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SECTION I

1I Number Theory
State the Chinese Remainder Theorem.

A composite number n is defined to be a Carmichael number if bn−1 ≡ 1 mod n
whenever (b, n) = 1. Show that a composite n is Carmichael if and only if n is square-free
and (p − 1) divides (n − 1) for all prime factors p of n. [You may assume that, for p an

odd prime and α > 1 an integer,
(
Z/pαZ

)×
is a cyclic group.]

Show that if n = (6t + 1)(12t + 1)(18t + 1) with all three factors prime, then n is
Carmichael.

2F Topics in Analysis
State Brouwer’s fixed point theorem. Let f : R2 → R2 be a continuous function

with the property that |f(x)− x| 6 1 for all x. Show that f is surjective.

3G Geometry and Groups

Let Λ be a rank 2 lattice in the Euclidean plane. Show that the group G of all

Euclidean isometries of the plane that map Λ onto itself is a discrete group. List the

possible sizes of the point groups for G and give examples to show that point groups of

these sizes do arise.

[You may quote any standard results without proof.]

4H Coding and Cryptography
Describe briefly the Rabin cipher with modulus N , explaining how it can be

deciphered by the intended recipient and why it is difficult for an eavesdropper to decipher
it.

The Cabinet decides to communicate using Rabin ciphers to maintain confidential-
ity. The Cabinet Secretary encrypts a message, represented as a positive integer m, using
the Rabin cipher with modulus N (with 0 < m < N) and publishes both the encrypted
message and the modulus. The Defence Secretary deciphers this message to read it but
then foolishly encrypts it again using a Rabin cipher with a different modulus N ′ (with
m < N ′) and publishes the newly encrypted message and N ′. Mr Rime (the Leader of the
Opposition) knows this has happened. Explain how Rime can work out what the original
message was using the two different encrypted versions.

Can Rime decipher other messages sent out by the Cabinet using the original
modulus N?

Part II, Paper 3
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5J Statistical Modelling
Consider the linear model Y = Xβ + ǫ where Y = (Y1, . . . , Yn)

T, β = (β1, . . . , βp)
T,

and ǫ = (ǫ1, . . . , ǫn)
T, with ǫ1, . . . , ǫn independent N(0, σ2) random variables. The (n× p)

matrix X is known and is of full rank p < n. Give expressions for the maximum likelihood
estimators β̂ and σ̂2 of β and σ2 respectively, and state their joint distribution. Show that
β̂ is unbiased whereas σ̂2 is biased.

Suppose that a new variable Y ∗ is to be observed, satisfying the relationship

Y ∗ = x∗Tβ + ǫ∗ ,

where x∗ (p × 1) is known, and ǫ∗ ∼ N(0, σ2) independently of ǫ. We propose to predict
Y ∗ by Ỹ = x∗Tβ̂. Identify the distribution of

Y ∗ − Ỹ

τ σ̃
,

where

σ̃2 =
n

n− p
σ̂2 ,

τ2 = x∗T(XTX)−1x∗ + 1 .

6A Mathematical Biology
An immune system creates a burst of N new white blood cells with probability b

per unit time. White blood cells die with probability d each per unit time. Write down
the master equation for Pn(t), the probability that there are n white blood cells at time t.

Given that n = n0 initially, find an expression for the mean of n.

Show that the variance of n has the form Ae−2dt +Be−dt+C and find A, B and C.

If the immune system were modified to produce k times as many cells per burst but
with probability per unit time divided by a factor k, how would the mean and variance of
the number of cells change?

Part II, Paper 3 [TURN OVER
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7C Dynamical Systems
A one-dimensional map is defined by

xn+1 = F (xn, µ) ,

where µ is a parameter. What is the condition for a bifurcation of a fixed point x∗ of F?

Let F (x, µ) = x(x2−2x+µ). Find the fixed points and show that bifurcations occur
when µ = −1, µ = 1 and µ = 2. Sketch the bifurcation diagram, showing the locus and
stability of the fixed points in the (x, µ) plane and indicating the type of each bifurcation.

8E Further Complex Methods
Let a real-valued function u = u(x, y) be the real part of a complex-valued function

f = f(z) which is analytic in the neighbourhood of a point z = 0, where z = x + iy.
Derive a formula for f in terms of u and use it to find an analytic function f whose real
part is

x3 + x2 − y2 + xy2

(x+ 1)2 + y2

and such that f(0) = 0.

9B Classical Dynamics
Two equal masses m are connected to each other and to fixed points by three springs

of force constant 5k, k and 5k as shown in the figure.
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(i) Write down the Lagrangian and derive the equations describing the motion of the
system in the direction parallel to the springs.

(ii) Find the normal modes and their frequencies. Comment on your results.
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10D Cosmology
The number densities of protons of mass mp or neutrons of mass mn in kinetic

equilibrium at temperature T , in the absence of any chemical potentials, are each given
by (with i = n or p)

ni = gi

(
mikBT

2π~2

)3/2

exp
[
−mic

2/kBT
]

,

where kB is Boltzmann’s constant and gi is the spin degeneracy.

Use this to show, to a very good approximation, that the ratio of the number of
neutrons to protons at a temperature T ≃ 1MeV/kB is given by

nn

np
= exp

[
−(mn −mp)c

2/kBT
]
,

where (mn −mp)c
2 = 1.3MeV . Explain any approximations you have used.

The reaction rate for weak interactions between protons and neutrons at energies
5MeV > kBT > 0.8MeV is given by Γ = (kBT/1MeV )5s−1 and the expansion rate of the
universe at these energies is given by H = (kBT/1MeV )2s−1. Give an example of a weak
interaction that can maintain equilibrium abundances of protons and neutrons at these
energies. Show how the final abundance of neutrons relative to protons can be calculated
and use it to estimate the mass fraction of the universe in helium-4 after nucleosynthesis.

What would have happened to the helium abundance if the proton and neutron
masses had been exactly equal?
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SECTION II

11I Number Theory
Define equivalence of binary quadratic forms and show that equivalent forms have

the same discriminant.

Show that an integer n is properly represented by a binary quadratic form of
discriminant d if and only if x2 ≡ d mod 4n is soluble in integers. Which primes are
represented by a form of discriminant −20?

What does it mean for a positive definite form to be reduced? Find all reduced
forms of discriminant −20. For each member of your list find the primes less than 100
represented by the form.

12F Topics in Analysis
Suppose that x0, x1, . . . , xn ∈ [−1, 1] are distinct points. Let f be an infinitely

differentiable real-valued function on an open interval containing [−1, 1]. Let p be the
unique polynomial of degree at most n such that f(xr) = p(xr) for r = 0, 1, . . . , n. Show
that for each x ∈ [−1, 1] there is some ξ ∈ (−1, 1) such that

f(x)− p(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0) . . . (x− xn) .

Now take xr = cos 2r+1
2n+2π. Show that

|f(x)− p(x)| 6 1

2n(n+ 1)!
sup

ξ∈[−1,1]
|f (n+1)(ξ)|

for all x ∈ [−1, 1]. Deduce that there is a polynomial p of degree at most n such that

∣∣∣∣
1

3 + x
− p(x)

∣∣∣∣ 6
1

4n+1

for all x ∈ [−1, 1].

Part II, Paper 3
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13A Mathematical Biology
An activator-inhibitor system is described by the equations

∂u

∂t
=

∂2u

∂x2
+ u− uv + au2 ,

∂v

∂t
= d

∂2v

∂x2
+ u2 − buv ,

where a, b, d > 0.

Find and sketch the range of a, b for which the spatially homogeneous system has
a stable stationary solution with u > 0 and v > 0.

Considering spatial perturbations of the form cos(kx) about the solution found
above, find conditions for the system to be unstable. Sketch this region in the (d, b) plane
for fixed a ∈ (0, 1).

Find kc, the critical wavenumber at the onset of the instability, in terms of a and b.

14C Dynamical Systems
Let f : I → I be a continuous map of an interval I ⊂ R. Explain what is meant

by the statements (a) f has a horseshoe and (b) f is chaotic according to Glendinning’s
definition of chaos.

Assume that f has a 3-cycle {x0, x1, x2} with x1 = f(x0), x2 = f(x1), x0 = f(x2),
x0 < x1 < x2. Prove that f2 has a horseshoe. [You may assume the Intermediate Value
Theorem.]

Represent the effect of f on the intervals Ia = [x0, x1] and Ib = [x1, x2] by means of
a directed graph. Explain how the existence of the 3-cycle corresponds to this graph.

The map g : I → I has a 4-cycle {x0, x1, x2, x3} with x1 = g(x0), x2 = g(x1),
x3 = g(x2) and x0 = g(x3). If x0 < x3 < x2 < x1 is g necessarily chaotic? [You may use
a suitable directed graph as part of your argument.]

How does your answer change if x0 < x2 < x1 < x3?
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15D Cosmology
The contents of a spatially homogeneous and isotropic universe are modelled as

a finite mass M of pressureless material whose radius r(t) evolves from some constant
reference radius r0 in proportion to the time-dependent scale factor a(t), with

r(t) = a(t)r0 .

(i) Show that this motion leads to expansion governed by Hubble’s Law. If this
universe is expanding, explain why there will be a shift in the frequency of radiation
between its emission from a distant object and subsequent reception by an observer. Define
the redshift z of the observed object in terms of the values of the scale factor a(t) at the
times of emission and reception.

(ii) The expanding universal mass M is given a small rotational perturbation, with
angular velocity ω, and its angular momentum is subsequently conserved. If deviations
from spherical expansion can be neglected, show that its linear rotational velocity will fall
as V ∝ a−n, where you should determine the value of n. Show that this perturbation
will become increasingly insignificant compared to the expansion velocity as the universe
expands if a ∝ t2/3.

(iii) A distant cloud of intermingled hydrogen (H) atoms and carbon monoxide (CO)
molecules has its redshift determined simultaneously in two ways: by detecting 21 cm
radiation from atomic hydrogen and by detecting radiation from rotational transitions in
CO molecules. The ratio of the 21 cm atomic transition frequency to the CO rotational
transition frequency is proportional to α2, where α is the fine structure constant. It is
suggested that there may be a small difference in the value of the constant α between the
times of emission and reception of the radiation from the cloud.

Show that the difference in the redshift values for the cloud, ∆z = zCO − z21,
determined separately by observations of the H and CO transitions, is related to δα =
αr − αe, the difference in α values at the times of reception and emission, by

∆z = 2

(
δα

αr

)
(1 + zCO) .

(iv) The universe today contains 30% of its total density in the form of pressureless
matter and 70% in the form of a dark energy with constant redshift-independent density.
If these are the only two significant constituents of the universe, show that their densities
were equal when the scale factor of the universe was approximately equal to 75% of its
present value.

Part II, Paper 3
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16G Logic and Set Theory
Explain carefully what is meant by syntactic entailment and semantic entailment in

the propositional calculus. State the Completeness Theorem for the propositional calculus,
and deduce the Compactness Theorem.

Suppose P , Q and R are pairwise disjoint sets of primitive propositions, and let
φ ∈ L(P ∪Q) and ψ ∈ L(Q∪R) be propositional formulae such that (φ⇒ ψ) is a theorem
of the propositional calculus. Consider the set

X = {χ ∈ L(Q) | φ ⊢ χ} .

Show that X ∪ {¬ψ} is inconsistent, and deduce that there exists χ ∈ L(Q) such that
both (φ ⇒ χ) and (χ ⇒ ψ) are theorems. [Hint: assuming X ∪ {¬ψ} is consistent, take
a suitable valuation v of Q ∪R and show that

{φ} ∪ {q ∈ Q | v(q) = 1} ∪ {¬q | q ∈ Q, v(q) = 0}

is inconsistent. The Deduction Theorem may be assumed without proof.]

17F Graph Theory

Let G be a graph of order n and average degree d. Let A be the adjacency matrix

of G and let xn + c1x
n−1 + c2x

n−2 + · · ·+ cn be its characteristic polynomial. Show that

c1 = 0 and c2 = −nd/2. Show also that −c3 is twice the number of triangles in G.

The eigenvalues of A are λ1 > λ2 > · · · > λn. Prove that λ1 > d.

Evaluate λ1+ · · ·+λn. Show that λ2
1+ · · ·+λ2

n = nd and infer that λ1 6
√

d(n− 1).

Does there exist, for each n, a graph G with d > 0 for which λ2 = · · · = λn?

18I Galois Theory
Let p be a prime number and F a field of characteristic p. Let Frp : F → F be the

Frobenius map defined by Frp(x) = xp for all x ∈ F .

(i) Prove that Frp is a field automorphism when F is a finite field.

(ii) Is the same true for an arbitrary algebraic extension F of Fp? Justify your
answer.

(iii) Let F = Fp(X1, . . . ,Xn) be the rational function field in n variables where
n > 1 over Fp. Determine the image of Frp : F → F , and show that Frp makes F into an
extension of degree pn over a subfield isomorphic to F . Is it a separable extension?

Part II, Paper 3 [TURN OVER
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19G Representation Theory
Suppose that (ρ1, V1) and (ρ2, V2) are complex representations of the finite groups

G1 and G2 respectively. Use ρ1 and ρ2 to construct a representation ρ1 ⊗ ρ2 of G1 ×G2

on V1 ⊗ V2 and show that its character satisfies

χρ1⊗ρ2(g1, g2) = χρ1(g1)χρ2(g2)

for each g1 ∈ G1, g2 ∈ G2.

Prove that if ρ1 and ρ2 are irreducible then ρ1⊗ρ2 is irreducible as a representation
of G1 × G2. Moreover, show that every irreducible complex representation of G1 × G2

arises in this way.

Is it true that every complex representation of G1 ×G2 is of the form ρ1 ⊗ ρ2 with
ρi a complex representation of Gi for i = 1, 2? Justify your answer.

20G Algebraic Topology

(i) State, but do not prove, the Mayer–Vietoris theorem for the homology groups of
polyhedra.

(ii) Calculate the homology groups of the n-sphere, for every n > 0.

(iii) Suppose that a > 1 and b > 0. Calculate the homology groups of the subspace X of

Ra+b defined by

a∑

i=1

x2i −
a+b∑

j=a+1

x2j = 1.

Part II, Paper 3
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21F Linear Analysis
State the Stone–Weierstrass Theorem for real-valued functions.

State Riesz’s Lemma.

Let K be a compact, Hausdorff space and let A be a subalgebra of C(K) separating
the points of K and containing the constant functions. Fix two disjoint, non-empty, closed
subsets E and F of K.

(i) If x ∈ E show that there exists g ∈ A such that g(x) = 0, 0 6 g < 1 on K, and g > 0
on F . Explain briefly why there is M ∈ N such that g > 2

M on F .

(ii) Show that there is an open cover U1, U2, . . . , Um of E, elements g1, g2, . . . , gm of A and
positive integers M1,M2, . . . ,Mm such that

0 6 gr < 1 on K, gr > 2
Mr

on F, gr <
1

2Mr
on Ur

for each r = 1, 2, . . . ,m.

(iii) Using the inequality

1−Nt 6 (1− t)N 6 1

Nt
(0 < t < 1, N ∈ N) ,

show that for sufficiently large positive integers n1, n2, . . . , nm, the element

hr = 1− (1− gnr
r )M

nr
r

of A satisfies

0 6 hr 6 1 on K, hr 6 1
4 on Ur, hr >

(
3
4

) 1
m on F

for each r = 1, 2, . . . ,m.

(iv) Show that the element h = h1 · h2 · · · · · hm − 1
2 of A satisfies

−1
2 6 h 6 1

2 on K, h 6 −1
4 on E, h > 1

4 on F.

Now let f ∈ C(K) with ‖f‖ 6 1. By considering the sets {x ∈ K : f(x) 6 −1
4} and

{x ∈ K : f(x) > 1
4}, show that there exists h ∈ A such that ‖f − h‖ 6 3

4 . Deduce that A
is dense in C(K).
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22I Riemann Surfaces
Let Λ = Z+Zλ be a lattice in C where Im(λ) > 0, and let X be the complex torus

C/Λ.

(i) Give the definition of an elliptic function with respect to Λ. Show that there is a
bijection between the set of elliptic functions with respect to Λ and the set of holomorphic
maps from X to the Riemann sphere. Next, show that if f is an elliptic function with
respect to Λ and f−1{∞} = ∅, then f is constant.

(ii) Assume that

f(z) =
1

z2
+

∑

ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

)

defines a meromorphic function on C, where the sum converges uniformly on compact
subsets of C\Λ. Show that f is an elliptic function with respect to Λ. Calculate the order
of f .

Let g be an elliptic function with respect to Λ on C, which is holomorphic on C \Λ
and whose only zeroes in the closed parallelogram with vertices {0, 1, λ, λ+ 1} are simple
zeroes at the points

{
1
2 ,

λ
2 ,

1
2 +

λ
2

}
. Show that g is a non-zero constant multiple of f ′.

23H Algebraic Geometry
Let C ⊂ P2 be the plane curve given by the polynomial

Xn
0 −Xn

1 −Xn
2

over the field of complex numbers, where n > 3.

(i) Show that C is nonsingular.

(ii) Compute the divisors of the rational functions

x =
X1

X0
, y =

X2

X0

on C.

(iii) Consider the morphism φ = (X0 : X1) : C → P1. Compute its ramification
points and degree.

(iv) Show that a basis for the space of regular differentials on C is

{
xiyjω0

∣∣∣ i, j > 0, i+ j 6 n− 3
}

where ω0 = dx/yn−1.
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24H Differential Geometry

We say that a parametrization φ : U → S ⊂ R3 of a smooth surface S is isothermal

if the coefficients of the first fundamental form satisfy F = 0 and E = G = λ(u, v)2, for

some smooth non-vanishing function λ on U . For an isothermal parametrization, prove

that

φuu + φvv = 2λ2HN,

whereN denotes the unit normal vector andH the mean curvature, which you may assume

is given by the formula

H =
g + e

2λ2
,

where g = −〈Nu, φu〉 and e = −〈Nv, φv〉 are coefficients in the second fundamental form.

Given a parametrization φ(u, v) = (x(u, v), y(u, v), z(u, v)) of a surface S ⊂ R3, we

consider the complex valued functions on U :

θ1 = xu − ixv, θ2 = yu − iyv, θ3 = zu − izv . (1)

Show that φ is isothermal if and only if θ21 + θ22 + θ23 = 0. If φ is isothermal, show that

S is a minimal surface if and only if θ1, θ2, θ3 are holomorphic functions of the complex

variable ζ = u+ iv.

Consider the holomorphic functions on D := C \ R>0 (with complex coordinate

ζ = u+ iv on C) given by

θ1 :=
1

2
(1− ζ−2), θ2 := − i

2
(1 + ζ−2), θ3 := −ζ−1. (2)

Find a smooth map φ(u, v) = (x(u, v), y(u, v), z(u, v)) : D → R3 for which φ(−1, 0) = 0

and the θi defined by (2) satisfy the equations (1). Show furthermore that φ extends to a

smooth map φ̃ : C∗ → R3. If w = x+ iy is the complex coordinate on C, show that

φ̃(exp(iw)) = (cosh y cos x+ 1, cosh y sinx, y).

25K Probability and Measure
LetX be an integrable random variable with E(X) = 0. Show that the characteristic

function φX is differentiable with φ′
X(0) = 0. [You may use without proof standard

convergence results for integrals provided you state them clearly.]

Let (Xn : n ∈ N) be a sequence of independent random variables, all having the same
distribution as X. Set Sn = X1 + · · ·+Xn. Show that Sn/n → 0 in distribution. Deduce
that Sn/n → 0 in probability. [You may not use the Strong Law of Large Numbers.]
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26J Applied Probability
Define the Moran model. Describe briefly the infinite sites model of mutations.

We henceforth consider a population with N individuals evolving according to the
rules of the Moran model. In addition we assume:

• the allelic type of any individual at any time lies in a given countable state space S;

• individuals are subject to mutations at constant rate u = θ/N , independently of
the population dynamics;

• each time a mutation occurs, if the allelic type of the individual was x ∈ S, it changes
to y ∈ S with probability P (x, y), where P (x, y) is a given Markovian transition
matrix on S that is symmetric:

P (x, y) = P (y, x) (x, y ∈ S).

(i) Show that, if two individuals are sampled at random from the population at
some time t, then the time to their most recent common ancestor has an exponential
distribution, with a parameter that you should specify.

(ii) Let ∆+1 be the total number of mutations that accumulate on the two branches
separating these individuals from their most recent common ancestor. Show that ∆+1 is
a geometric random variable, and specify its probability parameter p.

(iii) The first individual is observed to be of type x ∈ S. Explain why the probability
that the second individual is also of type x is

P(X∆ = x|X0 = x) ,

where (Xn, n > 0) is a Markov chain on S with transition matrix P and is independent
of ∆.
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27K Principles of Statistics
What is meant by a convex decision problem? State and prove a theorem to the

effect that, in a convex decision problem, there is no point in randomising. [You may use
standard terms without defining them.]

The sample space, parameter space and action space are each the two-point set
{1, 2}. The observable X takes value 1 with probability 2/3 when the parameter Θ = 1,
and with probability 3/4 when Θ = 2. The loss function L(θ, a) is 0 if a = θ, otherwise 1.
Describe all the non-randomised decision rules, compute their risk functions, and plot
these as points in the unit square. Identify an inadmissible non-randomised decision rule,
and a decision rule that dominates it.

Show that the minimax rule has risk function (8/17, 8/17), and is Bayes against a
prior distribution that you should specify. What is its Bayes risk? Would a Bayesian with
this prior distribution be bound to use the minimax rule?

28K Optimization and Control
A particle follows a discrete-time trajectory in R2 given by

(
xt+1

yt+1

)
=

(
1 1
0 1

)(
xt
yt

)
+

(
t
1

)
ut +

(
ǫt
0

)
,

where {ǫt} is a white noise sequence with Eǫt = 0 and Eǫ2t = v. Given (x0, y0), we wish

to choose {ut}9t=0 to minimize C = E
[
x210 +

∑9
t=0 u

2
t

]
.

Show that for some {at} this problem can be reduced to one of controlling a scalar
state ξt = xt + atyt.

Find, in terms of x0, y0, the optimal u0. What is the change in minimum C
achievable when the system starts in (x0, y0) as compared to when it starts in (0, 0)?

Consider now a trajectory starting at (x−1, y−1) = (11,−1). What value of u−1 is
optimal if we wish to minimize 5u2−1 + C?
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29J Stochastic Financial Models
Suppose that (εt)t=0,1,...,T is a sequence of independent and identically distributed

random variables such that E exp(zε1) < ∞ for all z ∈ R. Each day, an agent receives an
income, the income on day t being εt. After receiving this income, his wealth is wt. From
this wealth, he chooses to consume ct, and invests the remainder wt− ct in a bank account
which pays a daily interest rate of r > 0. Write down the equation for the evolution of wt.

Suppose we are given constants β ∈ (0, 1), AT , γ > 0, and define the functions

U(x) = − exp(−γx), UT (x) = −AT exp(−νx) ,

where ν := γr/(1 + r). The agent’s objective is to attain

V0(w) := supE

{
T−1∑

t=0

βt U(ct) + βT UT (wT )

∣∣∣∣ w0 = w

}
,

where the supremum is taken over all adapted sequences (ct). If the value function is
defined for 0 6 n < T by

Vn(w) = supE

{
T−1∑

t=n

βt−n U(ct) + βT−n UT (wT )

∣∣∣∣ wn = w

}
,

with VT = UT , explain briefly why you expect the Vn to satisfy

Vn(w) = sup
c

[
U(c) + βE

{
Vn+1((1 + r)(w − c) + εn+1)

} ]
. (∗)

Show that the solution to (∗) has the form

Vn(w) = −An exp(−νw) ,

for constants An to be identified. What is the form of the consumption choices that achieve
the supremum in (∗) ?
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30C Partial Differential Equations
Define the parabolic boundary ∂parΩT of the domain ΩT = [0, 1]× (0, T ] for T > 0.

Let u = u(x, t) be a smooth real-valued function on ΩT which satisfies the inequality

ut − auxx + bux + cu 6 0 .

Assume that the coefficients a, b and c are smooth functions and that there exist positive
constants m,M such that m 6 a 6 M everywhere, and c > 0. Prove that

max
(x,t)∈ΩT

u(x, t) 6 max
(x,t)∈∂parΩT

u+(x, t) . (∗)

[Here u+ = max{u, 0} is the positive part of the function u.]

Consider a smooth real-valued function φ on ΩT such that

φt − φxx − (1− φ2)φ = 0 , φ(x, 0) = f(x)

everywhere, and φ(0, t) = 1 = φ(1, t) for all t > 0. Deduce from (∗) that if f(x) 6 1 for
all x ∈ [0, 1] then φ(x, t) 6 1 for all (x, t) ∈ ΩT . [Hint: Consider u = φ2 − 1 and compute
ut − uxx.]

31B Asymptotic Methods
Let

I(x) =

∫ π

0
f(t)eixψ(t)dt ,

where f(t) and ψ(t) are smooth, and ψ′(t) 6= 0 for t > 0; also f(0) 6= 0, ψ(0) = a,
ψ′(0) = ψ′′(0) = 0 and ψ′′′(0) = 6b > 0. Show that, as x→ +∞,

I(x) ∼ f(0)ei(xa+π/6)
(

1

27bx

)1/3

Γ (1/3) .

Consider the Bessel function

Jn(x) =
1

π

∫ π

0
cos(nt− x sin t) dt .

Show that, as n→ +∞,

Jn(n) ∼
Γ (1/3)

π

1

(48)1/6
1

n1/3
.
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32C Integrable Systems
Let U = U(x, y) and V = V (x, y) be two n × n complex-valued matrix functions,

smoothly differentiable in their variables. We wish to explore the solution of the
overdetermined linear system

∂v

∂y
= U(x, y)v,

∂v

∂x
= V (x, y)v ,

for some twice smoothly differentiable vector function v(x, y).

Prove that, if the overdetermined system holds, then the functions U and V obey
the zero curvature representation

∂U

∂x
− ∂V

∂y
+ UV − V U = 0 .

Let u = u(x, y) and

U =

[
iλ iū
iu −iλ

]
, V =

[
2iλ2 − i|u|2 2iλū+ ūy
2iλu− uy −2iλ2 + i|u|2

]
,

where subscripts denote derivatives, ū is the complex conjugate of u and λ is a constant.
Find the compatibility condition on the function u so that U and V obey the zero curvature
representation.

33E Principles of Quantum Mechanics
A particle moves in one dimension in an infinite square-well potential V (x) = 0 for

|x| < a and ∞ for |x| > a. Find the energy eigenstates. Show that the energy eigenvalues
are given by En = E1n

2 for integer n, where E1 is a constant which you should find.

The system is perturbed by the potential δV = ǫx/a. Show that the energy of the nth

level En remains unchanged to first order in ǫ. Show that the ground-state wavefunction
is

ψ1(x) =
1√
a


cos πx

2a
+

Dǫ

π2E1

∑

n=2,4,...

(−1)An nB

(n2 − 1)C
sin

nπx

2a
+O(ǫ2)


 ,

where A, B, C and D are numerical constants which you should find. Briefly comment
on the conservation of parity in the unperturbed and perturbed systems.
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34D Applications of Quantum Mechanics
Write down the classical Hamiltonian for a particle of mass m, electric charge −e

and momentum p moving in the background of an electromagnetic field with vector and
scalar potentials A(x, t) and φ(x, t).

Consider the case of a constant uniform magnetic field, B = (0, 0, B) and E = 0.
Working in the gauge with A = (−By, 0, 0) and φ = 0, show that Hamilton’s equations,

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
,

admit solutions corresponding to circular motion in the x-y plane with angular frequency
ωB = eB/m.

Show that, in the same gauge, the coordinates (x0, y0, 0) of the centre of the circle
are related to the instantaneous position x = (x, y, z) and momentum p = (px, py, pz) of
the particle by

x0 = x− py
eB

, y0 =
px
eB

. (1)

Write down the quantum Hamiltonian Ĥ for the system. In the case of a uniform
constant magnetic field discussed above, find the allowed energy levels. Working in
the gauge specified above, write down quantum operators corresponding to the classical
quantities x0 and y0 defined in (1) above and show that they are conserved.

[In this question you may use without derivation any facts relating to the energy
spectrum of the quantum harmonic oscillator provided they are stated clearly.]
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35A Statistical Physics
(i) Briefly describe the microcanonical ensemble.

(ii) For quantum mechanical systems the energy levels are discrete. Explain why we can
write the probability distribution in this case as

p({ni}) =
{
const > 0 for E 6 E({ni}) < E +∆E ,

0 otherwise.

What assumption do we make for the energy interval ∆E?

Consider N independent linear harmonic oscillators of equal frequency ω. Their
total energy is given by

E({ni}) =
N∑

i=1

~ω
(
ni +

1

2

)
= M~ω +

N

2
~ω with M =

N∑

i=1

ni .

Here ni = 0, 1, 2, . . . is the excitation number of oscillator i.

(iii) Show that, for fixed N and M , the number gN (M) of possibilities to distribute the
M excitations over N oscillators (i.e. the number of different choices {ni} consistent with
M) is given by

gN (M) =
(M +N − 1)!

M ! (N − 1)!
.

[Hint: You may wish to consider the set of N oscillators plus M−1 “additional” excitations
and what it means to choose M objects from this set.]

(iv) Using the probability distribution of part (ii), calculate the probability distribution
p(E1) for the “first” oscillator as a function of its energy E1 = n1~ω + 1

2~ω.

(v) If ∆E = ~ω ≪ E then exactly one value of M will correspond to a total energy inside
the interval (E,E +∆E). In this case, show that

p(E1) ≈
gN−1(M − n1)

gN (M)
.

Approximate this result in the limit N ≫ 1, M ≫ n1.
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36B Electrodynamics
(i) Obtain Maxwell’s equations in empty space from the action functional

S[Aµ] = − 1

µ0

∫
d4x

1

4
FµνF

µν ,

where Fµν = ∂µAν − ∂νAµ.

(ii) A modification of Maxwell’s equations has the action functional

S̃[Aµ] = − 1

µ0

∫
d4x

{1

4
FµνF

µν +
1

2λ2
AµA

µ
}
,

where again Fµν = ∂µAν − ∂νAµ and λ is a constant. Obtain the equations of motion of
this theory and show that they imply ∂µA

µ = 0.

(iii) Show that the equations of motion derived from S̃ admit solutions of the form

Aµ = Aµ
0e

ikνxν
,

where Aµ
0 is a constant 4-vector, and the 4-vector kµ satisfies Aµ

0kµ = 0 and kµk
µ = −1/λ2.

(iv) Show further that the tensor

Tµν =
1

µ0

{
FµσFν

σ − 1

4
ηµνFαβF

αβ − 1

2λ2

(
ηµνAαA

α − 2AµAν

)}

is conserved, that is ∂µTµν = 0.
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37D General Relativity
The Schwarzschild metric for a spherically symmetric black hole is given by

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
,

where we have taken units in which we set G = c = 1. Consider a photon moving within
the equatorial plane θ = π

2 , along a path xa(λ) with affine parameter λ. Using a variational
principle with Lagrangian

L = gab
dxa

dλ

dxb

dλ
,

or otherwise, show that

(
1− 2M

r

)(
dt

dλ

)
= E and r2

(
dφ

dλ

)
= h ,

for constants E and h. Deduce that

(
dr

dλ

)2

= E2 − h2

r2

(
1− 2M

r

)
. (∗)

Assume now that the photon approaches from infinity. Show that the impact
parameter (distance of closest approach) is given by

b =
h

E
.

Denote the right hand side of equation (∗) as f(r). By sketching f(r) in each of the
cases below, or otherwise, show that:

(a) if b2 > 27M2, the photon is deflected but not captured by the black hole;

(b) if b2 < 27M2, the photon is captured;

(c) if b2 = 27M2, the photon orbit has a particular form, which should be described.
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38A Fluid Dynamics II
A disk hovers on a cushion of air above an air-table – a fine porous plate through

which a constant flux of air is pumped. Let the disk have a radius R and a weight Mg
and hover at a low height h ≪ R above the air-table. Let the volume flux of air, which
has density ρ and viscosity µ, be w per unit surface area. The conditions are such that
ρwh2/µR ≪ 1. Explain the significance of this restriction.

Find the pressure distribution in the air under the disk. Show that this pressure
balances the weight of the disk if

h = R

(
3πµRw

2Mg

)1/3

.

39C Waves
The dispersion relation for sound waves of frequency ω in a stationary homogeneous

gas is ω = c0|k|, where c0 is the speed of sound and k is the wavenumber. Derive the
dispersion relation for sound waves of frequency ω in a uniform flow with velocity U.

For a slowly-varying medium with local dispersion relation ω = Ω(k,x, t), derive the
ray-tracing equations

dxi
dt

=
∂Ω

∂ki
,

dki
dt

= − ∂Ω

∂xi
,

dω

dt
=

∂Ω

∂t
,

explaining carefully the meaning of the notation used.

Suppose that two-dimensional sound waves with initial wavenumber (k0, l0, 0) are
generated at the origin in a gas occupying the half-space y > 0. If the gas has a slowly-
varying mean velocity (γy, 0, 0), where γ > 0, show:

(a) that if k0 > 0 and l0 > 0 the waves reach a maximum height (which should be
identified), and then return to the level y = 0 in a finite time;

(b) that if k0 < 0 and l0 > 0 then there is no bound on the height to which the waves
propagate.

Comment briefly on the existence, or otherwise, of a quiet zone.
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40C Numerical Analysis

(i) Suppose that A is a real n×n matrix, and that w ∈ Rn and λ1 ∈ R are given so that
Aw = λ1w. Further, let S be a non-singular matrix such that Sw = ce1, where e1 is
the first coordinate vector and c 6= 0. Let Â = SAS−1. Prove that the eigenvalues
of A are λ1 together with the eigenvalues of the bottom right (n − 1) × (n − 1)
submatrix of Â.

(ii) Suppose again that A is a real n × n matrix, and that two linearly independent
vectors v,w ∈ Rn are given such that the linear subspace L{v,w} spanned by v
and w is invariant under the action of A, that is

x ∈ L{v,w} ⇒ Ax ∈ L{v,w}.

Denote by V an n× 2 matrix whose two columns are the vectors v and w, and let
S be a non-singular matrix such that R = SV is upper triangular, that is

R = SV = S ×




v1 w1

v2 w2
...

...
vn wn


 =




r11 r12
0 r22
0 0
...

...
0 0




.

Again, let Â = SAS−1. Prove that the eigenvalues of A are the eigenvalues of the
top left 2 × 2 submatrix of Â together with the eigenvalues of the bottom right
(n− 2)× (n− 2) submatrix of Â.

END OF PAPER
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