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SECTION I

1C Vectors and Matrices

(a) State de Moivre’s theorem and use it to derive a formula for the roots of order n of
a complex number z = a+ ib. Using this formula compute the cube roots of z = −8.

(b) Consider the equation |z + 3i| = 3|z| for z ∈ C. Give a geometric description of the
set S of solutions and sketch S as a subset of the complex plane.

2A Vectors and Matrices
Let A be a real 3× 3 matrix.

(i) For B = R1A with

R1 =



1 0 0
0 cos θ1 − sin θ1
0 sin θ1 cos θ1




find an angle θ1 so that the element b31 = 0, where bij denotes the ijth entry of the
matrix B.

(ii) For C = R2B with b31 = 0 and

R2 =



cos θ2 − sin θ2 0
sin θ2 cos θ2 0
0 0 1




show that c31 = 0 and find an angle θ2 so that c21 = 0.

(iii) For D = R3C with c31 = c21 = 0 and

R3 =



1 0 0
0 cos θ3 − sin θ3
0 sin θ3 cos θ3




show that d31 = d21 = 0 and find an angle θ3 so that d32 = 0.

(iv) Deduce that any real 3 × 3 matrix can be written as a product of an orthogonal
matrix and an upper triangular matrix.
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3D Analysis I
Show that exp(x) > 1 + x for x > 0.

Let (aj) be a sequence of positive real numbers. Show that for every n,

n∑

1

aj 6
n∏

1

(1 + aj) 6 exp

(
n∑

1

aj

)
.

Deduce that
∏n

1 (1 + aj) tends to a limit as n → ∞ if and only if
∑n

1 aj does.

4F Analysis I
(a) Suppose bn > bn+1 > 0 for n > 1 and bn → 0. Show that

∑∞
n=1(−1)n−1bn converges.

(b) Does the series
∑∞

n=2
1

n logn converge or diverge? Explain your answer.
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SECTION II

5C Vectors and Matrices
Let x and y be non-zero vectors in Rn. What is meant by saying that x and y are

linearly independent? What is the dimension of the subspace of Rn spanned by x and y
if they are (1) linearly independent, (2) linearly dependent?

Define the scalar product x · y for x, y ∈ Rn. Define the corresponding norm
‖x‖ of x ∈ Rn. State and prove the Cauchy-Schwarz inequality, and deduce the triangle
inequality. Under what condition does equality hold in the Cauchy-Schwarz inequality?

Let x, y, z be unit vectors in R3. Let

S = x · y+ y · z+ z · x .

Show that for any fixed, linearly independent vectors x and y, the minimum of S over z
is attained when z = λ(x+ y) for some λ ∈ R, and that for this value of λ we have

(i) λ 6 −1
2 (for any choice of x and y);

(ii) λ = −1 and S = −3
2 in the case where x · y = cos 2π

3 .
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6A Vectors and Matrices
Define the kernel and the image of a linear map α from Rm to Rn.

Let {e1, e2, . . . , em} be a basis of Rm and {f1, f2, . . . , fn} a basis of Rn. Explain how
to represent α by a matrix A relative to the given bases.

A second set of bases {e′1, e′2, . . . , e′m} and {f ′1, f ′2, . . . , f ′n} is now used to represent
α by a matrix A′. Relate the elements of A′ to the elements of A.

Let β be a linear map from R2 to R3 defined by

β

(
1
1

)
=



1
2
3


 , β

(
1
−1

)
=



6
4
2


 .

Either find one or more x in R2 such that

βx =




1
−2
1


 ,

or explain why one cannot be found.

Let γ be a linear map from R3 to R2 defined by

γ



1
2
0


 =

(
1
3

)
, γ



0
1
1


 =

(
−2
1

)
, γ



0
1
0


 =

(
0
1

)
.

Find the kernel of γ.

7B Vectors and Matrices

(a) Let λ1, . . . , λd be distinct eigenvalues of an n × n matrix A, with corresponding
eigenvectors v1, . . . ,vd. Prove that the set {v1, . . . ,vd} is linearly independent.

(b) Consider the quadric surface Q in R3 defined by

2x2 − 4xy + 5y2 − z2 + 6
√
5y = 0.

Find the position of the origin Õ and orthonormal coordinate basis vectors ẽ1, ẽ2
and ẽ3, for a coordinate system (x̃, ỹ, z̃) in which Q takes the form

αx̃2 + βỹ2 + γz̃2 = 1.

Also determine the values of α, β and γ, and describe the surface geometrically.
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8B Vectors and Matrices

(a) Let A and A′ be the matrices of a linear map L on C2 relative to bases B and B′

respectively. In this question you may assume without proof that A and A′ are
similar.

(i) State how the matrix A of L relative to the basis B = {e1, e2} is constructed
from L and B. Also state how A may be used to compute Lv for any v ∈ C2.

(ii) Show that A and A′ have the same characteristic equation.

(iii) Show that for any k 6= 0 the matrices

(
a c
b d

)
and

(
a c/k
bk d

)

are similar. [Hint: if {e1, e2} is a basis then so is {ke1, e2}.]

(b) Using the results of (a), or otherwise, prove that any 2× 2 complex matrix M with
equal eigenvalues is similar to one of

(
a 0
0 a

)
and

(
a 1
0 a

)
with a ∈ C.

(c) Consider the matrix

B(r) =
1

2




1 + r 1− r 1
1− r 1 + r −1
−1 1 2r


 .

Show that there is a real value r0 > 0 such that B(r0) is an orthogonal matrix.
Show that B(r0) is a rotation and find the axis and angle of the rotation.
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9D Analysis I

(a) Determine the radius of convergence of each of the following power series:

∑

n>1

xn

n!
,

∑

n>1

n!xn,
∑

n>1

(n!)2xn
2
.

(b) State Taylor’s theorem.

Show that
(1 + x)1/2 = 1 +

∑

n>1

cnx
n,

for all x ∈ (0, 1), where

cn =
1
2 (

1
2 − 1) . . . (12 − n+ 1)

n!
.

10E Analysis I

(a) Let f : [a, b] → R. Suppose that for every sequence (xn) in [a, b] with limit y ∈ [a, b],
the sequence (f(xn)) converges to f(y). Show that f is continuous at y.

(b) State the Intermediate Value Theorem.

Let f : [a, b] → R be a function with f(a) = c < f(b) = d. We say f is injective if
for all x, y ∈ [a, b] with x 6= y, we have f(x) 6= f(y). We say f is strictly increasing
if for all x, y with x < y, we have f(x) < f(y).

(i) Suppose f is strictly increasing. Show that it is injective, and that if
f(x) < f(y) then x < y.

(ii) Suppose f is continuous and injective. Show that if a < x < b then
c < f(x) < d. Deduce that f is strictly increasing.

(iii) Suppose f is strictly increasing, and that for every y ∈ [c, d] there exists
x ∈ [a, b] with f(x) = y. Show that f is continuous at b. Deduce that f is
continuous on [a, b].
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11E Analysis I

(i) State (without proof) Rolle’s Theorem.

(ii) State and prove the Mean Value Theorem.

(iii) Let f , g : [a, b] → R be continuous, and differentiable on (a, b) with g′(x) 6= 0 for all
x ∈ (a, b). Show that there exists ξ ∈ (a, b) such that

f ′(ξ)
g′(ξ)

=
f(b)− f(a)

g(b)− g(a)
.

Deduce that if moreover f(a) = g(a) = 0, and the limit

ℓ = lim
x→a

f ′(x)
g′(x)

exists, then
f(x)

g(x)
→ ℓ as x → a.

(iv) Deduce that if f : R → R is twice differentiable then for any a ∈ R

f ′′(a) = lim
h→0

f(a+ h) + f(a− h)− 2f(a)

h2
.
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12F Analysis I
Fix a closed interval [a, b]. For a bounded function f on [a, b] and a dissection

D of [a, b], how are the lower sum s(f,D) and upper sum S(f,D) defined? Show that
s(f,D) 6 S(f,D).

Suppose D′ is a dissection of [a, b] such that D ⊆ D′. Show that

s(f,D) 6 s(f,D′) and S(f,D′) 6 S(f,D) .

By using the above inequalities or otherwise, show that if D1 and D2 are two dissections
of [a, b] then

s(f,D1) 6 S(f,D2) .

For a function f and dissection D = {x0, . . . , xn} let

p(f,D) =

n∏

k=1

[
1 + (xk − xk−1) inf

x∈[xk−1,xk]
f(x)

]
.

If f is non-negative and Riemann integrable, show that

p(f,D) 6 e
∫ b
a f(x)dx .

[You may use without proof the inequality et > t+ 1 for all t.]

END OF PAPER
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