchanged). How do the prior
beliefs of the two statisticians change? How does c vary? Explain briefly what happens

to θ̂
(B)
1 and θ̂

(B)
2 .

[Hint: The Beta(α, β) (α > 0, β > 0) distribution has density

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 < x < 1,

with expectation α
α+β and variance αβ

(α+β+1)(α+β)2
. Here, Γ(α) =

∫∞
0 xα−1e−xdx, α > 0, is

the Gamma function.]
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21H Optimization
Use the two-phase simplex method to maximise 2x1 + x2 + x3 subject to the

constraints
x1 + x2 > 1, x1 + x2 + 2x3 6 4, xi > 0 for i = 1, 2, 3.

Derive the dual of this linear programming problem and find the optimal solution
of the dual.

END OF PAPER
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