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SECTION I

1I Number Theory
Define Euler’s totient function φ(n), and show that

∑
d|n φ(d) = n. Hence or

otherwise prove that for any prime p the multiplicative group
(
Z/pZ)× is cyclic.

2F Topics in Analysis
(i) Show that for every ǫ > 0 there is a polynomial p : R → R such that | 1x−p(x)| 6 ǫ

for all x ∈ R satisfying 1
2 6 |x| 6 2.

[You may assume standard results provided they are stated clearly.]

(ii) Show that there is no polynomial p : C → C such that |1z − p(z)| < 1 for all
z ∈ C satisfying 1

2 6 |z| 6 2.

3G Geometry and Groups

Let ℓ1, ℓ2 be two straight lines in Euclidean 3-space. Show that there is a rotation

about some axis through an angle π that maps ℓ1 onto ℓ2. Is this rotation unique?

4H Coding and Cryptography
Let A(n, d) denote the maximum size of a binary code of length n with minimum

distance d. For fixed δ with 0 < δ < 1/2, let α(δ) = lim sup 1
n log2 A(n, nδ). Show that

1−H(δ) 6 α(δ) 6 1−H(δ/2)

where H(p) = −p log2 p− (1− p) log2(1− p).

[You may assume the GSV and Hamming bounds and any form of Stirling’s theorem
provided you state them clearly.]

Part II, Paper 2
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5J Statistical Modelling
Consider a linear model Y = Xβ+ǫ, where Y and ǫ are (n×1) with ǫ ∼ Nn(0, σ

2I),
β is (p × 1), and X is (n × p) of full rank p < n. Let γ and δ be sub-vectors of β. What
is meant by orthogonality between γ and δ?

Now suppose

Yi = β0 + β1xi + β2x
2
i + β3P3(xi) + ǫi (i = 1, . . . , n) ,

where ǫ1, . . . , ǫn are independent N(0, σ2) random variables, x1, . . . , xn are real-valued
known explanatory variables, and P3(x) is a cubic polynomial chosen so that β3 is
orthogonal to (β0, β1, β2)

T and β1 is orthogonal to (β0, β2)
T.

Let β̃ = (β0, β2, β1, β3)
T. Describe the matrix X̃ such that Y = X̃β̃ + ǫ. Show that

X̃TX̃ is block diagonal. Assuming further that this matrix is non-singular, show that the
least-squares estimators of β1 and β3 are, respectively,

β̂1 =

∑n
i=1 xiYi∑n
i=1 x

2
i

and β̂3 =

∑n
i=1 P3(xi)Yi∑n
i=1 P3(xi)2

.

6A Mathematical Biology
The population density n(a, t) of individuals of age a at time t satisfies

∂n(a, t)

∂t
+

∂n(a, t)

∂a
= −µ(a)n(a, t),

with

n(0, t) =

∫ ∞

0
b(a)n(a, t)da,

where µ(a) is the age-dependent death rate and b(a) is the birth rate per individual of age
a.

Seek a similarity solution of the form n(a, t) = eγtr(a) and show that

r(a) = r(0)e−γa−
∫ a
0 µ(s)ds, r(0) =

∫ ∞

0
b(s)r(s)ds.

Show also that if

φ(γ) =

∫ ∞

0
b(a)e−γa−

∫ a
0
µ(s)dsda = 1,

then there is such a similarity solution. Give a biological interpretation of φ(0).

Suppose now that all births happen at age a∗, at which time an individual produces
B offspring, and that the death rate is constant with age (i.e. µ(a) = µ). Find the
similarity solution and give the condition for this to represent a growing population.
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7C Dynamical Systems
Let ẋ = f(x) be a two-dimensional dynamical system with a fixed point at x = 0.

Define a Lyapunov function V (x) and explain what it means for x = 0 to be Lyapunov
stable.

For the system

ẋ = −x− 2y + x3 ,

ẏ = −y + x+ 1
2y

3 + x2y ,

determine the values of C for which V = x2+Cy2 is a Lyapunov function in a sufficiently
small neighbourhood of the origin.

For the case C = 2 , find V1 and V2 such that V (x) < V1 at t = 0 implies that
V → 0 as t → ∞ and V (x) > V2 at t = 0 implies that V → ∞ as t → ∞.

8E Further Complex Methods
(i) Find all branch points of (z3 − 1)1/4 on an extended complex plane.

(ii) Use a branch cut to evaluate the integral

∫ 2

−2
(4− x2)1/2dx .

9B Classical Dynamics

(i) Consider a rigid body with principal moments of inertia I1, I2, I3. Derive Euler’s
equations of torque-free motion,

I1ω̇1 = (I2 − I3)ω2ω3,

I2ω̇2 = (I3 − I1)ω3ω1,

I3ω̇3 = (I1 − I2)ω1ω2,

with components of the angular velocity ω = (ω1, ω2, ω3) given in the body frame.

(ii) Use Euler’s equations to show that the energy E and the square of the total angular
momentum L2 of the body are conserved.

(iii) Consider a torque-free motion of a symmetric top with I1 = I2 =
1
2I3. Show that in

the body frame the vector of angular velocity ω precesses about the body-fixed e3
axis with constant angular frequency equal to ω3.

Part II, Paper 2
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10D Cosmology
The linearised equation for the growth of small inhomogeneous density perturbations

δk with comoving wavevector k in an isotropic and homogeneous universe is

δ̈k + 2
ȧ

a
δ̇k +

(
c2sk

2

a2
− 4πGρ

)
δk = 0 ,

where ρ is the matter density, cs = (dP/dρ)1/2 is the sound speed, P is the pressure, a(t) is
the expansion scale factor of the unperturbed universe, and overdots denote differentiation
with respect to time t.

Define the Jeans wavenumber and explain its physical meaning.

Assume the unperturbed Friedmann universe has zero curvature and cosmological
constant and it contains only zero-pressure matter, so that a(t) = a0t

2/3. Show that the
solution for the growth of density perturbations is given by

δk = A(k)t2/3 +B(k)t−1 .

Comment briefly on the cosmological significance of this result.
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SECTION II

11F Topics in Analysis
(i) Let n > 4 be an integer. Show that

1 +
1

n+ 1
1+ 1

n+...

> 1 +
1

2n
.

(ii) Let us say that an irrational number α is badly approximable if there is some
constant c > 0 such that ∣∣∣∣α− p

q

∣∣∣∣ >
c

q2

for all q > 1 and for all integers p. Show that if the integers an in the continued fraction
expansion α = [a0, a1, a2, . . . ] are bounded then α is badly approximable.

Give, with proof, an example of an irrational number which is not badly approx-
imable.

[Standard facts about continued fractions may be used without proof provided they
are stated clearly.]

12H Coding and Cryptography
Define a BCH code of length n, where n is odd, over the field of 2 elements with

design distance δ. Show that the minimum weight of such a code is at least δ. [Results
about the van der Monde determinant may be quoted without proof, provided they are
stated clearly.]

Consider a BCH code of length 31 over the field of 2 elements with design distance 8.
Show that the minimum distance is at least 11. [Hint: Let α be a primitive element in the
field of 25 elements, and consider the minimal polynomial for certain powers of α.]

Part II, Paper 2
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13A Mathematical Biology
The concentration c(x, t) of insects at position x at time t satisfies the nonlinear

diffusion equation
∂c

∂t
=

∂

∂x

(
cm

∂c

∂x

)
,

with m > 0. Find the value of α which allows a similarity solution of the form
c(x, t) = tαf(ξ), with ξ = tαx.

Show that

f(ξ) =

{ [
αm
2 (ξ2 − ξ0

2)
]1/m

for − ξ0 < ξ < ξ0 ,
0 otherwise,

where ξ0 is a constant. From the original partial differential equation, show that the total
number of insects c0 does not change in time. From this result, find a general expression
relating ξ0 and c0. Find a closed-form solution for ξ0 in the case m = 2.

14E Further Complex Methods
The Beta function is defined for Re(z) > 0 as

B(z, q) =

∫ 1

0
tq−1(1− t)z−1dt, (Re(q) > 0) ,

and by analytic continuation elsewhere in the complex z-plane.

Show that:

(i) (z + q)B(z + 1, q) = zB(z, q);

(ii) Γ(z)2 = B(z, z)Γ(2z).

By considering Γ(z/2m) for all positive integers m, deduce that Γ(z) 6= 0 for all z
with Re(z) > 0.
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15B Classical Dynamics

(i) The action for a system with a generalized coordinate q is given by

S =

∫ t2

t1

L(q, q̇, t)dt .

(a) State the Principle of Least Action and derive the Euler–Lagrange equation.

(b) Consider an arbitrary function f(q, t). Show that L′ = L + df/dt leads to the
same equation of motion.

(ii) A wire frame ABC in a shape of an equilateral triangle with side a rotates in a
horizontal plane with constant angular frequency ω about a vertical axis through A.
A bead of mass m is threaded on BC and moves without friction. The bead
is connected to B and C by two identical light springs of force constant k and
equilibrium length a/2.

(a) Introducing the displacement η of the particle from the mid point of BC,
determine the Lagrangian L(η, η̇).

(b) Derive the equation of motion. Identify the integral of the motion.

(c) Describe the motion of the bead. Find the condition for there to be a stable
equilibrium and find the frequency of small oscillations about it when it exists.
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16G Logic and Set Theory
Explain what is meant by a chain-complete poset. State the Bourbaki–Witt fixed-

point theorem for such posets.

A poset P is called directed if every finite subset of P (including the empty subset)
has an upper bound in P ; P is called directed-complete if every subset of P which is
directed (in the induced ordering) has a least upper bound in P . Show that the set of all
chains in an arbitrary poset P , ordered by inclusion, is directed-complete.

Given a poset P , let [P → P ] denote the set of all order-preserving maps P → P ,
ordered pointwise (i.e. f 6 g if and only if f(x) 6 g(x) for all x). Show that [P → P ] is
directed-complete if P is.

Now suppose P is directed-complete, and that f : P → P is order-preserving and
inflationary. Show that there is a unique smallest set C ⊆ [P → P ] satisfying

(a) f ∈ C;

(b) C is closed under composition (i.e. g, h ∈ C ⇒ g ◦ h ∈ C); and

(c) C is closed under joins of directed subsets.

Show that

(i) all maps in C are inflationary;

(ii) C is directed;

(iii) if g =
∨

C, then all values of g are fixed points of f ;

(iv) for every x ∈ P , there exists y ∈ P with x 6 y = f(y).

17F Graph Theory

Let G be a graph with |G| > 3. State and prove a necessary and sufficient condition

for G to be Eulerian (that is, for G to have an Eulerian circuit).

Prove that if δ(G) > |G|/2 then G is Hamiltonian (that is, G has a Hamiltonian

circuit).

The line graph L(G) of G has vertex set V (L(G)) = E(G) and edge set

E(L(G)) = { ef : e, f ∈ E(G), e and f are incident} .

Show that L(G) is Eulerian if G is regular and connected.

Must L(G) be Hamiltonian if G is Eulerian? Must G be Eulerian if L(G) is

Hamiltonian? Justify your answers.
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18I Galois Theory
For a positive integer N , let Q(µN ) be the cyclotomic field obtained by adjoining

all N -th roots of unity to Q. Let F = Q(µ24).

(i) Determine the Galois group of F over Q.

(ii) Find all N > 1 such that Q(µN ) is contained in F .

(iii) List all quadratic and quartic extensions of Q which are contained in F , in the
form Q(α) or Q(α, β). Indicate which of these fields occurred in (ii).

[Standard facts on the Galois groups of cyclotomic fields and the fundamental
theorem of Galois theory may be used freely without proof.]

19G Representation Theory
Recall that a regular icosahedron has 20 faces, 30 edges and 12 vertices. Let G be

the group of rotational symmetries of a regular icosahedron.

Compute the conjugacy classes of G. Hence, or otherwise, construct the character
table of G. Using the character table explain why G must be a simple group.

[You may use any general theorems provided that you state them clearly.]

20H Number Fields

(i) State Dirichlet’s unit theorem.

(ii) Let K be a number field. Show that if every conjugate of α ∈ OK has absolute value
at most 1 then α is either zero or a root of unity.

(iii) Let k = Q(
√
3) and K = Q(ζ) where ζ = eiπ/6 = (i+

√
3)/2. Compute NK/k(1+ ζ).

Show that
O∗

K = {(1 + ζ)mu : 0 6 m 6 11, u ∈ O∗
k}.

Hence or otherwise find fundamental units for k and K.
[You may assume that the only roots of unity in K are powers of ζ.]

Part II, Paper 2
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21G Algebraic Topology

(i) State the Seifert–van Kampen theorem.

(ii) Assuming any standard results about the fundamental group of a circle that you
wish, calculate the fundamental group of the n-sphere, for every n > 2.

(iii) Suppose that n > 3 and that X is a path-connected topological n-manifold. Show
that π1(X,x0) is isomorphic to π1(X − {P}, x0) for any P ∈ X − {x0}.

22F Linear Analysis
Let X be a Banach space. Let T : X → ℓ∞ be a bounded linear operator. Show

that there is a bounded sequence (fn)
∞
n=1 in X∗ such that Tx = (fnx)

∞
n=1 for all x ∈ X.

Fix 1 < p < ∞. Define the Banach space ℓp and briefly explain why it is separable.
Show that for x ∈ ℓp there exists f ∈ ℓ∗p such that ‖f‖ = 1 and f(x) = ‖x‖p. [You may
use Hölder’s inequality without proof.]

Deduce that ℓp embeds isometrically into ℓ∞.

23I Riemann Surfaces
(i) Show that the open unit disc D = {z ∈ C : |z| < 1} is biholomorphic to the

upper half-plane H = {z ∈ C : Im(z) > 0}.
(ii) Define the degree of a non-constant holomorphic map between compact con-

nected Riemann surfaces. State the Riemann–Hurwitz formula without proof. Now let
X be a complex torus and f : X → Y a holomorphic map of degree 2, where Y is the
Riemann sphere. Show that f has exactly four branch points.

(iii) List without proof those Riemann surfaces whose universal cover is the Riemann
sphere or C. Now let f : C → C be a holomorphic map such that there are two distinct
elements a, b ∈ C outside the image of f . Assuming the uniformization theorem and the
monodromy theorem, show that f is constant.
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24H Algebraic Geometry
Let V ⊂ P3 be an irreducible quadric surface.

(i) Show that if V is singular, then every nonsingular point lies in exactly one line
in V , and that all the lines meet in the singular point, which is unique.

(ii) Show that if V is nonsingular then each point of V lies on exactly two lines of V .

Let V be nonsingular, P0 a point of V , and Π ⊂ P3 a plane not containing P0. Show
that the projection from P0 to Π is a birational map f : V −−→ Π. At what points does f
fail to be regular? At what points does f−1 fail to be regular? Justify your answers.

25H Differential Geometry

Let α : [0, L] → R3 be a regular curve parametrized by arc length having nowhere-

vanishing curvature. State the Frenet relations between the tangent, normal and binormal

vectors at a point, and their derivatives.

Let S ⊂ R3 be a smooth oriented surface. Define the Gauss map N : S → S2, and

show that its derivative at P ∈ S, dNP : TPS → TPS, is self-adjoint. Define the Gaussian

curvature of S at P .

Now suppose that α : [0, L] → R3 has image in S and that its normal curvature is

zero for all s ∈ [0, L]. Show that the Gaussian curvature of S at a point P = α(s) of the

curve is K(P ) = −τ(s)2, where τ(s) denotes the torsion of the curve.

If S ⊂ R3 is a standard embedded torus, show that there is a curve on S for which

the normal curvature vanishes and the Gaussian curvature of S is zero at all points of the

curve.

26K Probability and Measure
Let (fn : n ∈ N) be a sequence of non-negative measurable functions defined on a

measure space (E, E , µ). Show that lim infn fn is also a non-negative measurable function.

State the Monotone Convergence Theorem.

State and prove Fatou’s Lemma.

Let (fn : n ∈ N) be as above. Suppose that fn(x) → f(x) as n → ∞ for all x ∈ E.
Show that

µ(min{fn, f}) → µ(f) .

Deduce that, if f is integrable and µ(fn) → µ(f), then fn converges to f in L1.
[Still assume that fn and f are as above.]
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27J Applied Probability

(i) Define a Poisson process as a Markov chain on the non-negative integers and state
three other characterisations.

(ii) Let λ(s) (s > 0) be a continuous positive function. Let (Xt, t > 0) be a right-continuous
process with independent increments, such that

P(Xt+h = Xt + 1) = λ(t)h+ o(h),

P(Xt+h = Xt) = 1− λ(t)h+ o(h),

where the o(h) terms are uniform in t ∈ [0,∞). Show that Xt is a Poisson random variable
with parameter Λ(t) =

∫ t
0 λ(s)ds.

(iii) Let X = (Xn : n = 1, 2, . . .) be a sequence of independent and identically distributed
positive random variables with continuous density function f . We define the sequence of
successive records, (Kn, n = 0, 1, . . .), by K0 := 0 and, for n > 0,

Kn+1 := inf{m > Kn : Xm > XKn}.

The record process, (Rt, t > 0), is then defined by

Rt := #{n > 1 : XKn 6 t}.

Explain why the increments of R are independent. Show that Rt is a Poisson random
variable with parameter − log{1− F (t)} where F (t) =

∫ t
0 f(s)ds.

[You may assume the following without proof: For fixed t > 0, let Y (respectively, Z)
be the subsequence of X obtained by retaining only those elements that are greater than
(respectively, smaller than) t. Then Y (respectively, Z) is a sequence of independent
variables each having the distribution of X1 conditioned on X1 > t (respectively, X1 < t);
and Y and Z are independent.]
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28K Principles of Statistics
Describe theWeak Sufficiency Principle (WSP) and the Strong Sufficiency Principle

(SSP). Show that Bayesian inference with a fixed prior distribution respects WSP.

A parameter Φ has a prior distribution which is normal with mean 0 and precision
(inverse variance) hΦ. Given Φ = φ, further parameters Θ := (Θi : i = 1, . . . , I) have
independent normal distributions with mean φ and precision hΘ. Finally, given both
Φ = φ and Θ = θ := (θ1, . . . , θI), observables X := (Xij : i = 1, . . . , I; j = 1, . . . , J) are
independent, Xij being normal with mean θi, and precision hX . The precision parameters

(hΦ, hΘ, hX) are all fixed and known. Let X := (X1, . . . ,XI), where Xi :=
∑J

j=1Xij/J .

Show, directly from the definition of sufficiency, that X is sufficient for (Φ,Θ). [You may
assume without proof that, if Y1, . . . , Yn have independent normal distributions with the
same variance, and Y := n−1

∑n
i=1 Yi, then the vector (Y1−Y , . . . , Yn−Y ) is independent

of Y .]

For data-values x := (xij : i = 1, . . . , I; j = 1, . . . , J), determine the joint
distribution, Πφ say, of Θ, given X = x and Φ = φ. What is the distribution of Φ,
given Θ = θ and X = x?

Using these results, describe clearly how Gibbs sampling combined with Rao–
Blackwellisation could be applied to estimate the posterior joint distribution of Θ, given
X = x.

Part II, Paper 2
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29K Optimization and Control
Suppose {xt}t>0 is a Markov chain. Consider the dynamic programming equation

Fs(x) = max
{
r(x), βE

[
Fs−1(x1) | x0 = x

]}
, s = 1, 2, . . . ,

with r(x) > 0, β ∈ (0, 1), and F0(x) = 0. Prove that:

(i) Fs(x) is nondecreasing in s;

(ii) Fs(x) 6 F (x), where F (x) is the value function of an infinite-horizon problem that
you should describe;

(iii) F∞(x) = lims→∞ Fs(x) = F (x).

A coin lands heads with probability p. A statistician wishes to choose between:
H0 : p = 1/3 and H1 : p = 2/3, one of which is true. Prior probabilities of H1 and H0 in
the ratio x : 1 change after one toss of the coin to ratio 2x : 1 (if the toss was a head) or
to ratio x : 2 (if the toss was a tail). What problem is being addressed by the following
dynamic programming equation?

F (x) = max
{

1
1+x ,

x
1+x , β

[(
1

1+x
2
3 +

x
1+x

1
3

)
F (x/2) +

(
1

1+x
1
3 + x

1+x
2
3

)
F (2x)

]}
.

Prove that G(x) = (1 + x)F (x) is a convex function of x.

By sketching a graph of G, describe the form of the optimal policy.

30J Stochastic Financial Models
What does it mean to say that (Yn,Fn)n>0 is a supermartingale?

State and prove Doob’s Upcrossing Inequality for a supermartingale.

Let (Mn,Fn)n60 be a martingale indexed by negative time, that is, for each n 6 0,
Fn−1 ⊆ Fn, Mn ∈ L1(Fn) and E[Mn|Fn−1] = Mn−1. Using Doob’s Upcrossing Inequality,
prove that the limit limn→−∞Mn exists almost surely.
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31C Partial Differential Equations
State the Lax–Milgram lemma.

Let V = V(x1, x2, x3) be a smooth vector field which is 2π-periodic in each
coordinate xj for j = 1, 2, 3. Write down the definition of a weak H1

per solution for
the equation

−∆u+
∑

j

Vj∂ju+ u = f (∗)

to be solved for u = u(x1, x2, x3) given f = f(x1, x2, x3) in H0, with both u and f also
2π-periodic in each co-ordinate. [In this question use the definition

Hs
per =

{
u =

∑

m∈Z3

û(m)eim·x ∈ L2 : ‖u‖2Hs =
∑

m∈Z3

(1 + ‖m‖2)s|û(m)|2 < ∞
}

for the Sobolev spaces of functions 2π-periodic in each coordinate xj and for s = 0, 1, 2, . . . .]

If the vector field is divergence-free, prove that there exists a unique weak H1
per

solution for all such f .

Supposing that V is the constant vector field with components (1, 0, 0), write down
the solution of (∗) in terms of Fourier series and show that there exists C > 0 such that

‖u‖H2 6 C‖f‖H0 .

32C Integrable Systems
Consider the Hamiltonian system

p′ = −∂H

∂q
, q′ =

∂H

∂p
,

where H = H(p,q).

When is the transformation P = P(p,q), Q = Q(p,q) canonical?

Prove that, if the transformation is canonical, then the equations in the new variables
(P,Q) are also Hamiltonian, with the same Hamiltonian function H.

Let P = C−1p + Bq, Q = Cq, where C is a symmetric nonsingular matrix.
Determine necessary and sufficient conditions on C for the transformation to be canonical.
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33E Principles of Quantum Mechanics
(i) In units where ~ = 1, angular momentum states |j m〉 obey

J2|j m〉 = j(j + 1)|j m〉, J3|j m〉 = m|j m〉.

Use the algebra of angular momentum [Ji, Jj ] = iǫijkJk to derive the following in
terms of J2, J± = J1 ± iJ2 and J3:

(a) [J2, Ji];

(b) [J3, J±];

(c) [J2, J±].

(ii) Find J+J− in terms of J2 and J3. Thus calculate the quantum numbers of the state
J±|j m〉 in terms of j and m. Derive the normalisation of the state J−|j m〉. Therefore,
show that

〈j j − 1|J j−1
+ J j

−|j j〉 =
√
A (2j − 1)!,

finding A in terms of j.

(iii) Consider the combination of a spinless particle with an electron of spin 1/2 and
orbital angular momentum 1. Calculate the probability that the electron has a spin of
+1/2 in the z−direction if the combined system has an angular momentum of +1/2 in the
z−direction and a total angular momentum of +3/2. Repeat the calculation for a total
angular momentum of +1/2.
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34D Applications of Quantum Mechanics
(i) A particle of momentum ~k and energy E = ~2k2/2m scatters off a spherically-

symmetric target in three dimensions. Define the corresponding scattering amplitude f as
a function of the scattering angle θ. Expand the scattering amplitude in partial waves of
definite angular momentum l, and determine the coefficients of this expansion in terms
of the phase shifts δl(k) appearing in the following asymptotic form of the wavefunction,
valid at large distance from the target,

ψ(r) ∼
∞∑

l=0

2l + 1

2ik

[
e2iδl

eikr

r
− (−1)l

e−ikr

r

]
Pl(cos θ) .

Here, r = |r| is the distance from the target and Pl are the Legendre polynomials.

[You may use without derivation the following approximate relation between plane and
spherical waves (valid asymptotically for large r):

exp(ikz) ∼
∞∑

l=0

(2l + 1) il
sin

(
kr − 1

2 lπ
)

kr
Pl(cos θ) . ]

(ii) Suppose that the potential energy takes the form V (r) = λU(r) where λ ≪ 1
is a dimensionless coupling. By expanding the wavefunction in a power series in λ, derive
the Born Approximation to the scattering amplitude in the form

f(θ) = −2mλ

~2

∫ ∞

0
U(r)

sin qr

q
rdr ,

up to corrections of order λ2, where q = 2k sin(θ/2). [You may quote any results you need
for the Green’s function for the differential operator ∇2 + k2 provided they are stated
clearly.]

(iii) Derive the corresponding order λ contribution to the phase shift δl(k) of angular
momentum l.

[You may use the orthogonality relations

∫ +1

−1
Pl(w)Pm(w) dw =

2

(2l + 1)
δlm

and the integral formula

∫ 1

0
Pl

(
1− 2x2

)
sin(ax) dx =

a

2

[
jl

(a
2

)]2
,

where jl(z) is a spherical Bessel function.]
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35A Statistical Physics
(i) The first law of thermodynamics is dE = TdS − pdV + µdN , where µ is the chemical
potential. Briefly describe its meaning.

(ii) What is equipartition of energy? Under which conditions is it valid? Write down the
heat capacity CV at constant volume for a monatomic ideal gas.

(iii) Starting from the first law of thermodynamics, and using the fact that for an ideal
gas (∂E/∂V )T = 0, show that the entropy of an ideal gas containing N particles can be
written as

S(T, V ) = N

(∫
cV (T )

T
dT + kB ln

V

N
+ const

)
,

where T and V are temperature and volume of the gas, kB is the Boltzmann constant,
and we define the heat capacity per particle as cV = CV /N .

(iv) The Gibbs free energy G is defined as G = E + pV − TS. Verify that it is a function
of temperature T , pressure p and particle number N . Explain why G depends on the
particle number N through G = µ(T, p)N .

(v) Calculate the chemical potential µ for an ideal gas with heat capacity per particle
cV (T ). Calculate µ for the special case of a monatomic gas.
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36D General Relativity
A spacetime contains a one-parameter family of geodesics xa = xa(λ, µ), where λ is

a parameter along each geodesic, and µ labels the geodesics. The tangent to the geodesics
is T a = ∂xa/∂λ, and Na = ∂xa/∂µ is a connecting vector. Prove that

∇µT
a = ∇λN

a ,

and hence derive the equation of geodesic deviation:

∇2
λN

a +Ra
bcd T

bN cT d = 0 .

[You may assume Ra
bcd = −Ra

bdc and the Ricci identity in the form

(∇λ∇µ −∇µ∇λ)T
a = Ra

bcd T
bT cNd . ]

Consider the two-dimensional space consisting of the sphere of radius r with line
element

ds2 = r2(dθ2 + sin2 θ dφ2) .

Show that one may choose T a = (1, 0), Na = (0, 1), and that

∇θN
a = cot θ Na .

Hence show that R = 2/r2, using the geodesic deviation equation and the identity in any
two-dimensional space

Ra
bcd =

1

2
R(δac gbd − δad gbc) ,

where R is the Ricci scalar.

Verify your answer by direct computation of R.

[You may assume that the only non-zero connection components are

Γφ
φθ = Γφ

θφ = cot θ

and
Γθ
φφ = − sin θ cos θ .

You may also use the definition

Ra
bcd = Γa

bd,c − Γa
bc,d + Γa

ecΓ
e
bd − Γa

edΓ
e
bc . ]

Part II, Paper 2



21

37A Fluid Dynamics II
Write down the boundary-layer equations for steady two-dimensional flow of a

viscous incompressible fluid with velocity U(x) outside the boundary layer. Find the
boundary layer thickness δ(x) when U(x) = U0, a constant. Show that the boundary-
layer equations can be satisfied in this case by a streamfunction ψ(x, y) = g(x)f(η) with
suitable scaling function g(x) and similarity variable η. Find the equation satisfied by f
and the associated boundary conditions.

Find the drag on a thin two-dimensional flat plate of finite length L placed parallel
to a uniform flow. Why does the drag not increase in proportion to the length of the plate?
[You may assume that the boundary-layer solution is applicable except in negligibly small
regions near the leading and trailing edges. You may also assume that f ′′(0) = 0.33.]

38C Waves
Show that the equations governing linear elasticity have plane-wave solutions,

distinguishing between P, SV and SH waves.

A semi-infinite elastic medium in y < 0 (where y is the vertical coordinate) with
density ρ and Lamé moduli λ and µ is overlaid by a layer of thickness h (in 0 < y < h)
of a second elastic medium with density ρ′ and Lamé moduli λ′ and µ′. The top surface
at y = h is free, that is, the surface tractions vanish there. The speed of the S-waves
is lower in the layer, that is, c′S

2 = µ′/ρ′ < µ/ρ = cS
2. For a time-harmonic SH-wave

with horizontal wavenumber k and frequency ω, which oscillates in the slow top layer and
decays exponentially into the fast semi-infinite medium, derive the dispersion relation for
the apparent horizontal wave speed c(k) = ω/k:

tan

(
kh

√
(c2/c′S

2)− 1

)
=

µ
√

1− (c2/c2S)

µ′
√
(c2/c′S

2)− 1
. (∗)

Show graphically that for a given value of k there is always at least one real value of c
which satisfies equation (∗). Show further that there are one or more higher modes if√

c2S/c
′
S
2 − 1 > π/kh.
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39C Numerical Analysis
Consider the advection equation ut = ux on the unit interval x ∈ [0, 1] and t > 0,

where u = u(x, t), subject to the initial condition u(x, 0) = ϕ(x) and the boundary
condition u(1, t) = 0, where ϕ is a given smooth function on [0, 1].

(i) We commence by discretising the advection equation above with finite differences
on the equidistant space-time grid {(m∆x, n∆t), m = 0, . . . ,M + 1, n = 0, . . . , T}
with ∆x = 1/(M + 1) and ∆t > 0. We obtain an equation for unm ≈ u(m∆x, n∆t)
that reads

un+1
m = unm +

1

2
µ(unm+1 − unm−1), m = 1, . . . ,M, n ∈ Z+,

with the condition un0 = 0 for all n ∈ Z+ and µ = ∆t/∆x.

What is the order of approximation (that is, the order of the local error) in space
and time of the above discrete solution to the exact solution of the advection
equation? Write the scheme in matrix form and deduce for which choices of µ this
approximation converges to the exact solution. State (without proof) any theorems
you use. [You may use the fact that for a tridiagonal M ×M matrix




α β 0 0

−β
. . .

. . . 0

0
. . .

. . . β
0 0 −β α




the eigenvalues are given by λℓ = α+ 2iβ cos ℓπ
M+1 .]

(ii) How does the order change when we replace the central difference approximation
of the first derivative in space by forward differences, that is unm+1 − unm instead of
(unm+1 − unm−1)/2? For which choices of µ is this new scheme convergent?

(iii) Instead of the approximation in (i) we consider the following method for numerically
solving the advection equation,

un+1
m = µ(unm+1 − unm−1) + un−1

m ,

where we additionally assume that u1m is given. What is the order of this method
for a fixed µ?

END OF PAPER
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