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SECTION I

1G Groups, Rings and Modules
Define the notion of a free module over a ring. When R is a PID, show that every

ideal of R is free as an R-module.

2F Analysis II
For each of the following sequences of functions on [0, 1], indexed by n = 1, 2, . . .,

determine whether or not the sequence has a pointwise limit, and if so, determine whether
or not the convergence to the pointwise limit is uniform.

1. fn(x) = 1/(1 + n2x2)

2. gn(x) = nx(1− x)n

3. hn(x) =
√
nx(1− x)n

3G Metric and Topological Spaces
Let X be a metric space with the metric d : X ×X → R.

(i) Show that if X is compact as a topological space, then X is complete.

(ii) Show that the completeness of X is not a topological property, i.e. give an
example of two metrics d, d′ on a set X, such that the associated topologies are the same,
but (X, d) is complete and (X, d′) is not.

4D Complex Methods
Let y(t) = 0 for t < 0, and let lim

t→0+
y(t) = y0.

(i) Find the Laplace transforms of H(t) and tH(t), where H(t) is the Heaviside step
function.

(ii) Given that the Laplace transform of y(t) is ŷ(s), find expressions for the Laplace
transforms of ẏ(t) and y(t− 1).

(iii) Use Laplace transforms to solve the equation

ẏ(t)− y(t− 1) = H(t)− (t− 1)H(t− 1)

in the case y0 = 0.
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5F Geometry
Let S be a surface with Riemannian metric having first fundamental form

du2 +G(u, v)dv2. State a formula for the Gauss curvature K of S.

Suppose that S is flat, so K vanishes identically, and that u = 0 is a geodesic on S
when parametrised by arc-length. Using the geodesic equations, or otherwise, prove that
G(u, v) ≡ 1, i.e. S is locally isometric to a plane.

6A Variational Principles
A cylindrical drinking cup has thin curved sides with density ρ per unit area, and

a disk-shaped base with density kρ per unit area. The cup has capacity to hold a fixed
volume V of liquid. Use the method of Lagrange multipliers to find the minimum mass of
the cup.

7C Methods
The solution to the Dirichlet problem on the half-space D = {x = (x, y, z) : z > 0}:

∇2u(x) = 0, x ∈ D , u(x) → 0 as |x| → ∞, u(x, y, 0) = h(x, y),

is given by the formula

u(x0) = u(x0, y0, z0) =

∫ ∞

−∞

∫ ∞

−∞
h(x, y)

∂

∂n
G(x,x0) dx dy ,

where n is the outward normal to ∂D.

State the boundary conditions on G and explain how G is related to G3, where

G3(x,x0) = − 1

4π

1

|x− x0|

is the fundamental solution to the Laplace equation in three dimensions.

Using the method of images find an explicit expression for the function ∂
∂nG(x,x0)

in the formula.
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8B Quantum Mechanics
If α, β and γ are linear operators, establish the identity

[αβ, γ] = α[β, γ] + [α, γ]β.

In what follows, the operators x and p are Hermitian and represent position and momentum
of a quantum mechanical particle in one-dimension. Show that

[xn, p] = i~nxn−1

and
[x, pm] = i~mpm−1

where m,n ∈ Z+. Assuming [xn, pm] 6= 0, show that the operators xn and pm are
Hermitian but their product is not. Determine whether xnpm + pmxn is Hermitian.

9H Markov Chains
Prove that if a distribution π is in detailed balance with a transition matrix P then

it is an invariant distribution for P .

Consider the following model with 2 urns. At each time, t = 0, 1, . . . one of the
following happens:

• with probability β a ball is chosen at random and moved to the other urn (but
nothing happens if both urns are empty);

• with probability γ a ball is chosen at random and removed (but nothing happens if
both urns are empty);

• with probability α a new ball is added to a randomly chosen urn,

where α + β + γ = 1 and α < γ. State (i, j) denotes that urns 1, 2 contain i and j balls
respectively. Prove that there is an invariant measure

λi,j =
(i+ j)!

i!j!
(α/2γ)i+j .

Find the proportion of time for which there are n balls in the system.
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SECTION II

10E Linear Algebra
Let V and W be finite dimensional real vector spaces and let T : V → W be a linear

map. Define the dual space V ∗ and the dual map T ∗. Show that there is an isomorphism
ι : V → (V ∗)∗ which is canonical, in the sense that ι ◦S = (S∗)∗ ◦ ι for any automorphism
S of V .

Now let W be an inner product space. Use the inner product to show that there is
an injective map from imT to imT ∗. Deduce that the row rank of a matrix is equal to its
column rank.

11G Groups, Rings and Modules
Let R = C[X,Y ] be the polynomial ring in two variables over the complex numbers,

and consider the principal ideal I = (X3 − Y 2) of R.

(i) Using the fact that R is a UFD, show that I is a prime ideal of R. [Hint:
Elements in C[X,Y ] are polynomials in Y with coefficients in C[X].]

(ii) Show that I is not a maximal ideal of R, and that it is contained in infinitely
many distinct proper ideals in R.

12F Analysis II
For each of the following statements, provide a proof or justify a counterexample.

1. The norms ‖x‖1 =
∑n

i=1 |xi| and ‖x‖∞ = max16i6n|xi| on Rn are Lipschitz
equivalent.

2. The norms ‖x‖1 =
∑∞

i=1 |xi| and ‖x‖∞ = maxi|xi| on the vector space of sequences
(xi)i>1 with

∑ |xi| < ∞ are Lipschitz equivalent.

3. Given a linear function φ : V → W between normed real vector spaces, there is
some N for which ‖φ(x)‖ 6 N for every x ∈ V with ‖x‖ 6 1.

4. Given a linear function φ : V → W between normed real vector spaces for which
there is some N for which ‖φ(x)‖ 6 N for every x ∈ V with ‖x‖ 6 1, then φ is
continuous.

5. The uniform norm ‖f‖ = supx∈R|f(x)| is complete on the vector space of continuous
real-valued functions f on R for which f(x) = 0 for |x| sufficiently large.

6. The uniform norm ‖f‖ = supx∈R|f(x)| is complete on the vector space of continuous
real-valued functions f on R which are bounded.
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13E Complex Analysis
Let D = {z ∈ C | |z| < 1} be the open unit disk, and let C be its boundary (the

unit circle), with the anticlockwise orientation. Suppose φ : C → C is continuous. Stating
clearly any theorems you use, show that

gφ(w) =
1

2πi

∫

C

φ(z)

z − w
dz

is an analytic function of w for w ∈ D.

Now suppose φ is the restriction of a holomorphic function F defined on some
annulus 1− ǫ < |z| < 1 + ǫ. Show that gφ(w) is the restriction of a holomorphic function
defined on the open disc |w| < 1 + ǫ.

Let fφ : [0, 2π] → C be defined by fφ(θ) = φ(eiθ). Express the coefficients in the
power series expansion of gφ centered at 0 in terms of fφ.

Let n ∈ Z. What is gφ in the following cases?

1. φ(z) = zn.

2. φ(z) = zn.

3. φ(z) = (Re z)2.

14F Geometry
Show that the set of all straight lines in R2 admits the structure of an abstract

smooth surface S. Show that S is an open Möbius band (i.e. the Möbius band without its
boundary circle), and deduce that S admits a Riemannian metric with vanishing Gauss
curvature.

Show that there is no metric d : S × S → R>0, in the sense of metric spaces, which

1. induces the locally Euclidean topology on S constructed above;

2. is invariant under the natural action on S of the group of translations of R2.

Show that the set of great circles on the two-dimensional sphere admits the structure
of a smooth surface S′. Is S′ homeomorphic to S ? Does S′ admit a Riemannian metric
with vanishing Gauss curvature? Briefly justify your answers.
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15C Methods
The Laplace equation in plane polar coordinates has the form

∇2φ =

[
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2

]
φ(r, θ) = 0 .

Using separation of variables, derive the general solution to the equation that is single-
valued in the domain 1 < r < 2.

For

f(θ) =

∞∑

n=1

An sinnθ ,

solve the Laplace equation in the annulus with the boundary conditions:

∇2φ = 0, 1 < r < 2, φ(r, θ) =

{
f(θ), r = 1

f(θ) + 1, r = 2.

16B Quantum Mechanics
Obtain, with the aid of the time-dependent Schrödinger equation, the conservation

equation
∂

∂t
ρ(x, t) +∇ · j(x, t) = 0

where ρ(x, t) is the probability density and j(x, t) is the probability current. What have
you assumed about the potential energy of the system?

Show that if the potential U(x, t) is complex the conservation equation becomes

∂

∂t
ρ(x, t) +∇ · j(x, t) = 2

~
ρ(x, t) ImU(x, t).

Take the potential to be time-independent. Show, with the aid of the divergence theorem,
that

d

dt

∫

R3

ρ(x, t) dV =
2

~

∫

R3

ρ(x, t) ImU(x) dV.

Assuming the wavefunction ψ(x, 0) is normalised to unity, show that if ρ(x, t) is expanded
about t = 0 so that ρ(x, t) = ρ0(x) + tρ1(x) + · · · , then

∫

R3

ρ(x, t) dV = 1 +
2t

~

∫

R3

ρ0(x) ImU(x) dV + · · · .

As time increases, how does the quantity on the left of this equation behave if ImU(x) < 0?
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17D Electromagnetism
Three sides of a closed rectangular circuit C are fixed and one is moving. The circuit

lies in the plane z = 0 and the sides are x = 0, y = 0, x = a(t), y = b, where a(t) is a
given function of time. A magnetic field B = (0, 0, ∂f∂x) is applied, where f(x, t) is a given
function of x and t only. Find the magnetic flux Φ of B through the surface S bounded
by C.

Find an electric field E0 that satisfies the Maxwell equation

∇×E = −∂B

∂t

and then write down the most general solution E in terms of E0 and an undetermined
scalar function independent of f .

Verify that ∮

C
(E+ v ×B) · dr = −dΦ

dt
,

where v is the velocity of the relevant side of C. Interpret the left hand side of this
equation.

If a unit current flows round C, what is the rate of work required to maintain the
motion of the moving side of the rectangle? You should ignore any electromagnetic fields
produced by the current.

18A Fluid Dynamics
A layer of incompressible fluid of density ρ and viscosity µ flows steadily down a

plane inclined at an angle θ to the horizontal. The layer is of uniform thickness h measured
perpendicular to the plane and the viscosity of the overlying air can be neglected. Using
coordinates x parallel to the plane (in steepest downwards direction) and y normal to the
plane, write down the equations of motion and the boundary conditions on the plane and
on the free top surface. Determine the pressure and velocity fields and show that the
volume flux down the plane is

ρgh3 sin θ

3µ
.

Consider now the case where a second layer of fluid, of uniform thickness αh,
viscosity βµ and density ρ, flows steadily on top of the first layer. Explain why one
of the appropriate boundary conditions between the two fluids is

µ
∂

∂y
u(h−) = βµ

∂

∂y
u(h+) ,

where u is the component of velocity in the x direction and h− and h+ refer to just below
and just above the boundary respectively. Determine the velocity field in each layer.
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19C Numerical Analysis
Let

f ′(0) ≈ a0f(0) + a1f(1) + a2f(2) =: λ(f)

be a formula of numerical differentiation which is exact on polynomials of degree 2, and
let

e(f) = f ′(0)− λ(f)

be its error.

Find the values of the coefficients a0, a1, a2.

Using the Peano kernel theorem, find the least constant c such that, for all functions
f ∈ C3[0, 2], we have

|e(f)| 6 c ‖f ′′′‖∞ .

20H Statistics
Suppose x1 is a single observation from a distribution with density f over [0, 1]. It

is desired to test H0 : f(x) = 1 against H1 : f(x) = 2x.

Let δ : [0, 1] → {0, 1} define a test by δ(x1) = i ⇐⇒ ‘accept Hi’. Let
αi(δ) = P (δ(x1) = 1− i | Hi). State the Neyman-Pearson lemma using this notation.

Let δ be the best test of size 0.10. Find δ and α1(δ).

Consider now δ : [0, 1] → {0, 1, ⋆} where δ(x1) = ⋆ means ‘declare the test to be
inconclusive’. Let γi(δ) = P (δ(x) = ⋆ | Hi). Given prior probabilities π0 for H0 and
π1 = 1− π0 for H1, and some w0, w1, let

cost(δ) = π0
(
w0α0(δ) + γ0(δ)

)
+ π1

(
w1α1(δ) + γ1(δ)

)
.

Let δ∗(x1) = i ⇐⇒ x1 ∈ Ai, where A0 = [0, 0.5), A⋆ = [0.5, 0.6), A1 = [0.6, 1].
Prove that for each value of π0 ∈ (0, 1) there exist w0, w1 (depending on π0) such that
cost(δ∗) = minδ cost(δ). [Hint : w0 = 1 + 2(0.6)(π1/π0).]

Hence prove that if δ is any test for which

αi(δ) 6 αi(δ
∗), i = 0, 1

then γ0(δ) > γ0(δ
∗) and γ1(δ) > γ1(δ

∗).
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21H Optimization
Use the two phase method to find all optimal solutions to the problem

maximize 2x1 + 3x2 + x3

subject to x1 + x2 + x3 6 40

2x1 + x2 − x3 > 10

−x2 + x3 > 10

x1, x2, x3 > 0.

Suppose that the values (40, 10, 10) are perturbed to (40, 10, 10) + (ǫ1, ǫ2, ǫ3). Find
an expression for the change in the optimal value, which is valid for all sufficiently small
values of ǫ1, ǫ2, ǫ3.

Suppose that (ǫ1, ǫ2, ǫ3) = (θ,−2θ, 0). For what values of θ is your expression valid?

END OF PAPER
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